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Abstract. Spatial moisture distribution in natural soil or
other material is a valuably information for many applica-
tions. Standard measurement techniques give only mean
or punctual results. Therefore a new inversion algorithm
has been developed to derive moisture profiles along sin-
gle TDR sensor-probes. The algorithm uses the full infor-
mation content of TDR reflection data measured from one
or both sides of an embedded probe. The system consist-
ing of sensor probe and surrounded soil can be interpreted
as a nonuniform transmission-line. The algorithm is based
on the telegraph equations for nonuniform transmission-lines
and an optimization approach to reconstruct the distribu-
tion of the capacitance and effective conductance along the
transmission-line with high spatial resolution. The capaci-
tance distribution can be converted into permittivity and wa-
ter content by means of a capacitance model and dielectric
mixing rules. Numerical investigations have been carried out
to verify the accuracy of the inversion algorithm. Single- and
double-sided time-domain reflection data were used to deter-
mine the capacitance and effective conductance profiles of
lossless and lossy materials. The results show that single-
sided reflection data are sufficient for lossless (or low-loss)
cases. In case of lossy material two independent reflection
measurements are required to reconstruct a reliable capaci-
tance profile. The inclusion of an additional effective con-
ductivity profile leads to an improved capacitance profile.
The algorithm converges very fast and yields a capacitance
profile within a sufficiently short time. The additional trans-
formation to the water content requires no significant calcu-
lation time.

Correspondence to:S. Schlaeger
(info@stefan-schlaeger.de)

1 Introduction

The water content of soils and other porous materials is one
of the most important parameters in hydrology, agriculture
and civil engineering. Standard methods such as oven-drying
are very time-consuming and destructive, neutron modera-
tion or gamma attenuation measurements make use of critical
radioactive sources. The determination of moisture content
with time-domain reflectometry (TDR) technology is based
on measurements of travel-time of an electromagnetic pulse
on a transmission-line of known length. A review about
TDR techniques for the measurement of permittivity and
bulk electrical conductivity, but also for probe design and
probe construction is given in Robinson et al. (2003). For ho-
mogeneous materials the travel-time is directly related to the
permittivity, which is in common porous materials mainly a
function of water content (Brichak et al., 1974; Topp et al.,
1980, 1982a, b; Topp and Davis, 1985; Dasberg and Dalton,
1985).

One type of TDR transmission-line commonly used in
many soil moisture relevant applications is an unshielded
metallic fork, which is inserted into the material under test.
The maximum length is limited, because the electromagnetic
pulse is attenuated and disappears on longer lines. For longer
transmission-line sensors insulated probes are more capa-
ble. The use of automation and multiplexing capability (i.e.
Heimovaara and Bouten, 1990) increases the ability to mon-
itor the dynamics and spatial distribution of water content.

So far TDR technology using single probes was limited
to an integral or very coarsely resolved water content de-
termination along the sensor line. But many applications
ask for the spatial moisture distribution in soils or building
constructions along a given profile. Different approaches
have been developed to use TDR information for the de-
termination of soil moisture profiles (multisection transmis-
sion lines: Hook et al., 1992; Feng et al., 1999; full wave
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Fig. 1. Equivalent circuit of an infinitesimal section of a transverse
electromagnetic (TEM) transmission-line.

inversion techniques: Pereira, 1997; Todoroff et al., 1998;
Oswald, 2000; Heimovaara et al., 2004). A high spatial res-
olution can be achieved by exploiting the full information
content in the reflected electromagnetic signals of the sen-
sor line (Lundstedt and He, 1996; Norgren and He, 1996).
A new reconstruction algorithm has been developed which
uses the full information of the TDR signals measured on
one or both sides of the line. It is based on the telegraph
equation for nonuniform transmission-lines and an optimiza-
tion approach to reconstruct simultaneously one or two line
parameters with high spatial resolution (Schlaeger, 2001). In
comparison with other full wave inversion techniques (e.g.
generic algorithms, Oswald, 2000) it needs clearly less com-
putation expenditure. The optimization algorithm uses the
conjugate-gradient-technique and fast simplex or complex
methods.

Using laboratory tests it is shown that TDR reflection data
from both sides of a buried flat-ribbon-cable sensor are suit-
able for simultaneous reconstruction of capacitance and ef-
fective conductance profiles. During an investigation of the
transport of volatile organic compounds in medium grained
sand (grain size 0.2 to 1 mm) the moisture profile under
irrigation has been measured. In the steady state the vol-
umetric water content varies along the vertically arranged
transmission-line sensor of 71.7 cm between 0.5 and 44%.
The changes in water content could be reconstructed with a
high spatial accuracy and an average uncertainty of±2.3%
compared to oven-drying measurements (Schlaeger et al.,
2005)1.

To determine moisture profiles, appropriate TDR-devices
(short pulse rise time, high sampling rate) and sensitive test-
ing probes (well known electric parameters) are required.
The mathematical model has to be chosen to describe the
physical process during the measurement in a very accurate
and computable way. The inversion algorithm starts with
an initial guess of the electric parameter distribution. Us-
ing this parameter distribution an associated TDR-signal can
be calculated. The difference between the measurement and

1Schlaeger, S., Ḧubner, C., and Weber, K.: Moisture profile de-
termination with TDR, in preparation, 2005.

this simulation leads to a rough deformation-instruction for
the given parameter distribution. During one optimization-
step a new parameter distribution will be generated by de-
forming the old distribution according to the deformation-
instruction. In the next step the comparison between mea-
surement and simulation leads to an improved deformation-
instruction. The optimization will be continued until a mini-
mum difference is reached. The resulting electric parameter
distribution can be easily transformed into water content pro-
files. The whole process is called Spatial-TDR.

The Soil Moisture Group (SMG) at the University of Karl-
sruhe has tested this Spatial-TDR technology in many ap-
plications. A monitoring system to measure the spatial soil
water distribution on a full-scale levee model has been suc-
cessfully implemented with transmission-lines up to 3 m
and leads to significant specifications for drainage models
(Scheuermann et al., 2001). The technology is also being
used for flood warning systems, and snow moisture measure-
ments (Becker et al., 2002; Stacheder et al., 2005), and for
the determination of the water content of technical barriers
in waste disposal sites (Becker et al., 2003).

2 Basic equations

The propagation of electromagnetic waves on insulated and
non insulated transmission-lines can be described by the tele-
graph equations. These equations were developed by Heavi-
side in 1886. In this model the transmission-line is character-
ized by four electrical parameters: the inductanceL, capaci-
tanceC, series resistanceR, and shunt conductanceG. The
equivalent electric circuit of an infinitesimal transmission-
line section is given in Fig. 1. It is seen that the inductance
and resistance are series elements that cause a voltage drop
along the line, whereas the capacitance and conductance are
shunt elements that provide a current path between the con-
ductors.

From a circuit theory approach it is a simple matter to de-
rive the telegraph equations that describe the variation of the
voltageU(x, t) and the currentI (x, t) in the time along the
transmission-line due to the influence of the electric param-
eters of the line and the surrounding media. By applying
Kirchhoff’s voltage and current laws to the equivalent circuit
in Fig. 1, one obtains

∂

∂x
U(x, t) = −R(x)I (x, t) − L(x)

∂

∂t
I (x, t) , (1)

∂

∂x
I (x, t) = −G(x)U(x, t) − C(x)

∂

∂t
U(x, t) . (2)

UsuallyR andL are constant for the probe whereasC and
G depend on the surrounding material. In most casesR can
be neglected. The conductanceG of transmission-line sen-
sors embedded in soil depends on soil type, water content,
and frequency. Usually clayey and loamy soils have much
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Fig. 2. Schematic representation of a sensitive transmission-line,
situated betweenx1 andx2, which is connected to a TDR-device
on one side using a lossless uniform coaxial-cable with impedance
Z = (La/Ca)0.5.

higher conductivity than sands. The capacitanceC is inti-
mately connected with the permittivity and therefore the wa-
ter content of the surrounding medium. The determination of
the spatial distribution ofC(x) is the key component of the
presented reconstruction of the soil water content.

The solution of Eqs. (1) and (2) describes the propagation
in time and space of a supplied pulse to the whole measure-
ment system. When the solution is restricted to one spatial
point it represents a simulated measurement in this point. To
calculate the solution initial and boundary conditions for the
partial differential equations (PDE) are needed. It is also im-
portant to consider the connection between TDR-device and
testing probe. Usually they are connected with a lossless and
uniform coaxial-cable (R=0, G=0, C=const, andL=const).
Assume that there is no energy on the line at the beginning
of the measurement. So the initial conditions can be set to

U(x, t)t≤0 = 0, I (x, t)t≤0 = 0, for all x . (3)

Than the Eqs. (1) and (2) can be transformed to one single
PDE of second order[

LC
∂2

∂t2
+ LG

∂

∂t
+

∂L
/
∂x

L

∂

∂x
−

∂2

∂x2

]
U(x, t) = 0 . (4)

The derivative ofL has to be considered in Eq. (4) because
the inductance of the coaxial-cable and the testing probe are
constant but may be different in general. The initial condi-
tions (Eq. 3) can be transformed to

U(x, t)|t≤0 = 0,
∂

∂t
U(x, t)|t≤0 = 0, for all x . (5)

To define the boundary conditions for the PDE (Eq.4) the
whole measurement configuration has to be considered. The
sensitive transmission-line has to be inserted into the soil and
must be connected to a TDR-device in order to excite an elec-
tric pulse.

Figure 2 describes the experimental setup to receive the re-
flection data from one side of the sensitive transmission-line.
Therefore reflection measurements must be realized with an
external currentFex=δ(x−x)a · f (t) at x=xa . The back-
traveling wave is absorbed by the matched impedanceZi
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Fig. 3. The nonuniform transmission-line, situated betweenx1
and x2, is connected to two lossless uniform coaxial-cables with
matched impedancesZi at their endpoints.

inside the TDR-device if it is equal to the impedanceZ of
the coaxial-cable. This absorbing boundary condition for the
lossless wave equation can be numerically implemented in
the coaxial-cable using (Engquist and Majda, 1977):[

∂

∂x
−

√
LaCa

∂

∂t

]
U(xa, t)=La

∂

∂t
Fex(xa, t), t ≥ 0 . (6)

The boundary conditions at the end of the sensitive line at
x=x2 depends on its physical implementation. In case of an
open-circuit the boundary condition will be

∂

∂t
U(x2, t) = 0, t ≥ 0. (7)

If there is a short-circuit atx=x2 the boundary condition will
beU(x2, t)=0, for t≥0.

In order to reconstruct two parameters, two independent
measurements are needed. Consequently, the problem is di-
vided into two parts, the first dealing with an incident wave
from the left and the second with an incident wave from the
right side of the system under test.

Figure 3 describes the experimental setup to receive the re-
flection data from both sides of the unknown material. There-
fore two separate measurements must be realized with the ex-
ternal currentF 1

ex=δ(x−xa) · f (t) andF 2
ex=δ(x−xe) · f (t),

respectively.U1(x, t) andU2(x, t) are the solutions of both
separate forward problems. The setup of Fig. 3 can be trans-
formed to the setup in Fig. 2 for each single-sided measure-
ment using sensor switches (Becker and Hübner, 2003). In
this case the solution ofU1(x, t) can be calculated according
to U(x, t) by using Eqs. (4)–(7). If there is a coaxial-cable
permanently attached atx=xe an absorbing boundary condi-
tion has to be used instead of Eq. (7):[

∂

∂x
+

√
LeCe

∂

∂t

]
U1(xe, t) = 0, t ≥ 0 . (8)

For the other initial-boundary-value-problem (IBVP) forU2
with external currentF 2

ex the boundary conditions are ex-
changed.

Before the reconstruction procedure can be started all nec-
essary parameters (La, Ca, Le, Ce, L0) have to be measured
or calculated (Becker, 2004; Becker and Schlaeger, 2005).
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The inverse method presented in the next section is based on
an iterative search for the electrical parameters of the nonuni-
form transmission-line with the full wave solution of the di-
rect problem. The solution of the line needs to be calculated
repetitively. It is therefore important to use a technique for
the determination of this solution that is computationally ef-
ficient to guarantee low calculating time.

3 Optimization approach

The aim of the investigation is the determination of the un-
known distribution ofC(x) with measurements of input and
output data. The input dataf (t), which describes the inci-
dent pulse, can be easily determined from the reflection mea-
surementsUa(xa, t) of the coaxial-cable betweenxa andx1
with an open-circuit atx=x1. The output dataλ(t) is the re-
flected signal based on the associated input signal at one side
of the sensor line.

The cost functionJ (C) defines the squared difference (in
L2-norm) between the solution of the direct problem (Eqs.4–
7) restricted tox=x1 corresponding to one given parameter
distributionC and the measured reflectionsλ(t) atx=x1,

J (C)= ‖U(x1, t;C)−λ(t)‖2
2 =

2T∫
0

[U(x1, t; C)−λ(t)]2 dt(9)

with T =τ (x1, x2), where τ(x1, x2) is the travel-time be-
tweenx1 andx2. The cost function refers to the error in the
solution for single-sided incidence measurements. The con-
cept of the method is to find the parameter distribution that
minimize the cost functionalJ . If the problem has a solution
the theoretical minimum ofJ is zero. One important reason
for choosing theL2-norm is the possibility to derive exact
expressions for the gradient ofJ .

3.1 Exact expression of the gradient of the cost function

In the following section the gradient of the cost function will
be determined for single-sided and double-sided reflection
data, respectively. For one single measurement it is only pos-
sible to calculate one parameter distributionC(x) or G(x)

while the other one is known (He et al., 1993). Assum-
ing that the capacitance and conductance are connected by
a transfer function then it is possible to calculate both pa-
rameter distributions from one single reflection measurement
using an empiricalG(C)-relationship (Hakansson, 1997).
This relationship depends not only on the water content but
also on the electrolyte imbalance of the pore water. The
determination of this relation may be very time intensive
(Becker, 2004; Becker and Schlaeger, 2005). If both param-
eter distributions are to be calculated simultaneously with-
out thisG(C)-relationship, two independent measurements
have to be carried out, e.g. double-sided reflection measure-
ments (He et al., 1994). In the first case the gradient for

J (α)=J (C) or J (α)=J (G), in the second case the gradient
for J (α)=J (C, G) is calculated. In both cases the gradient
∇J (α) can be calculated using the standard finite difference
formulation forδα→0:

J (α + δα) − J (α) = 〈δα,∇J (α)〉 =

∞∫
−∞

δα(x) · ∇J (α)(x)dx . (10)

3.1.1 Single-sided reflection data

In the case of only one single-sided reflection data-set it is
reasonable to reconstruct the capacitance profileC(x) to de-
termine the water content. Therefore the information about
the gradient∇J (C) has to be generated. According to
Eq. (9), Eq. (10) can be transferred to

J (C + δC) − J (C) (11)

=

2T∫
0

[U (x1, t; C + δC) − λ(t)]2 − [U (x1, t; C) − λ(t)]2dt

=

2T∫
0

U2 (x1, t; C + δC) − U2 (x1, t;C)

−2λ(t) [U (x1, t; C + δC) − U (x1, t; C)] dt

=

2T∫
0

[U (x1, t; C + δC) + U (x1, t;C)]︸ ︷︷ ︸
≈2U(x1,t;C)

·

[U (x1, t; C + δC) − U (x1, t; C)]︸ ︷︷ ︸
=:δU(x1,t;C)

−2λ(t) · [U (x1, t; C + δC) − U (x1, t; C)]︸ ︷︷ ︸
=:δU(x1,t;C)

dt

≈

2T∫
0

2δU (x1, t; C) · [U (x1, t;C) − λ(t)] dt

=

2T∫
0

∞∫
−∞

δU (x, t; C) ·2δ (x−x1) [U (x, t; C) −λ(t)] dx dt.

In Eq. (11) δ(x) represents the Dirac delta-function with
∫ δ(x−x0)f (x)=f (x0) for all f . The difference between
two solutions according to a difference betweenC and
C+δC is defined byδU(C)=U(C+δC)−U(C). For small
discrepancies inC the differenceδU(C) is assumed to be
also small andU(C+δC)+U(C)≈2U(C). To make further
transformations of Eq. (11) the advantages of adjoint oper-
ators will be used. Therefore a linear operatorL is defined
analog to Eq. (4):

LU ≡

[
LC

∂2

∂t2
+ LG

∂

∂t
+

∂L
/
∂x

L

∂

∂x
−

∂2

∂x2

]
U (12)

The definition of the adjoint operatorL∗ is that he will fulfil
the following equation for everyU(x, t) andV (x, t)

(LU |V ) =
(
U |L∗V

)
(13)
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using the inner product

(U |V ) =

2T∫
0

∞∫
−∞

U(x, t)V (x, t) dx dt . (14)

Now the PDE for the adjoint operatorL∗ has to be deter-
mined. The left side of Eq. (13) can be transformed using
Eqs. (12) and (14). Each of the double-integrals will be trans-
formed to isolateU(x, t) using integration by parts in ev-
ery addend. The auxiliary terms resulting from this isolation
must be eliminated now, as the initial and boundary condi-
tions forV are appropriate selected. The notationUt andUt t

in the following equation is an abbreviation for the partial
differential derivative∂U/∂t and∂2U/∂t2, respectively.

(LU |V ) (15)

=

2T∫
0

∞∫
−∞

LCUt tV dxdt +

2T∫
0

∞∫
−∞

LGUtV dxdt

+

2T∫
0

∞∫
−∞

Lx

L
UxV dxdt −

2T∫
0

∞∫
−∞

UxxV dxdt

=

∞∫
−∞

LC

(
[UtV ]

t=2T
t=0 − [UVt ]

t=2T
t=0 +

2T∫
0

UVt tdt

)
dx

+

∞∫
−∞

LG

(
[UV ]

t=2T
t=0 −

2T∫
0

UVtdt

)
dx

+

2T∫
0(

[U Lx

L
V ]

x=∞
x=−∞−

∞∫
−∞

U
(

Lx

L

)
x
V dx−

∞∫
−∞

U Lx

L
Vxdx

)
dt

−

2T∫
0

(
[UxV ]

x=∞
x=−∞ − [UVx]

x=∞
x=−∞ +

∞∫
−∞

UVxxdx

)
dt

#1
=

2T∫
0

∞∫
−∞

LCVt tUdxdt −

2T∫
0

∞∫
−∞

LGVtUdxdt

−

2T∫
0

∞∫
−∞

Lx

L
VxUdxdt −

2T∫
0

∞∫
−∞

VxxUdxdt

#2
=
(
U |L∗V

)
To make sure that transformation #1 in Eq. (15) is correct the
initial and boundary conditions forV (x, t) have to be set as
follows

V (x, 2T ) = 0,
∂

∂t
V (x, 2T ) = 0, −∞ < x < ∞ , (16)

V (−∞, t) = 0,
∂

∂t
V (∞, t) = 0, 0 ≤ t ≤ 2T . (17)

The initial condition results to a backward propagation in
time from 2T to zero. When the operatorL∗ is defined by

L∗V ≡

[
LC

∂2

∂t2
− LG

∂

∂t
−

∂L
/
∂x

L

∂

∂x
−

∂2

∂x2

]
V (18)

then equivalence #2 in Eq. (15) will also be fulfilled. Now
the adjoint operatorL∗ that accomplishes Eq. (13) is found
with its corresponding PDE (Eq.18) and initial and boundary
conditions (Eqs.16–17). The solutionV of this PDE can
only be different from zero if a non vanishing right side is
assigned toL∗V . Looking back to Eq. (11) one can equate

L∗V = 2δ (x − x1) [U (x, t; α) − λ(t)] (19)

to continue the transformations of Eq. (11) and use the prop-
erty of L∗ being the adjoint operator toL according to the
inner product (Eq.14).

J (C + δC) − J (C) (20)

=

2T∫
0

∞∫
−∞

δU ·
(
L∗V

)
dx dt

=

2T∫
0

∞∫
−∞

(LδU) · V dx dt

=

2T∫
0

∞∫
−∞

V[
LδCUt t + LCδUt t + LGδUt +

Lx

L
δUx − δUxx

]
dx dt

=

∞∫
−∞

δC
2T∫
0

V LUt tdt dx

+

2T∫
0

∞∫
−∞

V

[
LCδUt t + LGδUt +

Lx

L
δUx − δUxx

]
dxdt

︸ ︷︷ ︸
→0f or ‖δC‖→0

From Eqs. (20) and (10) it follows that

∇J (C) =

2T∫
0

LV
∂2

∂t2
Udt = −

2T∫
0

L
∂

∂t
V

∂

∂t
Udt. (21)

This gradient can be calculated by solving two IBVP: One
forward problem for the direct wave (Eqs.4–7) and one back-
ward problem for the adjoint wave (Eqs.16–19).

3.1.2 Double-sided reflection data

For the simultaneous reconstruction ofC(x) andG(x) it is
necessary to take two independent measurements. As shown
in the previous section one choice will be the two reflection
measurements from both sides of the sensor:

λ1(t) = Ua(x1, t), λ2(t) = Ue(x2, t) (22)

It is also necessary to choose another cost function in order
to minimize the error between the simulation and the mea-
surements simultaneously. ChoosingJ (α) = J (C, G) as

J (α) =

2∑
i=1

2T∫
0

[Ui (xi, t; α) − λi(t)]
2 dt. (23)
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Fig. 4. Flow chart of the Fletcher-Reeves conjugate gradient
method.

The determination of the two gradients is very similar to the
transformations above. It leads to the same adjoint PDE for
L∗ as in Eq. (18). But two different backward problems have
to be calculated according to the two different forward solu-
tionsU1 andU2. The right sides of the adjoint problems are
given by

L∗Vi = 2δ (x − xi) [Ui (x, t;α) − λi(t)] , i = 1, 2 (24)

and the initial and boundary conditions have to be chosen to
fulfil

Vi(x, 2T )=0,
∂

∂t
Vi(x, 2T )=0, −∞<x<∞, i=1, 2 , (25)

Vi(−∞, t)=0,
∂

∂t
Vi(∞, t)=0, 0≤t≤2T , i=1, 2 . (26)

For each givenα=(C(x), G(x)) one can solve the forward
problems forU1(x, t) andU2(x, t) and the backward prob-
lems forV1(x, t) andV2(x, t) and calculate the gradients of
J (α) with respect toC andG, respectively:

∇
CJ (α) = −

2∑
i=1

2T∫
0

L
∂

∂t
Vi

∂

∂t
Uidt (27)

∇
GJ (α) =

2∑
i=1

2T∫
0

LVi

∂

∂t
Uidt (28)

3.2 Reconstruction of the parameter distribution

To determine the distribution ofα=C(x) a conjugate gradi-
ent (cg) method is appropriate if the gradient of the func-
tion to be minimized can be calculated explicitly and very
easily. Starting with a parameter distributionα(0) the first
search direction is given by the direction of steepest decent
P (0)

=−∇J (α(0)). The next parameter distribution can be
calculated by

α(k+1)
= α(k)

+ γ (k)P (k) (29)

whereγ (k) is the optimal step-size to minimize the cost func-
tion based on the former parameter distributionα(k) and the
search-directionP (k):

γ (k)
= min

γ
J
(
α(k)

+ γ · P (k)
)

. (30)

The main effort of computation in this minimization is due
to the large number of cost function analysis. Therefore an
effective numerical algorithm concerning minimum function
calls is the core of a fast reconstruction algorithm. In com-
parison to conventional cg-methods the following search di-
rectionP (k+1) is not only the direction of steepest decent at
α(k+1) but also a combination of former search-directions.

P (k+1)
= −∇J

(
α(k+1)

)
+

∥∥∇J
(
α(k+1)

)∥∥2
2∥∥∇J

(
α(k)

)∥∥2
2

· P (k) (31)

This leads to a faster convergence and less calculation effort.
The cg-method was chosen according to Fletcher and Reeves
(1964) – similar results were carried out by using the cg-
method according to Polak and Ribière (1969).

During simultaneous reconstruction ofC(x) andG(x) the
minimum search in Eq. (30) will be extended to a two-
dimensional search:(

γ (k), η(k)
)

= min
γ,η

J
(
C(k)

+γ · P
(k)
C , G(k)

+η · P
(k)
G

)
(32)

Especially in this two-dimensional search the choice of an
algorithm with as few function calls as possible is of cru-
cial importance. The simplex method developed by Nelder
and Mead (1965) and the complex method by Box (1965)
lead to fast optimization algorithms even in the simultane-
ous reconstruction of two parameter functions. At one- and
two-parameter optimization the conjugate gradient algorithm
terminates if there is no significant change in the value of two
consecutive cost functions. Figure 4 shows the flow chart of
the preferred cg-method.

When using two measurements which show only small
differences in the reflected signal than the corresponding cal-
culated parameter distribution shows only small variations as
well.
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Figure 5. Insulated flat-ribbon-cable (short section with bare conductors to visualize the 

geometry and the electrical connection of the cable) with a sensor switch between coaxial 

cable and flat-ribbon-cable 

Fig. 5. Insulated flat-ribbon-cable (short section with bare conduc-
tors to visualize the geometry and the electrical connection of the
cable) with a sensor switch between coaxial cable and flat-ribbon-
cable.

Table 1. Cable parameters for the sensor cable in Fig. 5.

Circuit element C1 C2 C3 L0
(pF/m) (pF/m) (pF/m) (nH/m)

Measured value 3.4 323 14.8 756
Calculate value 4.0 308 13.7 785

4 Determination of the water content

The capacitance profileC(x) describes the electrical proper-
ties of the whole medium around the conductors of the sen-
sitive transmission-line. But strictly speaking, the capaci-
tance at any point of the profile is not independent on the
frequency. For simplification, we assume that there may be
a constant value forC for the used TDR frequency range de-
pending on feeding cable properties and length. If the sensor
is not insulatedC(x) can be easily transformed into the rel-
ative permittivity of the mediumεm(x)=L0c

2
0C(x), where

L0 specifies the inductance of the sensor andc0 the speed of
light in vacuum. If the sensor is insulated with some dielec-
tric material the total capacitanceC(x) represents the com-
bination of insulation and soil. Therefore a sensor specific
transformation fromC to the relative permittivityε of the
soil is necessary.

The flat-ribbon-cable used for many applications of the
SMG is shown in Fig. 5. It has been developed and patented
by the Institute of Meteorology and Climate Research at
the Forschungszentrum Karlsruhe (Brandelik et al., 1998).
The cable consists of three flat copper wires covered with
polyethylene. The electrical field is concentrated around the
conductors and defines the sensitive area of 3 to 5 cm around
the cable depending on the permittivity. The electric prop-
erties of the flat-ribbon-cable used in this work can be mea-

Fig. 6. Capacitance model of the insulated flat-ribbon-cable from
Fig. 5.

sured and calculated (cf. Fig. 6 and Table 1).
According to the equivalent circuit of Fig. 6 the total ca-

pacitanceC can be expressed by three capacitancesC1, C2,
andεmC3 and can be transformed into a direct relation be-
tween the relative permittivityεm of the surrounding soil and
the total capacitance:

C = C1 +
C2εmC3

C2 + εmC3
(33)

The three unknown capacitancesC1, C2, andC3 were de-
rived from calibration measurements of three different ma-
terials with well known dielectric properties, e.g. air, oil,
and water. The inductance was determined by measuring the
wave impedance with a variable resistor at the end of the ca-
ble adjusted for minimum reflection. The values for the cable
of Fig. 5 are given below (Ḧubner, 1999).

The permittivity of the soil can now be transformed to the
volumetric water content by standard transformations for ar-
bitrary soils (e.g. Topp et al., 1980) or soil specific calibration
functions determined from laboratory test series. The accu-
racy of the water content distribution depends highly on the
accuracy of this transformation. The deviation due to insuffi-
cient knowledge of the material can easily exceed the errors
of the reconstruction of the capacitance profileC(x).

The total conductanceG(x) describes the conductivity of
the material between the copper wires, i.e. the system of
polyethylene insulation and the surrounding material. The
determination of the water content distribution of the sur-
rounding material does not require the knowledge of the con-
ductivity distribution of the material, but it cannot be ne-
glected during the reconstruction ofC(x).

5 Numerical results

In order to investigate the accuracy of the reconstruction with
respect to a known profile, artificial time-domain reflection
data have been generated to provide input and output data for
single- and double-sided reconstructions of the capacitance
profile. Therefore a 2 m flat-ribbon-cable sensor was sur-
rounded by several sections of different material with given
electrical properties. Two different capacitance and conduc-
tance profile combinations were used to represent one loss-
less and one lossy soil profile (see sections of constant elec-
tric properties given in Table 2). In contrast to the abrupt
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Table 2. Electrical properties of the test materials to represent loss-
less and lossy material.

Position (m)

0.0–0.3 0.3–1.3 1.3–1.7 1.7–2.0

Lossless
C (pF/m) 20 40 80 20
G (mS/m) 0 0 0 0

Lossy
C (pF/m) 20 40 80 20
G (mS/m) 0 4 8 0

changes of this synthetic example natural soil profiles show
smooth transients in the water content (related to the chosen
spatial discretization step).

These parameter distributions lead to left- and right-sided
reflection data for the lossless and lossy material (Hübner et
al., 2005), see Fig. 7.

The initial capacitanceC0=τ2(x1, x2)/(L0(x2−x1)
2) can

be easily determined by simple travel-time measurements
along the cable sensor (Heimovaara and Bouten, 1990). To
ensure the invariance of this sensor travel-time during the
conjugate gradient algorithm one has find a constant shiftCγ

for every givenγ during the optimization to fulfil√
C0(x2 − x1) =

∫ x2

x1

√
C(x) + γPC + Cγ dx (34)

This shift correction guarantees that all determined capac-
itance profiles lead to the same total travel-time along the
cable sensor. It means that the mean moisture content re-
mains invariant during the optimization. Therefore the sin-
gle roundtrip travel-timeτ(x1, x2) has to be determined as
accurate as possible. Equation (29) has to be modified to
get the advanced consecutive capacitance profile in the cg-
algorithm:

C(k+1)
= C(k)

+ γ (k)P (k)
+ Cγ (k) (35)

with

γ (k)
= min

γ
J
(
C(k)

+ γ · P (k)
+ Cγ

)
. (36)

5.1 One-parameter reconstruction

Compared to lossy materials the reconstruction of the true
capacitance profile in lossless soil (G(x)=0) is rather sim-
ple. Only one unknown parameter distributionC(x) has to
be determined. Therefore one single reflection measurement
is sufficient to derive the final capacitance profile.

To calculate the wave propagation the cable sensor is sepa-
rated into 400 equally spaced sections of 5 mm. For this dis-
cretization the single-sided reconstruction algorithm needs
about 15 min on a standard PC to calculate 20 iteration steps.
The similar reconstruction using right-sided reflection data
leads to comparable results.
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Fig. 7. Left- and right-sided reflection data for the lossless (above)
and lossy (below) soil profile, both with main reflections at 22.3 ns
as a result of an open-circuit at the end of the cable sensor.

Figure 8 shows several intermediate results during the con-
jugate gradient optimization. The search direction leads to a
good approximation of the capacitance profile very fast. Af-
ter the first iteration the main features are mapped very well.
The following iterations lead to smaller corrections of rather
fine structures.

In the case of lossy material with an unknown effective
conductance profileG(x) a first approach is to reconstruct
C(x) using single-sided reflection data and assumeG(x) to
be equal to zero over the whole area. Figure 9 show the re-
sults of this reconstruction. The capacitance is overestimated
due to the effect of the non vanishing conductivity. Further-
more the optimization stops after three iteration steps, be-
cause the calculated search direction could not improve the
value of the cost function (Eq.9).

This distortion is reduced if the mean value of the conduc-
tance will be used which can also be determined from the
time domain reflection. A mean value ofG(x) = 4 mS/m
was chosen to estimate the effect of the conductivity. Fig-
ure 10 shows the reconstruction of the capacitance using this
assumption.

The results of the capacitance reconstruction presented in
Figs. 9 and 10, do not satisfy the expectations on a reliable
solution of the soil moisture determination. To get better re-
sults it is necessary to use additional information to recon-
struct the capacitanceC(x) and the conductanceG(x) simul-
taneously.

5.2 Two-parameter reconstruction

To reconstructC(x) andG(x) simultaneously, two indepen-
dent measurements are needed. In the case of the lossy
soil described in Table 2, reflection measurements from both
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Fig. 8. Capacitance profilesC(x) during the reconstruction
from left-sided reflection data (thin line) for lossless material
(G(x)≡0 mS/m) compared to the true profile (bold line).
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Fig. 9. Capacitance profilesC(x) during the reconstruction from
left-sided reflection data (thin line) for lossy material (wrong as-
sumption ofG(x)≡0 mS/m during reconstruction) compared to the
true profile (bold line).

sides of the cable sensor are used. The minimization of
Eq. (23) requires the determination of the solution of two in-
dependent IBVP. In addition to this duplication of the calcu-
lation effort the conjugate gradient method is more complex.
To find the optimal step sizes for each search direction a two-
dimensional search has to be treated. This causes a much
larger calculation time for every iteration step. To keep the
total calculation time acceptable, the terminating condition
to exit the conjugate gradient method has to be less strict.

Figure 11 shows the result of the optimization during sev-
eral iteration steps. The algorithm terminates after 8 iteration
steps although the approximation to the true profile is not as
good as for the single-sided reflection data. But in addition to
the capacitance profile the algorithm leads to a conductivity
profile (see Fig. 12).

This conductivity profile represents the total conductance
of the composite of insulation and surrounding soil. A trans-
formation fromG(x) to the soil conductivityσ(x) is not re-
quired because it gives no further information to the water
content. But further investigations may close this gap.
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Fig. 10. Capacitance profilesC(x) during the reconstruction from
left-sided reflection data (thin line) for lossy material (assumption
of constantG(x)≡4 mS/m during reconstruction) compared to the
true profile (bold line).
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Fig. 11. Capacitance profilesC(x) during the reconstruction from
double-sided reflection data (thin line) for lossy material compared
to the true profile (bold line).

Finally the iteration speed and the total calculation time
of the presented numerical examples were investigated. The
results are presented in Fig. 13.

One can see that the one-parameter reconstruction for loss-
less material leads to a very good approximation of the given
profile and that a quasi-steady state is reached after 27 iter-
ations. But the conductivity profile is exactly known in ad-
vance. In the case of lossy material the best approximation to
the true profile is given by the double-sided reconstruction.
The value of the cost function is half as much than for the
single-sided reconstruction with constant conductivity (keep
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Fig. 12. Conductance profilesG(x) during the reconstruction from
double-sided reflection data (thin line) for lossy material compared
to the true profile (bold line).

in mind the logarithmic scale of the y-axis in the upper dia-
gram of Fig. 13).

The calculation effort stays constant in every iteration step
and is nearly equal for the compared one-parameter recon-
structions. It increases rapidly when using the two-parameter
reconstruction due to the two-dimensional step size opti-
mization. But this calculation time is almost fast enough
for many applications and surely contributes to the further
spreading of this method.

The software for this reconstruction algorithm has been
developed using MATLAB®. It has been employed to many
applications of the SMG for different transmission lines be-
tween 0.3 and 20 m in length. Progress is intended to con-
tinue and the relevant software can be available shortly.

6 Conclusions

A fast inversion technique is presented that derives capaci-
tance profiles in high spatial resolution from single TDR re-
flection measurements. The algorithm is based on an opti-
mization approach to minimize the difference between the
measurement and simulated TDR reflection data depending
on a given parameter distribution. The optimization is done
with conjugate gradients due to the fact that the gradient
can be calculated explicitly. This gradient can be deter-
mined very fast by solving only two initial-boundary-value-
problems instead of several hundred when using standard
Hessian matrix inversion techniques. The algorithm iterates
very fast and leads to reliable soil moisture profiles which can
be derived from the capacitance profiles by standard transfor-
mations.

0 5 10 15 20 25 30 35 40

10−12

10−10

10−8

Number of iterations

co
st

 fu
nc

tio
na

l [
 −

 ] 1−parameter: lossless (G=0 mS/m)
1−parameter: lossy (guess G=0 mS/m)
1−parameter: lossy (guess G=4 mS/m)
2−parameter: lossy

0 5 10 15 20 25 30 35 40
0

50

100

Number of iterations

To
ta

l t
im

e 
[ m

in
 ] 1−parameter: lossless (G=0 mS/m)

1−parameter: lossy (guess G=0 mS/m)
1−parameter: lossy (guess G=4 mS/m)
2−parameter: lossy

Fig. 13.Results of the cost function (above) and the total calculation
time (below) after each iteration step of the cg-method.

The results of this study of this new inversion technique
for time domain reflectometry data show that single-sided
reflection data are capable for the reconstruction of the soil
moisture profile for lossless (or low-loss) soils. The full in-
formation content of one single travel-time roundtrip can be
used to determine the capacitance profileC(x) and the as-
sociated volumetric water content on a standard PC in rea-
sonable time. In the case of lossy soils more information is
required. The knowledge of the conductance profileG(x)

or an experimental determined relationship between capaci-
tance and conductance for the used sensor and soil can im-
prove the determination of moisture profiles using only one
single measurement. If none of this knowledge is available
one more independent reflection measurement is required.

The presented inversion technique is also suitable for the
simultaneous reconstruction of capacitance and conductance
profile using double-sided reflection data. The resulting
profiles are more reliable than single-sided reconstructions
with standard assumptions to the conductivity (e.g. constant
conductivity distributions). The simultaneous reconstruction
of C(x) and G(x) and the associated volumetric water
content can also be done within a reasonable time.

Edited by: N. Romano
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