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Abstract

There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and
anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological
echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing
the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and
Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian
data, where the ‘screening effect’ that occurs with the Kriging weighting distribution around target points is exploited to ensure computational
efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD) are also suggested for finding an
efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall
volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above,
Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level.

Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation

time, ground level rainfall estimation

Introduction

Raingauges have traditionally been used for the recording
of rainfall over catchment areas and are often regarded as
providing the ‘true’ rainfall at ground level. They provide a
direct measurement of rainfall depth at a point and are
relatively easy and cheap to maintain. Limitations do
however exist with the raingauge data. Raingauges provide
only a point accumulation measurement of the rainfall and
fail to capture its spatial variability; even with a dense
network of raingauges it is difficult to interpolate and
extrapolate gauge data in any significant detail or accuracy,
especially at short time scales.

Radar images of instantaneous rain-rate address some of
the problems and limitations associated with raingauge data.
Rainfall can vary greatly in both space and time. Radar
rainfall images can show the instantaneous rainfall rate in
far greater spatial detail and complexity than is possible with
raingauge data. With this type of information it is also
possible to observe and predict severe weather patterns in a
far more timely and efficient manner. At present in South
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Africa, the weather radar network of 11 radars provides
instantaneous rainfall images of rain rate at approximately
five-minute intervals and with one minute of arc (about 1.5
kilometres over South Africa) resolution.

There is a down side: there are various data quality issues
associated with the radar rainfall data. Most importantly,
radar provides an indirect measurement of the instantaneous
rainfall rate. The reflectivity (dBZ) values returned to the
radar are typically converted to a rainfall rate (mm hr') with
a variant of the Marshall Palmer formula (Marshall and
Palmer, 1948). Errors in the radar rainfall data can include
the following: ground clutter, beam blocking, bright band
and anomalous propagation, to name a few. Ground clutter
(non-meteorological echoes that influence radar data quality)
is caused by the radar beam colliding with the earth’s surface
yielding abnormally high reflectivity values. This can result
in large portions of the rainfall image being contaminated
with highly reflective non-rainfall information; ground
clutter is the main problem addressed herein.

The location of the ground clutter is identified by the South



African Weather Services Research Division, METSYS
(Meteorological Systems and Technology), using an auto-
correlation technique. In this technique the variability of
reflectivity at ground clutter locations is considered to be
much lower than that of precipitation. To detect this
difference, the temporal auto-correlation is calculated at each
pixel and once a determined threshold value of persistence
is reached, the pixel is flagged as containing ground clutter.
In this way the likely non-rainfall information can be marked
and separated from the actual rainfall values (Visser, 2003).
Figure 1 shows a typical radar image of widespread
relatively low intensity rainfall at Bethlehem, South Africa,
in summer. Where there was no rain recorded, the image
background is white; the maximum observed reflectivity is
given as yellow and does not exceed 30 dBZ, which is
equivalent to approximately 3 mm hr'. The estimated
ground clutter pixels are flagged, appearing black in this
image.

To remove the ground clutter and estimate the missing
rainfall data in real time, a computationally fast and accurate
technique is required. Kriging was chosen as the method
for estimating the missing data. However, for Kriging to be
used in a real time application, advantage needs to be taken
of various factors such as the pattern of the Kriging weights
in the ‘good’ or control data pixels surrounding the ground
clutter. Hence, an effective and efficient method for
estimating the missing target rainfall values can be provided.

Standard techniques to remove ground clutter include
subtracting a ‘clutter map’, derived from a period of no
precipitation, from the observed reflectivity values.
Unfortunately ground clutter is not totally stationary and
its location can vary depending on atmospheric conditions
(Vezzani, 1994).

The Kriging technique mentioned briefly above, and
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described in more detail later, is proposed as an alternative.
The methodology is presented in this paper along with
relevant examples of its application. Preliminary results are
encouraging, however the technique still needs to be fully
validated on different types of rainfall.

Brief overview of Ordinary Kriging
theory

Kriging was chosen as the computational method for
infilling the contaminated rainfall data. Kriging is used to
estimate the missing data as it is the optimal technique for
the spatial interpolation of Gaussian data (Cressie, 1993:
106) if the sum of estimation errors squared is to be
minimised. Reflectivity values of rainfall have been shown
to be approximately normally distributed, because the rain
rate on an image follows a truncated lognormal distribution
(Bell, 1987; Pegram and Clothier, 2001). Thus, in this
application, the estimation of the missing data by Kriging
is carried out in the reflectivity rather than the rain rate
domain. Kriging has several advantages over other
interpolation techniques. The basis function used in Kriging
is determined by the data set and its spatial structure; in this
way the actual nature of the data set is taken into account.
In other well known interpolation techniques such as
multiquadrics, Fourier series or splines the basis function is
merely chosen for computational convenience.

Ordinary Kriging is used here where the mean is assumed
unknown and is implicitly estimated from the data. The
Ordinary Kriging equations used herein are given in Eqn.

(1).

2(sy) = A" () - Z (1)

100

NORTH

0
Reflectivity (dBZ)

Fig. 1. Typical instantaneous radar rainfall reflectivity image from the Bethlehem weather radar (20 February 2003). Black areas indicate
contaminated data. The square surrounding the radar image has sides of length 270 kilometres.
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where z(s ) is the estimated data value at the target location
s, = (X, ¥,)> A(s,) is the vector of Kriging weights associated
with the location s and z is the vector of known or control
data. This computation is carried out to estimate the
reflectivity at each target pixel in turn. The weights are
computed from Eqn. (2):

G ul[As)] [9(s)
u o |us)| | 1 @

where u is a unit vector of ones and x a Lagrange multiplier.
In Eqn. (2) g(s,) is the vector of covariances or semi-
variogram values between the target location (data point to
be estimated) and the control points (known data values z)
and G is the matrix of covariances or semi-variogram values
between the control points (the covariance or semi-
variogram function is estimated from the data). Equation
(2) is derived by minimising the estimation error variance
and the Lagrange multiplier is included to constrain the sum
of the weights to unity. The variogram is defined as the
expectation of the square of the differences of the field
variables as shown in Eqn. (3):

2.y(xh)=E{[z(9-Z2(x+ W | 3)

the semi-variogram is defined as y (x, #) (Journel and
Huijbregts, 1978: 11).

In a stationary random field, Ordinary Kriging can be
carried out by using either a covariance or semi-variogram
function, where one is the complement of the other with
reference to the field variance. Mathematically they are
equivalent in this context, however in some applications
the variogram is more robust (Cressie, 1993: 70-73), so
was used throughout in preference to the covariance. The
isotropic semi-variogram model chosen is the two-parameter
exponential model specified in Eqn. (4) and is used in all
Kriging computations herein.

g(s) =1-exp[—(s/L)"] “)

where s is the Euclidian distance between data points, L is a
scale parameter called the correlation length and « is the
exponent parameter, which lies in the range 0 < o < 2; the
model is thus Gaussian when o = 2.

The advantages of the Kriging technique can be listed as
follows: it is considered to be the best linear unbiased spatial
estimator (Journel and Huijbregts, 1978: 57, 304); in
extrapolation the values converge to the mean of the field
whereas other techniques do not necessarily exhibit this
desirable behaviour; the technique can be easily used on
1-D, 2-D and 3-D data sets; the precision of the estimated
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data can be obtained. The precision is termed as the Kriging
variance which, when using a semi-variogram function, is
computed by Eqn. (5) (Cressie, 1993: 122—-123):

o2 (So) = AT (Se) - 9(Sy) + () )

The main disadvantage of the Kriging technique is that it
relies on finding the solution to a set of linear equations so
that in large data sets the matrix algebra can become
computationally burdensome and time consuming. Not as
well recognised, and one of the main thrusts of this paper,
is that the coefficient matrix can be highly ill-conditioned
depending on the chosen parameters in the semi-variogram
function and the data configuration. This can lead to
inaccurate solutions and numerical instability. These matters
will be dealt with in more detail in the sequel.

Methods for improving computational
efficiency

In weather radar applications in South Africa where data
sets are processed at a frequency of 5 minutes, the missing
rainfall data need to be estimated in real time, thus a
computationally fast and accurate technique is needed. The
classical Kriging technique requires the solution of a linear
system of equations whose size is determined by the number
of control points. This can be time consuming, as the
coefficient matrix becomes large. A radar image typically
contains 120 000 pixels, leading to a coefficient matrix with
dimensions greater then 100 000 by 100 000. Currently it is
impractical to work with systems this size online.

There is an unexpected saving which can be exploited to
ease the computational burden in a dense data set, as in radar
data which typically occur on a lattice, not all of the control
points need to be used in estimating the missing data points.
A ‘screening effect” occurs where the significant Kriging
weights associated with the controls are concentrated around
the target points (Chiles and Delfiner, 1999: 202-206). This
can be used advantageously to reduce computation time
significantly. For each individual target point, or set of target
points in a cluster, a Kriging neighbourhood in its vicinity
can be selected to reduce the dimensionality of the problem.

THEORETICAL JUSTIFICATION OF THE
SCREENING EFFECT IN ONE DIMENSION

To give some theoretical justification to the ‘screening
effect’, a one-dimensional analysis is presented which shows
this very nicely. This does not easily extend itself to two
dimensions or more, but intuitively and computationally the
idea is justified by extension from a single dimension. It



turns out that, in one dimension, the screening effect is
limited by the order of the model in cases where the co-
variogram is that of an autoregressive process of order p. In
fact only the first p intact (control) data nearest the point to
be infilled (target) will have non-zero weights A in the
Kriging equation z(s)) = 2'(s )z . A small one-dimensional
example will suffice to explain the ideas.

One-dimensional AR(1) and AR(2) models

Suppose there is a sample {z,, i =1, 2, ..., 6} with two
missing values at positions / = 3 and 4 which are to be
estimated. Assume the sample is a realisation of a zero-mean
unit-variance Gaussian AR(1) process with parameter ¢ : z,
= ¢z, + a, and (because of the reversibility of the AR(1)
process) z, = ¢z, + e where {a} and {e} are independent
white noise processes with the same variance. To attempt to
infill the missing data using a forecast from z,, would give
{23, 24} = {¢z,, #z,} and hindcasting from z_, {23, 24} =
{#z,, ¢z.}, with no prospect of agreement. Any compromise
would be subjective and ad hoc, unless, for example, an
iterative scheme embodying the EM algorithm were to be
employed.

As an optimal alternative, use Kriging to estimate the
missing values. The correlation matrix between the known
values is then formed from the usual 6 x 6 matrix and
removing the two central rows and columns:

1 ¢ ¢ ¢
g 1 4 ¢
GH: 4 3
9" 97 1 ¢
A A |
whose inverse is:
Gn_]:
1-¢°)  -¢(1-¢°) 0 0
-g(1-¢°)  (@-¢°) -¢9°Q-¢) 0 2 6
+[A-¢)(2-
0 pa ) a0
0 0 -p(1-¢°)  (1-4°)
_|C a
a f «
a p a
a C

To get the matrix of Kriging weights AT one needs the
correlation matrix between the two missing and four known
values:

9> ¢ ¢ ¢
G, = ¢3 ¢2 P ¢2
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so that because of the symmetry in this case

AT=
0 $p1-¢")
0 ¢*(1-9%)

¢*(1-9%) 0

¢(1_¢4) +[1_¢ ]

The first thing to note is that only the observations
contiguous to the gap have non-zero weights, so are the
only observed data involved in the estimation. The second
thing to note is that the inverse of G, is a tridiagonal matrix,
whose form can be exploited to find explicit expressions
for its elements in the general 1-D case.

In general, for a sequence of n complete observations from
an AR(1) process, the correlation matrix is R = {#", i, j =
1,2, ..., n}. Its inverse is a tridiagonal matrix whose upper
and lower diagonals are filled with equal elements a = -¢/
(1-¢%), the main diagonal has equal elements b = (1+¢*)/(1-
#), except for the first and last which equal ¢ = 1/(1-¢).

It is not difficult to show that when a block of data of
width w is missing after the m™ observed value, then the
correlation matrix of the surviving variables becomes

* ) {Rm Q }
R(n,m,w) = Q" R,
where

¢ m+-w ¢ mw+l ¢ n-1
¢ m+w-1 ¢ m+w _ ¢ n-2

Q=

¢W+l ¢W+2 _ ¢ n-m

and where R has the same form as R The inverse of
R"(n,m,w) will be a tridiagonal matrix of the same form as
R ' with identical diagonal elements except for the four
elements either side of the gap, where instead of « and
the elements will be a and b, which after some tedious but
straightforward algebra are found to be equal to:

a= (- [(1- )14 )]
p= -4

which are seen to collapse to @ and » when w = 0 (no gap).

When G, " is pre-multiplied by G, to give A", only the
weights of the elements either side of the gaps will be non-
zero. This happens in general and not only in the AR(1)
example above. The behaviour extends to AR(p) models,
where now the size of the screen is p elements deep either
side of the gaps.
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Other combinations of gaps in the data still produce a
tridiagonal inverse whose elements either side of the gaps
depend on the width of the gaps as well as the width of the
intact elements between the gaps. A small-dimensional
numerical example will demonstrate the ideas. In a sequence

of 11 AR(1) values with ¢= 0.5, the targets are at i =3, 4, 6
and 7. The G, matrix, its inverse, G, and the resulting matrix
of Kriging weights AT (where the solid lines indicate the

gaps) is:

G11 = dement 1 2 5 7 8 10 11
1 1 0.5 0.0625 | 0015625 0.007813 | 0.001953 0.000977
2 05 1 0.125 0.03125 0.015625 | 0.003906 0.001953
5 0.0625 0.125 1 0.25 0.125 0.03125 0.015625
7 0.015625  0.03125 0.25 1 0.5 0.125 0.0625
8 0.007813 0.015625 | 0.125 05 1 0.25 0.125
10 0.001953 0.003906 | 0.03125 0.125 0.25 1 05
11 0.000977 0.001953 | 0.015625 | 0.0625 0.125 05 1
dement 1 2 5 7 8 10 n
Gz] - 3 025 05 025 | 00625 0.0313 | 0.0078 0.0039
4 0125 025 05 | 0125 00625 | 00156 0.0078
6 00312 00625| 05 05 025 | 00625 00312
9 0.0039 00078 | 00625| 025 05 05 025
deament 1 2 5 7 8 10 1
AT= 3 04761 | 0.1904
4 0.1904 | 0.4761
6 04 04
9 04 04

The only non-zero weights are those corresponding to the
observations contiguous to the gaps, as asserted.

The ideas carry over to an AR(p) model as expected. This
is useful because an AR(2) model is quite flexible for the
purposes of describing the correlation models encountered
in some random fields, particularly rainfields measured by
radar. For example, given 14 values (with gaps at i =2, 8
and 9) sampled from an AR(2) model: z,= ¢z + gz +a
with ¢ =1.10and ¢, =-0.32, the inverse of G, is tridiagonal
as asserted and the Kriging weight matrix AT is:

It will be noted that the weights in the second spaces from
the gap are negative for the AR(2) case with these
parameters. It is also noted that this behaviour (negative
weights) is found when Kriging with Gaussian shaped
correlograms. Nevertheless, even in the Gaussian case, the
non-zero weights are confined to a zone close to the gaps.

An interim conclusion is that in the particular case of
equally spaced data in one dimension, only the observations
contiguous to the gaps influence the infilling of the missing
data. This is likely to have greater economies in higher
dimensions, as will now be demonstrated computationally.

demet | 1 3 4 5 6 7 10 11 12-14
2 04977 | 06570 -0.1448

8 -02285 08932 | 04225 -0.1435

9 -01435 04225 | 08932 -0.2285
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DEMONSTRATING THE TWO DIMENSIONAL
SCREENING EFFECT BY COMPUTATION
An example of the ‘screening effect’ is illustrated in Fig. 2,
which depicts a small dimensional example on a set of 8§ x 9
pixels with four (marked by an asterisks) missing in the
interior. The semi-variogram model used had an o = 1,5
and a correlation length of L = 11 pixels. (Note in passing
that the value of L = 11 pixels, of dimension 1.5 kilometres,
is an average value determined from observed radar rainfield
intensities for a wide range of weather types and this value
will be used in the sequel; it is not the purpose of this paper
to deal with estimation of co-variograms). The weights
associated with the 68 control points for each of the four
target points were computed one set at a time. These weights
were then summed for all four targets and their totals appear
in the shaded pixels. It is seen that the significant Kriging
weights are concentrated in the immediate vicinity of the
target points and rapidly diminish in magnitude with
distance. At a range of greater than two cells from a target
point the Kriging weights are nearly zero. As can also be
seen in Fig. 2, negative weighting values do occur some
distance from the target. The Kriging weights could be
forced to be non-negative but a disadvantage in doing this
is that the Kriged estimates are then constrained to lie within
the minimum and maximum values of the selected control
data (Chiles and Delfiner, 1999: 224), (Cressie, 1993: 143).
In the rainfield infilling application it is more appropriate
to allow for the Kriged estimates to range outside of the
minimum and maximum values of the control data used.
By considering only the control points with significant
Kriging weights a considerable reduction in size of the
coefficient matrix can be made in cases where the target
points are in clusters contained within an otherwise complete
set of controls. With this reduction in size of the control set
a concomitant decrease in computation time can be achieved
with little or no loss in the accuracy of the final results.

0 |-0.03|-0.07]-0.01] 0.02 | 0.01 0
-0.04|-0.02| 0.38 | -0.17|-0.18 | -0.03| O
-0.14 | 0.54 * 1.33 | 0.40 | 0.00 | -0.03
-0.15| 0.62 * * * 0.39 | -0.08
-0.04|-0.04| 0.61 | 0.75 | 0.49 | -0.01 | -0.03

0 |-0.04]|-0.16]-0.20]|-0.14]|-0.04| O

0 0.01 | 0.02 | 0.02 | 0.02 | 0.01 0

Oo|Oo|o|o|o|o|o|o|o
o|Oo|o|o|o|o|o|o|o

Fig. 2. Sum of all Kriging weights concentrated around four
unknown data points. The variogram used had an o = 1.5 with L =
11 pixels.
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ILL-CONDITIONING OF THE COEFFICIENT

MATRIX

In the Ordinary Kriging computational procedure, a set of
linear equations must be solved to determine the weights
A(s,). This solution is given by Eqn. (6), derived from Eqn.

2):
-1
u
0} ©)

Solving for A(s,) requires inversion of the coefficient matrix
(usually the equations are solved using an efficient method
based on LU decomposition). It was found that the
coefficient matrix can be highly ill-conditioned depending
on (i) its size, (ii) the chosen parameterisation in the semi-
variogram function (iii) the layout of the data set on a lattice
and (iv) the ratio (s/L) as used in the semi-variogram model,
Eqn. (4), where a decrease in the ratio results in the
coefficient matrix becoming more ill-conditioned. The ill-
conditioning is most sensitive to the a-parameter, the
exponent in the semi-variogram function defined in Eqn.
(4). As o increases from a value close to zero towards a
value of two (converging towards a Gaussian semi-
variogram function) the coefficient matrix becomes
increasingly ill-conditioned. When o = 2 in the semi-
variogram function, and the coefficient matrix is above a
certain size, (as small as 68 x 68, from the 8 x 9 region of
points shown in Fig. 2) the coefficient matrix is essentially
singular. As indicated in Fig. 3 the determinant of the
coefficient matrix (plotted on a log scale) decreases steadily
as o > 2. The determinant was computed for a relatively
small 50 by 50 coefficient matrix, with the semi-variogram
function having a correlation length of L = 11 pixels.

Although the Gaussian semi-variogram results in a near
singular coefficient matrix, it is still commonly used in
practical Kriging applications (e.g. Todini, 2001), albeit for
sparsely distributed control points. It is difficult to determine
at what size the coefficient matrix does become noticeably
unstable since this appears to be largely determined by
factors such as the layout pattern of the control data points.
However for a coefficient matrix in excess of 40 by 40 in
size, and with oo =2, the matrix can be ill-conditioned enough
to return nonsensical weights. In such cases, conventional
methods of computing the inverse coefficient matrix such
as Gauss-Jordan and its derivatives cannot be used. The
method of Singular Value Decomposition (SVD) can be
employed with advantage, however, to determine an accurate
and meaningful solution for the weights, despite the ill-
conditioning problem described above.

&) wis)]=lo7 () 1].{:3
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Fig. 3. Semi-variogram exponent o and corresponding determinant of coefficient matrix (size 50 x50) for L = 11 pixels.

THEORETICAL JUSTIFICATION OF MATRIX RANK
REDUCTION TECHNIQUE

Singular Value Decomposition involves the decomposition
of a rectangular matrix into unique matrix ‘factors’; an
overview of the method is readily available in Press et al.
(1992: 59-67) which is briefly summarised here. The matrix
is decomposed into a column orthogonal matrix U, a
diagonal matrix ¥ that contains the non-negative singular
values along its diagonal and the transpose of an orthogonal
matrix V. The decomposition of the Ordinary Kriging
coefficient matrix is given in Eqn. (7).

G U w, 0 O
LT 0} = U 0 - 0 Vv’
0 0 w

(7

To compute the inverse, one simply needs to invert the
diagonal elements of W and multiply out the matrices in the
order indicated by Eqn. (8):

G ufl_V
u’ o]

When the coefficient matrix is ill-conditioned, the diagonal
values along the # matrix need to be carefully considered
because the singular values which are near zero define the
(near) null space of the matrix. To obtain a meaningful
pseudo-inverse, the diagonal elements of W' are set to 1/
w, where w, is above some chosen near-zero threshold and
to zero otherwise. This reduces the rank of the matrix by
the size of the (near) null space.

To demonstrate the ideas, a coefficient matrix of size 150
by 150 was computed from a sample reflectivity field. The

diagonal Ly
w

i

®)
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coefficient matrix was then decomposed as shown in Eqn.
(7). This was done several times for o values ranging from
one to two. The singular values obtained in the W-matrix
were ranked then plotted in Fig. 4, where it is seen that the
W, values rapidly diminish in magnitude along the diagonal
and become close to zero as o goes from one to two
(Exponential to Gaussian semi-variogram); the threshold
of 105 reflects machine precision.

Since many of the singular values are significantly close
to zero relative to w, which is approximately 60, the most
appropriate action is to eliminate these values and replace
them (and their inverses) with zeros instead. This solves
the problem of ill-conditioning in the inverted coefficient
matrix, yields useful accurate solutions and, incidentally,
reduces computation time.

The Euclidian norm of the coefficient matrix is equal to
the sum of the squares of the singular values; if the
coefficient matrix were a covariance matrix this sum would
also be equal to the variance, as indicated by Eqn. (9):

n
2 2
QW =0y

=1

(€))

The variance is predominantly contained in the first few
terms of the /¥ matrix with the others contributing very little.
Only the largest of the singular values need to be considered
in most cases since their sum closely approximates the
variance.

Once the appropriate number of w, values has been
trimmed and replaced with zero values, only the
corresponding rows and columns need to be retained in the
U and V' matrices; as shown in Eqn. (10) the columns of the
U matrix and the rows of the V7 matrix can be trimmed.
This speeds up the computation dramatically with little or
no change in the accuracy of the final results.
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1.E+03
1.E+00 -
\ 414 0006460+6+64+654
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Fig. 4. Singular values in W matrix for different values of semi-variogram exponent o; note the logarithmic scale. The coefficient matrix
was 150 square and L was kept constant at 11 pixels.

VT
(10)

DEMONSTRATION OF ADVANTAGES OF MATRIX
RANK REDUCTION BY COMPUTATION

As an example, a sample reflectivity field was selected and
portions removed to simulate a ground clutter scenario. To
infill the missing 57 target points, a 140 by 140 coefficient
matrix had to be inverted. The semi-variogram parameters
used were oo = 1.5 and L = 11 pixels. Initially, with none of
the W, values removed, the Kriging process (calculation of
weights and estimation for each of the 57 target values) took
approximately 5.6 seconds. The /¥ matrix was then trimmed
incrementally along with the corresponding rows and
columns of the U and V" matrix. It was found that up to
70% of the W, values could be removed with no significant
change in the final Kriged results (accords to the sum of the
difference squared of hidden and computed targets) with a
consequent decrease in time to 0.6 seconds as shown in Figs.
5 and 6. This corresponds to a nine-fold decrease in
computation time with no concomitant change in accuracy
achieved with the matrix rank reduction technique. The
results would be more dramatic for a larger o.

An example of the numerical instabilities that can occur
in the Kriging process is given in Fig. 7. A spatially
correlated Gaussian random field (the upper part of Fig. 7)
was generated with a known semi-variogram function on a
25 by 25 grid field. The semi-variogram parameters used
were oo = 1.5, sill (o) =1, L = 1000 pixels (the one exception
from L = 11, to emphasize the instability), nugget (p) = 0
and a variance (¢?) = 1, as shown in Eqn. (11).

2
g(s)=0”~{ p+ofl-ep-(s/L)M|} A
Forty randomly scattered points were then selected from
the correlated field as control points. Simple Kriging was
then used to estimate the remaining points of the field from

Sum of Errors Squared
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Fig. 5. Sum of errors squared and corresponding percentage w,
removal, L = 11 pixels, o = 1.5, 140 controls (140 x140 coefficient
matrix).
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Fig. 6. Computation time and corresponding percentage removal of
singular values in a 140 x 140 coefficient matrix with L =11 pixels
and a = 1.5.
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Correlated Field

= R VT

Fig. 7. Simple Kriging without removal of near zero singular values. For definition of the variogram model, see text.

the control points. As shown in comparing the two parts of
Fig. 7, the Kriged field does not resemble the original
correlated field at all due to the highly ill-conditioned
coefficient matrix.

Figure 8 shows exactly the same scenario as in Fig. 7,
however in this instance the trimming of the near zero
singular values from the W matrix was carried out, as
illustrated in Eqn. (10). The Kriged field is now a smoothed
replica of the correlated field as desired. In Figs. 7 and 8 the
40 out of 250 points selected to perform the Kriging were

Correlated Field

randomly chosen. The a-value was midway between
exponential and Gaussian, yet still the numerical instabilities
occurred. This result is surprising and was thought to be
important enough to publish as a warning to the unwary
and to provide an antidote.

For typical radar reflectivity fields of diameter 250 pixels
(about 50 000 data points), the above two techniques, nearest
neighbours and matrix rank reduction need to be used in
conjunction in order to achieve efficiency and stability.
Image processing techniques also need to be taken advantage

0.5
-0.5
-1.5

-2.5

0.5
-0.5
-1.5

-2.5

Fig. 8. Simple Kriging with removal of near zero singular values.
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of so as to be able to manage the large data sets. Two
techniques for ground clutter removal exploiting nearest
neighbours will be compared in the next two sections; one
works with individual target points in turn, the other by
border tracing around a cluster of target points and solving
the Kriging equations simultaneously.

Individual target’s nearest neighbours
(ITNN) technique

In the nearest neighbours technique applied to individual
target points in turn (ITNN), the weighting distribution
associated with Ordinary Kriging is taken into account in
the sense that the ‘screening effect’ described in the previous
section (where the significant weights at control points are
concentrated in the immediate vicinity of the selected target
data point) is exploited. In the algorithm suggested here,
only the neighbours nearest to the target point are identified.
This results in a considerable decrease in computation time
and with no significant loss in accuracy. The SVD matrix
rank reduction process is also carried out to reduce the
computation time in finding the Kriging weights.

The ITNN algorithm can be described as follows for a
two-dimensional data set. The radar reflectivity image is
searched, pixel by pixel, starting at the top left-hand corner
and working across each row then down the image, one
row at a time, the ground clutter having been already flagged
as—10 dBZ values. Once a ground clutter point is located, a
search outwards from that point is initiated to locate the 20
nearest valid control points — the maximum would be 24 in
a 5 x 5 square region if the target was an isolated pixel.
Thus control values within two or so pixels of the target are
selected. The search strategy proceeds as follows. Initially
the rows directly above and below the point are searched,
and then the columns on either side of that point. The search
then moves incrementally outwards searching in turn rows
and then columns until 20 uncontaminated neighbours are
located. This strategy is illustrated in Fig. 9. The pixel
marked with an asterisk is the target point initiating the first
search on the image; other targets (yet to be infilled) are
masked in grey.

Once the nearest neighbour controls are located they are
tested to determine whether they are all zero: if they are,
the target is set to zero. If the controls are all non-zero,
Ordinary Kriging is carried out to estimate a value for the
target.

Once the target point has been identified, an estimate of
its value is calculated and then stored in a separate vector.
The search resumes where it left off and continues searching
across each row and then down the image, one row at a
time, until the next ground clutter pixel is located. In this

Radar rainfall image repair techniques

Fig. 9. Nearest neighbours search strategy. Ground Clutter pixels
marked as grey squares.

way the rainfall at each ground clutter pixel is estimated in
a point by point manner unaffected by previous estimates
until all the ground clutter pixels have been infilled. After
the entire data set has been scanned the estimated reflectivity
values, stored sequentially in a vector, are then inserted in
place of the flagged ground clutter pixels.

As examples, two radar-rainfall reflectivity images in
South Africa have been selected for repair, Fig. 10 from the
Durban weather radar and Fig. 11 from the Bethlehem
weather radar. On each of them the ground clutter pixels
have been flagged with —10dBZ values, which appear as
black segments in Figs. 10 and 11. The number of ground
clutter targets is approximately 1400 (for both the Bethlehem
and Durban data) and the time taken to estimate the missing
data for one 400 by 400 pixel image is typically 0.5 to 2
seconds computed on a Pentium(R) 4 with a 2,40GHz CPU
and 512MB of RAM. The images on the right of each pair
are those which have been ‘repaired’, i.e. where the ground
clutter values, or contaminated pixels, have been replaced
with reflectivity values estimated by Kriging.

Border tracing nearest neighbours
(BTNN) technique

An alternative for identifying segments which have to be
infilled is the border tracing with nearest neighbours
(BTNN) technique, where advantage is again taken of the
distribution of the Kriging weights to reduce the
computational load and improve computational efficiency
by concentrating on the nearest neighbours around a cluster.
In this method image processing algorithms were
investigated to provide an alternative approach to infilling
the missing data. In the ITNN technique the clutter was
infilled point by point whereas in the BTNN technique the
infilling is done a whole segment at a time, where a segment
is one or more target pixels that are grouped together in a
connected region.

Once again, the image is searched from the top left hand
corner, row by row, moving downwards until a flagged
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Fig. 10. Durban radar rainfall reflectivity data before and after ground clutter removal (18 November 2000). Black areas indicate
contaminated data. The square surrounding each radar image has sides of length approximately 270 by 270 kilometres.

Fig. 11. Bethlehem radar rainfall reflectivity data before and after ground clutter removal (25 February 2003). Black areas indicate
contaminated data. The square surrounding each radar image has sides of length 270 kilometres.

ground clutter pixel is located. An eight-connectivity border
tracing technique (Sonka et al., 1999: 142—145) is then
implemented from that local origin. From that pixel the eight
immediate surrounding neighbours are searched in an
anticlockwise direction until another new ground clutter
pixel is located. This becomes the new local origin and the
process is repeated. The border is then traced in this manner
until the original starting point is reached. Figure 12 (left)
illustrates how the border is traced in an anticlockwise
direction around the ground clutter segment, with the dashed
lines indicating pixels tested and identified as controls in
the process.

While the border is being traced, a Kriging neighbourhood
two pixels deep from each border target is selected
simultaneously. As indicated in Fig. 12, the control points
within a range of 2.5 pixels are selected — this strategy
neglects the corner pixelsona 5 x 5 square grid surrounding
the target. All of the pixels selected in this manner are then
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identified as the Kriging control neighbourhood for the
estimation of the cluster of target points in the particular
segment. Once the border tracing has been completed, and
the Kriging neighbourhood has been selected, an algorithm

starting point

Fig. 12. Border tracing technique indicating trace direction and
pixels tested in process (left image). Selection of Kriging neigh-
bourhood for infilling of missing data (right image) (Sonka et al.,
1999: 143).



identifies the positions of the remainder of the target points
that are located in the interior of the traced contour.

The Kriging control neighbourhood is then tested to
determine whether the controls are all zero. If this is the
case, all of the target points in the segment are set to zero. If
the data points are not all zero, ordinary Kriging is used to
estimate values for all of the target points that make up that
segment.

The solution to the Kriging equations is then computed
by an inversion by partitioning technique (Aitken. 1967:
148) in conjunction with the SVD matrix rank reduction
technique in an effort to decrease the computation time. The
inversion by partitioning technique as employed here splits
the coefficient matrix into four equal sub matrices, given
by Eqn. (12).

S
Q S
SR

Q" S
where:

P=(P-Q-$*Q")"
Q=-(P-Q-$*-Q")"(Q-S"

Q" =—~(s*Q")-(P-Q-s*-Q")" (12)
S=s'+(s*-Q)-(P-Q-s*-Q")*-(Q-SY)

Further partitioning of the matrix into nine sub-matrices
was tested but this did not result in a decrease in computation
time. The inversion by partitioning technique was also found
to be most effective for coefficient matrices with a size in
excess of 30 by 30; for matrices below this size the SVD
matrix rank reduction technique was computationally faster.

Once the target values for a cluster have been estimated

Radar rainfall image repair techniques

they are inserted into the working data set immediately and
the pixels flagged as known. The algorithm then carries on
searching from the initial local origin that identified the now
infilled target segment, row-by-row, moving across then
down the image until the next Ground clutter pixel is located,
at which point the process is repeated. Figure 13 is an
example where the BTNN technique has been used to
remove ground clutter, as before the left image contains the
marked ground clutter and the right image the estimated
reflectivity data.

To estimate the missing values in a typical radar rainfall
image, the BTNN technique takes approximately 5 to 20
seconds. However, the time is highly dependent on the range
used for selecting the Kriging neighbourhood for each
segment. The greater the number of control points the greater
the size of the coefficient matrix that needs to be inverted,
where the computation time is dominated by the matrix
inversion.

Comparison of the two nearest
neighbour infilling techniques

An extended formal and detailed comparison of the two
methods, ITNN and BTNN has yet to be done. However, as
a preliminary example of such a comparison, on 18
November 2000, a radar reflectivity image from the Durban
weather radar with no ground clutter but containing
convective rainfall was selected. The Bethlehem ground
clutter map (not coinciding with the Durban one) was then
superimposed on this image, as indicated in Fig. 14. The
missing reflectivity data were then estimated using both the
ITNN and BTNN techniques. In this application of the [ITNN
technique the 20 nearest neighbours for each target were
used and for the BTNN technique pixels within a range of
2.5 from the ground clutter border were selected. Ordinary

- ”'3‘

{:-.. r" -
N : ?NORTH B

Fig. 13. Bethlehem radar rainfall reflectivity image before and after ground clutter removal (25 February 2003). Black areas indicate
contaminated data. The square surrounding each radar image has sides of length approximately 270 by 270 kilometres.
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Kriging was used to compute the missing reflectivity data
with a semi-variogram function having L = 11 pixels and o
= 1.5 being used in both cases. The estimated values were
compared to the real reflectivity values and the square of
the errors computed at each target point; these sets are shown
in the lower pairs of diagrams in Fig. 14. The computation
time was recorded for each technique; Table 1 gives a
summary of the results.

Rainfield with no Ground Clutter

For this particular radar reflectivity image, the ITNN
technique performed better than the BTNN technique. Not
only was the sum of the errors squared lower than the BTNN
technique but the computation time was faster by a factor
of ten. However, as stated earlier, a more comprehensive
testing process needs to be undertaken to determine the most
appropriate technique on a variety of rainfall types.

Limitations may exist for very large areas of ground clutter

Ground Clutter Map Superimposed

dBZ and dB?

Ground Clutter Infilled
Estimated Reflectivity Values

2-D Map of
Squared Errors (dB?)

Fig. 14. Comparison of ITNN and BTNN techniques.
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Table 1. Errors and computation time for techniques tested in the
example in Fig. 14.

Sum of squared errors Computation time

(dB?) (seconds)
ITNN 14 700 1.66
BTNN 19 000 16.8

where the best estimate of the rainfall near the centre of the
ground clutter will be the mean value of the control points
(if the distance exceeds the correlation length) which may
result in errors of high magnitude. Large errors may also
occur where ground clutter completely or partially hides
highly convective rainfall which is surrounded by stratiform
rain, this phenomenon occurs in one of the images shown
in Fig. 14.

Rainfall estimation at ground level

The rainfall at ground level is of more interest than
measurements aloft in Earth-bound applications such as
hydrology and agriculture. Accurate rainfall estimates at
ground level will also assist in the current Water Research
Commission (WRC) research project in South Africa
concerned with daily rainfall mapping over South Africa
(Sinclair and Pegram, 2003). For ground level rainfall
estimates, the Kriging technique can be extended easily from
two dimensions into a three dimensional space, as illustrated
by the following example.

In this algorithm the control points are the information in
the pixels aloft which are Kriged onto target points in a
200-kilometre diameter circle at ground level. The Kriging
is carried out with an ITNN approach, as suggested by Seed
and Pegram (2001), with the 25 nearest control points to
each target being selected.

An SVD matrix rank reduction technique was once again
used to ensure computational efficiency. However, when
Kriging in a 3-D data set, a 3-D semi-variogram model is
used, as given by Eqn. (13), developed by and reported in
Seed and Pegram (2001).

y(h)=0"[1-exp(-d*")] (13)
TR
o hy
(5]
fg ho

where o? is the field variance, » is the distance in the

where:
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horizontal plane, r, the horizontal correlation length, 4 is
the distance in the vertical plane, 4, the vertical correlation
length and H the scaling exponent.

An example application of this technique is illustrated in
Fig. 15. The image is from the Durban weather radar, 9
November 2000. The following semi-variogram values were
used in the Ordinary Kriging process: »,= 15km, /,= 12 km
and H = 1,25 (Seed and Pegram, 2001).

Summary and conclusion

Radar rainfall data have importance in many fields of
endeavour. However, the fact that errors persist in these data
means that the rainfall estimates are not as accurate as they
might be. These errors, noticeably ground clutter, can be
detected and identified in the radar images. The technique
proposed for estimating the missing data in this paper was
Ordinary Kriging. Various methods to improve
computational efficiency such as using nearest neighbours
to a target point, matrix rank reduction techniques and
inversion by partitioning have been implemented in order
to make the Ordinary Kriging process computationally
efficient in real-time applications.

Two techniques for removing ground clutter
contamination have been developed which exploit the
screening effect in Kriging. These are Individual Target
Nearest Neighbours (ITNN) and Border Tracing Nearest
Neighbours (BTNN) techniques. These methods still need
to be tested thoroughly to determine which is optimal in
terms of accuracy and appropriateness, but preliminary
testing on typical sample sizes indicates that ITNN is ten
times faster than BTNN and is more accurate. Both
algorithms exhibit sufficient computational speed for on-
line data cleansing, when supported by computationally
efficient methods: (i) rank reduction using Singular Value
Decomposition and (ii) matrix partitioning. It is anticipated
that a further advantage of the ITNN Kriging approach
would be to exploit local semi-variogram models evaluated
dynamically; this has yet to be implemented but will be an
advantage where radars sample convective and stratiform
rainfall simultaneously.

The problem of rainfall estimation at ground level is of
importance. The Ordinary Kriging technique was used in
three dimensions to provide an estimate of rainfall at ground
level. An ITNN approach was employed to extrapolate from
control points aloft to targets at ground level. Further work
needs to be carried out on the ground level rainfall estimation
procedure to improve computational efficiency and validate
the resulting rainfall estimates. This technique will be
particularly useful where ground clutter targets are to be
infilled, by importing information from aloft as well as laterally.
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Fig. 15. 3D illustration of measured rainfall reflectivity data at 1, 2 and 3km above ground level and Kriged reflectivity estimate at ground level.

The techniques presented in this paper show considerable
promise and, as the ideas mature, should prove valuable in
hydrometeorology.
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