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Abstract

To translate a point hydrograph forecast into products for use by environmental agencies and civil protection authorities, a hydraulic model
is necessary. Typical one- and two-dimensional hydraulic models are able to predict dynamically varying inundation extent, water depth and
velocity for river and floodplain reaches up to 100 km in length. However, because of uncertainties over appropriate surface friction parameters,
calibration of hydraulic models against observed data is a necessity. The value of different types of data is explored in constraining the
predictions of a simple two-dimensional hydraulic model, LISFLOOD-FP. For the January 1995 flooding on the River Meuse, The Netherlands,
a flow observation data set has been assembled for the 35-km reach between Borgharen and Maaseik, consisting of Synthetic Aperture Radar
and air photo images of inundation extent, downstream stage and discharge hydrographs, two stage hydrographs internal to the model domain
and 84 point observations of maximum free surface elevation. The data set thus contains examples of all the types of data that potentially can
be used to calibrate flood inundation models. 500 realisations of the model have been conducted with different friction parameterisations and
the performance of each realisation has been evaluated against each observed data set. Implementation of the Generalised Likelihood Uncertainty
Estimation (GLUE) methodology is then used to determine the value of each data set in constraining the model predictions as well as the

reduction in parameter uncertainty resulting from the updating of generalised likelihoods based on multiple data sources.

Keywords: floods, hydraulic modelling, model calibration, uncertainty analysis

Introduction

Flood events across Europe in the summer of 2002 and
during previous years have raised public, political and
scientific awareness of flood risk and flood protection
(Becker and Griinewald, 2003). Flooding is now widely
acknowledged as an issue of strategic importance at a trans-
national level, with major economic and social implications
for citizens of many European countries (Samuels, 2003;
Collier, 2003). In the absence of sufficient observations of
flood extent, areas at risk from flooding are usually identified
using numerical hydraulic models. This requires a dynamic
approach to represent transient storage effects (Wheater,
2002), and various methods based on one- and two-
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dimensional hydrodynamic modelling have been presented
with proven ability to simulate inundation extent, water
depth and velocity for river and floodplain reaches up to
100 km in length (Bates et al., 1998; Bates and De Roo,
2000; Werner, 2001; Werner, 2002a; Horritt and Bates,
2002).

In all but the simplest cases, some form of calibration is
required to apply these models successfully to a particular
reach for a given flood event. Calibration is undertaken to
identify appropriate values for parameters such that the
model is able to reproduce observations and, in the
inundation case, typically considers roughness coefficients
assigned to the main channel and floodplain. Though these
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values may sometimes be estimated expertly in the field
with a high degree of precision (Cunge, 2003), it has proven
very difficult to demonstrate that such ‘physically-based’
models are capable of providing accurate predictions from
single realisations for reasons discussed in the critiques of
Beven (1989, 1996, 2001a) and Grayson et al. (1992). As
such, values of parameters calculated by the calibration of
models should be recognised as lacking a physical
interpretation outside the model structure within which they
were calibrated (Beven, 2000). Typically, data available for
this process include water level and bulk discharge measured
at flow gauging stations and, more rarely, flood extent data
from satellites or air photos and distributed ground
measurements of water level taken during or after a flood
event. Given that the number of degrees of freedom in even
the simplest of numerical models is relatively large, it is no
surprise that many different combinations of effective
parameter values may fit sparse validation data equally well
(see, for example, Romanowicz ef al., 1994, 1996; Aronica
et al., 1998, 2002; Romanowicz and Beven, 2003; Bates et
al., in press). In response to this problem, uncertainty
analysis techniques, often based on the Generalised
Likelihood Uncertainty Estimation (GLUE) methodology
of Beven and Binley (1992), have been developed.

To date, only very limited attempts to calibrate distributed
models against more than one particular data type have been
made. Horritt and Bates (2002) tested the predictive
performance of three industry-standard hydraulic codes on
a 60-km reach of the River Severn, UK, using independent
calibration data from hydrometric and satellite sources. They
found that all models were capable of simulating inundation
extent and floodwave travel times to similar levels of
accuracy at optimum calibration. However, due to the
different model responses to friction parameterisations,
differences emerged according to the calibration data used
when the models were used in predictive mode. Horritt and
Bates (2002) did not consider either the potential for
combining both data sources in the calibration process or
assessing the uncertainties associated with the model
predictions. The value of incorporating additional data in
the calibration process has been explored tentatively in other
areas of distributed modelling, notably by Franks et al.
(1998) in a catchment hydrology context. In this study, the
authors used Synthetic Aperture Radar (SAR) imagery to
obtain soil saturation maps to compare with predictions of
soil moisture from the catchment hydrology code,
TOPMODEL (Beven and Kirkby, 1979). Using these data
as supplementary information to constrain the model
predictions of discharge for the catchment, they showed that
the addition of this information enabled the rejection of many
previously acceptable parameterisations resulting in the

improved prediction of some discharge events.

Multiple observational data sets for historical flood events
are still exceedingly rare, so the potential value of additional
observations in the calibration process has yet to be explored
in the case of distributed inundation models. Furthermore,
the use of uncertainty estimation techniques during this
conditioning process allows the relative value of individual
(sets of) observations to be quantified precisely in terms of
the reduction in uncertainty over effective parameter
specification (c.f. Beven and Binley, 1992). Interpretation
of these uncertainty measures may also provide guidance
over how much and of what type of observational data would
be required to achieve given levels of uncertainty reduction
in simulated variables.

There is thus a clear need to develop methods for assessing
the relative utility of different observational data types for
the calibration of distributed floodplain inundation models,
both in terms of quantification of (1) the uncertainties
associated with the simulation of various distributed
hydraulic variables and (2) the (hopeful) reduction in
uncertainty over effective parameter specification.
Fulfilment of such aims is an important component of the
European Flood Forecasting System (EFFS) project where
ultimately the wish is to translate 10-day ahead forecasts of
flood discharge into maps of inundation probability. This
requires a thorough understanding of the response of
hydraulic models to a variety of different types of calibration
data, objective functions and rejection criteria.

Study site, data availability and model
description

The identification of an appropriate data set, which
encompasses both multiple observations for model output
evaluation and a commensurate specification of boundary
conditions, is central to the development of methods
proposed in this paper. To test these techniques, the
LISFLOOD-FP distributed hydraulic model was applied to
a 35-km reach of the River Meuse between the gauging
stations at Borgharen (near the city of Maastricht) in The
Netherlands and Maaseik in Belgium for the January 1995
flood event. Commencing at 00:00 hours on 22 January and
continuing for 20 days (or 480 hours), this severe flood had
an estimated return period of 63 years and resulted in
extensive inundation of the river valley. Initial data collected
and available for study have been described and used in
Bates and De Roo (2000) and Werner (2002b). These data,
in addition to other flow observations made available
recently, contain examples of all the types of information
that can potentially be used to calibrate flood inundation
models and are summarised in Table 1 and Fig. 1.
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The availability of four hydrometric gauges, two external
(Borgharen and Maaseik) and two internal (Elsloo and
Grevenbicht) to the model domain, should provide a good
description of the spatially-integrated response of the study
reach to the passage of the flood wave. It is also likely that
these observations, collected at hourly intervals, will have
sufficient temporal resolution to discriminate between
competing models. The data consist of discharges and levels
at the external and internal gauges respectively. Given the
relatively short interval between stations and the inherent
uncertainties of stage-discharge relationships at each station,
water levels recorded internal to the model domain are likely
to prove a more valuable asset than discharges in
conditioning model performance, particularly in the
detection of erroneous compensating errors.

To have more than one observation of inundation extent
per flooding episode is highly unusual. However, for the
1995 event, the inundation of the Meuse floodplain was
captured in both air photo imagery and by an overpass of
the ERS-1 SAR satellite system (De Roo e al., 1999. These
multiple observations of flood extent should provide a
rigorous test of the model’s ability to simulate a dynamic
flood shoreline. The SAR overpass occurred on 30 January
at 1033 hours when the discharge at Borgharen was 2631
m?® s7!. The air photo survey was conducted on 27 January
when the discharge at Borgharen was 2645 m’s™ and water
levels along the reach measured by the Dutch Water
Authorities (RWS) were approximately 0.1 m lower than
those recorded at peak flow. Unfortunately in this instance,
despite the different sampling periods for the observed data,
variations between data sets due to different hydraulic
conditions are likely to be small. That there are considerable
classification discrepancies in regions where the two
‘observations’ coincide is a direct result of the different
processing strategies used to derive extent shorelines from
the two image sources. The air photo mosaic was digitised

manually by RWS and has an approximate horizontal
accuracy of 25 m while the SAR imagery was processed
automatically using the statistical active contour model or
‘snake’ (Horritt, 1999). The central problem with SAR image
processing is how to combat the high level of noise (or
speckle) without the degradation in spatial resolution
associated with many local averaging techniques (for a full
review see Horritt, 1999). The snake algorithm deals with
this by measuring local speckle statistics along the shoreline
and is thus able to segment the shoreline to an accuracy of
~1 pixel (12.5 m for ERS-1 SAR). However, problems may
still occur as increased back scattering of the radar signal
by wind roughening of the water surface and particular land
use types can lead to misclassification of flooded areas. In
general, misclassification errors will be greater with the SAR
data than the low altitude airborne survey, and so the latter
is likely to be the data set closest to the true shoreline. From
Fig, 1, it is also obvious that there are several regions,
particularly in the vicinity of Elsloo, where both observations
of inundation extend beyond the boundaries of the available
DEM. Such areas will never be simulated as flooded by the
model and so cannot reasonably be considered in the
evaluation process.

The final source of data available for the 1995 flood event
is 86 point observations of maximum free surface elevation
surveyed post-event by RWS using traditional ground survey
methods. While this type of data is subject to well-
documented limitations (e.g. Beven, 1989; Lane et al.,
1999), their broad spatial distribution across the Dutch
floodplain (right bank) and non-binary nature (i.e.
possession of a quantity beyond simply ‘wet’ or ‘dry’) make
them potentially very valuable in the model conditioning
process. However, because of the inherent sensitivity to
topographic description within the model, simulated
variables are not always compatible with these data in every
instance. In two cases, the surveyed levels are actually below

Table 1. Summary of observational data sources available for the January 1995 flood event on the River Meuse.

Observational data type Source

Description

Internal bulk flow time series

Stage at internal gauge 1, Elsloo

Hourly gauged stage hydrographs

Stage at internal gauge 2, Grevenbicht

External bulk flow time series

Vector polygons

Air photo-derived inundation shoreline

Points

Discharge at downstream boundary, Maaseik

Satellite radar-derived inundation shoreline

Maximum free surface elevation survey

Hourly gauged stage hydrograph converted using
rating curve

ERS-1 SAR imagery converted into a shoreline
using the statistical active contour model of Horritt
(1999)

Image mosaic converted into a shoreline by the
Dutch Water Authorities (RWS)

Systematic ground survey conducted by RWS
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Fig. 1. Spatial distribution of observational data sources available for the January 1995 flood event on the River Meuse overlain on the 50 m
resolution Digital Elevation Model.
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the ‘dry’ floodplain as represented in the DEM and
subsequently could not be used in model evaluation.

Due to the difficulties in collecting measurements in the
field, there is a trend in distributed environmental modelling
to ignore the errors associated with observational sources.
However, errors and uncertainties associated with each type
of observation data may have a significant impact on the
values of effective parameters estimated within distributed
models using some or all of these sources. The sets of values
estimated for freely-varying parameters will ultimately
dictate the predictive performance of the model and it is,
therefore, important to assess how the aggregate of all these
uncertainties (although not explicitly those relating to
boundary condition specification and model structure)
propagate through the model calibration process. To
demonstrate a methodology capable of making such
assessments requires a distributed hydraulic model with
which to perform the necessary simulations. There is
evidence that when evaluating against sparse observational
data, fully dynamic models do not necessarily produce better
results than models with simplified dynamics (Bates and
De Roo, 2000; Horritt and Bates, 2001, 2002). Moreover,
the computational efficiency afforded by simpler approaches
makes them highly appealing for evaluating multiple model
realisations within a Monte Carlo framework.

LISFLOOD-FP is a raster-based inundation model
specifically developed to take advantage of high resolution
topographic data sets (Bates and De Roo, 2000) and is based
on the storage cell concept of Cunge et al. (1980). Similar
approaches have been proposed by Bechteler ef al. (1994),
Estrela and Quintas (1994) and Romanowicz et al. (1996)
although LISFLOOD-FP differs from these schemes by
incorporating a one-dimensional wave routing model for
channel flow (rather than using uniform flow formulae) and
by the method and scale of floodplain discretisation. The
model is fully described by Bates and De Roo (2000) and
Horritt and Bates (2001), so only the main features and
assumptions are given here.

Channel flow is handled using a one-dimensional
kinematic routing procedure that is capable of capturing the
downstream propagation of a flood wave and the response
of the free surface slope, which can be described in terms
of continuity and momentum equations as:

QLA _, (1)
ox ot

nz P4/3 2
S~ =0 @)

Q is the volumetric flow rate in the channel, 4, cross sectional
area of the flow in the channel, g, the flow into the channel
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from other sources (i.e. from the floodplain or tributary
channels), S, the down-slope of the bed, n, the Manning’s
coefficient of friction, P, the wetted perimeter of the flow,
and 4, the flow depth. Equations 1 and 2 are solved using
an implicit non-linear first order finite difference scheme.
A flow rate is imposed at the upstream end of the reach,
which for a kinematic wave model is sufficient as a boundary
condition, as wave effects can only propagate downstream
and any backwater effects are ignored. Additional gauging
stations, both internal to the model domain and at the
downstream outlet, are thus fully independent of the model
and may be used as evaluation data in the calibration process.
The channel parameters required to run the model are its
width, bed slope, depth (for linking floodplain flows) and
Manning’s » value. Width and depth are assumed to be
uniform along the reach, their values assuming the average
effective values taken from field surveys of the channel.
The Manning’s n roughness is left as a calibration parameter
to be estimated.

Floodplain flows are described similarly in terms of
continuity and momentum equations, discretised over a grid
of square cells, which allows the model to represent two-
dimensional dynamic flow fields on the floodplain. Flow
between two cells is simply calculated as a function of the
free surface slope between those cells (Estrela and Quintas,
1994):

oh' _ Q" -Q +Qy*-Q}! 3)
ot AXAY
RSB (hiLi_pi y2
) flow A

Q== [ x J y )

where 4'/is the water free surface height at the node (j, j),
Ax and Ay are the cell dimensions, # is the Manning’s friction
coefficient for the floodplain, and O and Q  describe the
volumetric flow rates between floodplain cells. O is defined
analogously to Eqn. 4. The flow depth, /2 , represents the
depth through which water can flow between two cells, and
is defined as the difference between the highest water free
surface in the two cells and the highest bed elevation (this
definition has been found to give sensible results for both
wetting cells and for flows linking floodplain and channel
cells). While this approach does not actually simulate
diffusive wave propagation on the floodplain, due to the
decoupling of the x and y components of the flow, it is
computationally simple and has been found to make a
negligible difference when compared with results simulated
using a faithful finite difference discretisation of the diffusive
wave equation (Horritt and Bates, 2001).

Equation 4 is also used to calculate flows between
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floodplain and cells, allowing floodplain cell depths to be
updated using Eqn. 3 in response to flow from the channel.
These flows are also used as the source term in Eqn. I,
effecting the linkage of channel and floodplain flows. Thus
only mass transfer between channel and floodplain is
represented in the model, and this is assumed to be dependent
only on relative water surface elevations. While this neglects
effects such as channel-floodplain momentum exchange
mechanisms and the effects of advection and secondary
circulation on mass transfer, it is the simplest approach to
the coupling problem and should reproduce some of the
behaviour of the real physical system (Aronica et al., 2002).

Model calibration and uncertainty
estimation within a GLUE framework

Some form of inverse modelling procedure is now required
to turn observed data into estimates of model parameters.
In a classical calibration study, this would involve the
identification of an optimum parameter set that maximises
the fit between model predictions and observations.
However, such a deterministic scheme effectively ignores
any uncertainties in the modelling process. The aim of this
paper is to assess the worth of observed data in an uncertain
framework, and this calibration process needs to be recast
in an uncertain form. Given the imperfect knowledge of the
statistical properties of the observed data, it is difficult to
formulate an error model for the observations, and also
difficult to justify making strong assumptions about the
observed data’s statistics (e.g. independence, distribution)
as this may affect the outcome of the calibration. A procedure
is thus required in which uncertain observed data can be
used to calibrate a non-error free model and allow the
uncertainty in model parameters to be assessed, without
making restrictive assumptions about errors in the observed
data.

The GLUE methodology of Beven and Binley (1992) is
one such method, and provides a simple, flexible approach
to parameter sensitivity analysis, model conditioning and
uncertainty estimation. It is based on rejecting the idea that
there is a unique optimum parameter set in a model
calibration in favour of identifying the many different
combinations of parameter values that may be equally
acceptable in simulating the system under study. In this
situation it is possible to evaluate only the relative likelihood
of a given non-error free model and parameter set in
reproducing the non-error free data available to test the
model. ‘Consistency’ in some sense, defined with respect
to the application in mind, is central to the concept of
equifinality (Beven, personal communication). However,
models that are deemed unacceptable or non-behavioural

may be rejected and removed from subsequent evaluation
by being assigned a generalised likelihood of zero.

A number of decisions must be made when implementing
the GLUE methodology (Beven, 2001b): (1) a decision
about posing a computational tractable calibration problem
(i.e. how best to simplify the characteristically high
dimensional parameter spaces of distributed models); (2) a
decision about the feasible range and sampling strategy for
each parameter; (3) a decision about appropriate generalised
likelihood measure(s) for each source of observational data;
(4) a decision about criteria for acceptance or rejection of
models; and, (5) a decision about the methodology for
updating (or combining) generalised likelihood measures.

Because of their subjective nature, it is important that
decisions made at each stage of the GLUE procedure be
transparent and unambiguous. However, it should also be
noted that transparency in the decision making does not
eliminate this subjectivity.

In distributed inundation models, roughness coefficients
may theoretically be specified at each computation node in
the model domain and, with recently published models
having upwards of ten thousand grid elements (Aronica et
al., 2002), this poses a formidable calibration problem.
Moreover, despite the fact that friction values vary markedly
over the floodplain in space due to vegetation changes and
in time during the flood event with changes in stage,
typically available observational data have not been
sufficiently detailed to require such sophistication from the
model (Bates et al., 1998). Thus some simplification of this
high dimensional calibration problem can undertaken,
particularly since it is known that the storage cell codes can
be relatively insensitive to floodplain roughness
specification (Romanowicz et al., 1996; Horritt and Bates,
2001). Initial simulations exhibited little response to
floodplain friction, but a crudely distributed channel friction
calibration was found to be worthwhile. The distribution of
gauging stations along the reach allowed channel
roughnesses to be aggregated, reasonably, into single
effective values for three distinct sub-sections (reach 1,
‘Upstream’ — Borgharen to Elsloo; reach 2, “Midsection’
— Elsloo to Grevenbicht; and reach 3, ‘Downstream’ —
Grevenbicht to Maaseik), while a single roughness value
was assigned to each floodplain grid cell uniformly.

The next step of the GLUE procedure is to decide the
range of the parameter space to be examined, which relies
upon an ‘informed knowledge’ of the system. However, this
initial decision can exert an influence on resulting predicted
uncertainties as parameter values outside this range are
effectively assigned a generalised likelihood of zero.
Importantly, calibration of friction coefficients for the
channel and floodplain was not undertaken in the Bates and
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De Roo (2000) study which used values selected on a
physical basis from available literature (e.g. Chow, 1959).
Following a preliminary investigation, friction coefficients
(Manning’s #) for the calibration process were distributed
randomly, independently and uniformly between
0.02 m'"3s" and 0.05 m'?s™! for each channel sub-reach,
with floodplain friction fixed at 0.06 m'? s!. Such an
approach is relatively standard in inundation modelling and
so is evaluated here. This gave a three-dimensional
parameter space that was sampled by Monte Carlo methods
using 500 realisations of the model.

Many different statistical measures exist to evaluate the
‘goodness of fit’ of a model simulation. Selection of an
appropriate generalised likelihood measure will depend
primarily on what observational data are available to
evaluate the model but also on the purposes of the study.
Different output variables will also demand different types
of measure to facilitate evaluation. In this study, three
independent measures are required for quantifying errors
in simulating: (1) at-a-point time series of levels and
discharges (hydrometric records); (2) spatially distributed,
binary pattern data (flood extent); (3) spatially distributed,
continuous point data (maximum water levels).

There are several methods for fitting simulated and
observed hydrographs and these invariably have a bias
towards one specific characteristic of the hydrograph (e.g.
accurate recession or peak prediction). Some well-
established ‘traditional” measures, e.g. the Nash-Sutcliffe
model efficiency, have achieved widespread usage, often
without due consideration of their limiting assumptions
concerning the probability distributions of the residual errors
(Clarke, 1973; Green and Stephenson, 1986; Beven, 2001b;
Christiaens and Feyen, 2002). Based on the sum of error
variances, the Nash-Sutcliffe efficiency is sensitive to
differences in both maximum values and timing of flood
peak. It is known from statistical theory that the error
variance is most suitable as a performance measure when
errors between the observations and predictions are of mean
zero, are normally distributed with constant variance and
are not correlated (Beven, 2001b). Very often, hydrometric
data violate these assumptions and so the Heteroscedastic
Maximum Likelihood Estimator (HMLE) measure of
Sorooshian and Dracup (1980) was proposed to account
properly for the presence of either autocorrelation (non-
independence) or heteroscedasticity (changing variance) of
data errors. It has the form:

1NT
— W,

NT — t [Q{ —é[(®,Y)]2
i

HMLE =
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where Q is the observed value at time index ¢ Qt(®,Y) is
the simulated variable given by parameters ® and input data
Y, and NT is the number of time steps. The weights w, are
defined as w, = Q2*~Y where 1 is an unknown shaping
parameter linked to the variances. By using a form of
weighted least-squares approach, the HMLE measure tends
to weight the fit of the model more towards recession periods
than high flow periods and generally provides a better
overall measure than the Nash-Sutcliffe efficiency which
gives more weight to higher flows. Initial evaluation of
LISFLOOD-FP’s downstream discharge predictions
indicated that the HMLE measure also gives better
discrimination between competing parameters sets than the
Nash-Sutcliffe efficiency, and is therefore used throughout.
The HMLE measure is minimised for an optimal fit between
data, so it is subtracted from 1 and rescaled to sum to unity
to give a generalised likelihood value (Wagener et al., 2001).

A spatially-distributed, binary pattern (wet/dry)or flood
is essentially being dealt with for flood extent data. However,
comparing such data with a modelled binary inundation
pattern is not straightforward, with potential problems
arising when models of different reaches or magnitudes of
flood event are intercompared (Aronica et al.,2002). Model
predictions of inundation extent can be compared with the
synoptic observations using measures of fit based on a
contingency table that shows the frequency of ‘wet’ and
‘dry’ predictions and observations as described in Table 2.

The measure used in Aronica et al. (2002):

F _

NC
MlDl
2P
i=1
T NC

NC NC
Z PiM1D1 + Z PiMlDo + Z PiMoDl
i=1 i=1

i=1

(6)

has been modified in this study to penalise, additionally,
overprediction of the flood extent:

NC NC
MiDy M1Do
2P =3P
i=1 i=1
NC

NC NC
Spre s Fene 3pue
i=1 i=1

i=1

|:<2> —

(7

Table 2. Matrix of possible model/data combinations for a binary
classification scheme.

Present in data Absent in data

D) (D)
Present in model (M) M D, M D,
Absent in model (M) M, D, M, D,
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where i is the grid cell (or pixel) index and NC represents
the total number of grid cells in the model. This formulation
was found to give enhanced discrimination between
inundation patterns and reduce the tendency of the original
measure (Eqn. 6) to preferentially weight overprediction.
The measure gives a value of 1 when the observed and
predicted inundation patterns coincide exactly.

The maximum water elevations are compared using a sum
of absolute errors, with special consideration given to points
that are observed as being wet, but predicted as dry. For
example, for points observed and modelled as wet, the
absolute error in the free surface elevation is calculated:

NP
SAE=)’
p=1

FSZ, - F&Z,(0,Y)| )

where FSZ and FéZp(G),Y) are the observed value and
simulated variable at point observation p respectively; and
NP represents the total number of points in the evaluation
data set. For points that are observed wet but predicted dry,
the difference between the observed water elevation and
the model’s DEM elevation is calculated. This measure
effectively gives the absolute predicted depth error, corrected
for potential discrepancies in the representation of floodplain
topography in the model.

Objective function values for each parameter set, ®, were
then transformed into generalised likelihoods, L(@),
according to the methodology proposed by Wagener ef al.
(2001). This ensures all generalised likelihood values are
positive and sum to unity (i.e. Y L(®)=1). This measure
can be treated as analogous to a true probability, but cannot
be used for formal statistical inference.

The generalised likelihood measures defined above can
now be used to weight each model realisation and hence
each parameter set with a value corresponding to the
confidence in that parameter set as a good predictor of the
system behaviour. Furthermore, the observed data sets can
be combined, by calibrating on one data set, then using
another to ‘update’ the weights assigned to each parameter
set. This is synonymous with the more common practice in
GLUE of updating an existing generalised likelihood
estimate with a new measure calculated for the prediction
of an additional set of observations from a second flood
event (e.g. Romanowicz and Beven, 2003). One way of
combining generalised likelihoods is proposed by Lamb et
al. (1998), where a Bayes-type equation is expressed in the
following form:

| L(o) L)

L(©1Y c ©)

where L, (@) is the prior generalised likelihood of parameter
set ©, L(@ |Y) is the generalised likelihood calculated for

the current evaluation given the set of observations 7,
Lp(® |Y) is the posterior generalised likelihood, and C is
a scaling constant to ensure that the cumulative posterior
generalised likelihood is unity. This method of combining
generalised likelihoods assumes that they behave in the same
way as probabilities and is consistent with the definitions
of generalised likelihood and confidence within the GLUE
procedure. Whilst the same assumption could perhaps not
be made for an uncertainty method based on formal
statistical inference, in this context it is a practically
expedient and commonly used approach to the problem. In
the absence of any observations, the prior generalised
likelihood is assumed subjectively to reflect expert prior
knowledge of parameter distributions as in this case, where
a uniform distribution has been assumed. A number of
updating equations can be chained together to combine many
data sources, but care is required as the multiplicative nature
of the Bayes equation may lead to assigning zero weight to
all models in cases where multiple observations are
available. In this case either a better model or less stringent
likelihood criteria are required.

Results and discussion

The above generalised likelihood measures were applied to
each of the 500 model realisations according to the GLUE
methodology outlined above. An impression of the
sensitivity of individual calibration parameters can be gained
by plotting scatter diagrams of parameter value against
performance measure evaluated for a single observational
data type. Dotty plots project the goodness of fit response
surface onto individual parameter dimensions with each dot
representing one run of the model with friction parameter
values chosen randomly by uniform sampling across the
ranges of each parameter.

Figure 2 shows dotty plots of objective function (2a—i)
and generalised likelihood (2j—r) values using the
Heteroscedastic Maximum Likelihood Estimator as the
criterion of model performance evaluated for the available
hydrometric observations. It can be seen that as model
performance or goodness of fit to the available observational
data increases, the value of the objective function and
corresponding likelihood decreases and increases
respectively. For predictions of stage at the internal gauges,
parameter sensitivity is well-defined and dominated by
channel friction values assigned to the reach upstream of
the respective gauge. This localised calibration response is
intuitively reasonable given the assumptions and structure
of the LISFLOOD-FP model. By using a kinematic wave
approximation to represent channel flow, dynamic effects
arising from varying parameter specification in this region
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Fig. 2. Dotty plots of objective function (2a—i) and generalised likelihood (2j—r) values using the Heteroscedastic Maximum Likelihood
Estimator as the criterion of model performance.
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may only propagate downstream unless they are explicitly
linked to upstream areas by adjacent near-channel floodplain
topography. Furthermore, the well-constrained nature of
these distributions increases the temptation to (attempt to)
identify ‘optimum’ parameter values for each calibration
parameter. However, it is well-documented that this optimum
will be non-stationary when evaluated on alternative
measures and data sets (e.g. Gupta et al., 1998). For the
discharge evaluations at Maaseik, it can generally be seen
that for each parameter there are good simulations across
the whole range of feasible values. The apparent increase
in sensitivity to parameter values specified for the upstream
and midsection reaches reflects their greater length within
the model domain. It is thus reasonable to expect that the
evaluation of internal predictions of stage and, to a lesser
degree, the external predictions of discharge should offer
considerable potential for reducing uncertainty over
effective parameter specification.

As well as weighting each parameter set according to the
generalised likelihood measures developed above, it is also
possible to construct prediction quantiles by applying each
generalised likelihood weight to model-predicted variables.
This allows the uncertainty in continuous time-evolving
predictions (e.g. hydrometric variables) to be visualised by
the construction of a cumulative generalised likelihood
distribution at each model timestep. Thus the dynamic
behaviour of parameter uncertainty and its manifestation in
the simulated variables can be assessed.

In keeping with the subjective nature of the GLUE
procedure adopted so far, rather than attempting to define
probabilities, relative confidence measures (RCM) for model
predicted variables are derived. These express belief that a
prediction is a true representation of the system behaviour
for the single model structure used, but do not express any
measure of confidence in that model over competing
structures. These relative confidence measures can be
expressed analogously to cumulative probabilities:

RCM (Q < q):ﬁ L [(G)j) | (Qj,t < q)] (10)

where éj,t is the variable of interest predicted b}: the j*
Monte Carlo sample. Prediction quantiles, RCM (Q, < q),
obtained in this way are thus conditioned on inputs to model,
the model responses for the particular sample of parameter
sets used, the subjective choice of generalised likelihood
measure and the observations used in the calculation of the
likelihood measure (Beven, 2001). In Fig. 3, the 5 and 95%
quantiles are considered, resulting in a 90% uncertainty
‘envelope’. The uncertainty for each gauge is then evaluated
using the HMLE measure to compare predictions and

observations at that gauge.

Figure 3 shows these quantiles, along with the
observations of stage at Elsloo and Grevenbicht (internal
gauges) and discharge at Maaseik (downstream boundary
of the reach). The most striking feature is the difference in
uncertainty between the stage and discharge measurements.
This is a result of the model structure and calibration process:
different friction coefficients will produce different predicted
water levels but with approximately the same downstream
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Fig. 3. Prediction bounds for (3a) stage at Elsloo; (3b) stage at
Grevenbicht; and (3c) discharge at Maaseik after conditioning on
respective hydrometric observations only.
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discharge. This effect is exacerbated by the dynamic
behaviour of the reach and hydrograph, as the reach response
time is short compared to the duration of the flood event.
Thus the model behaviour could be approximated by a series
of steady states, and the downstream hydrograph is affected
little by the friction parameterisation. That the uncertainty
envelope does not always bracket the observations at
Grevenbicht may be a result of the model failing to represent
adequately the complex flow dynamics (e.g. backwater or
inertial effects) associated with the wide, shallow floodplain
at this point. Alternatively, this may indicate that some of
the subjective choices made during the GLUE procedure
are inadequate and need to be reconsidered. At Elsloo, in
contrast, floodplain flow is well constrained and the bulk
flow behaviour is more easily represented by the simple
dynamics of the model. The relationship between the
quantiles and the observed stages also changes throughout
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Fig. 4. Dotty plots of objective function (4a—c) and generalised
likelihood (4d—f) values using the g (2 performance measure to

compare model predictions of inundation extent with the shoreline
derived from satellite radar data.
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the flood event. At peak flow, the observed data lie
approximately midway between the quantiles, whereas on
the receding limb, especially for the Grevenbicht gauge,
the observations lie toward the 95th percentile. Model
response to the calibration process is thus different for high
and low flows.

The use of inundation extent observations to calibrate
model performance is explored in Figs. 4 and 5. In Fig. 4, it
can be seen that for the upstream section of the reach the
flood was essentially a ‘valley-filling’ event — i.e. once the
valley is filled any value of » will produce acceptable results
when compared with the binary pattern data. For the mid-
and downstream reaches, there is a steady decrease in
performance as Manning’s » increases. This is a result of
the generalised likelihood measure penalising over-
prediction in regions where the flood is not bounded by
steep slopes or defence structures. The combination of the
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Fig. 5. Dotty plots of objective function (5a—c) and generalised

likelihood (5d—f) values using the F'® performance measure to
compare model predictions of inundation extent with the shoreline
derived from air photo data. The predominant sensitivity to
variations in friction value assigned to the upstream reach is
reasonable given the spatial extent of the observational data.
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generalised likelihood measure with the SAR inundation
extent data is, however, relatively insensitive to changes in
Manning’s n, and potentially there will be only a small
reduction in parameter uncertainty from calibrating with
these data and objective function. Figure 5 shows model
response when calibrated against air photo flood extent data,
with a marked difference when compared to calibration with
the SAR data, despite the same generalised likelihood
measure being used. The upstream Manning’s » value is
well constrained, with a clearly defined optimum around
0.032 m'?s, and the drop in performance apparent as
Manning’s » increases from this value is not apparent in the
far noisier SAR data. The mid- and downstream reaches
show no sensitivity to Manning’s » as the air photo data
does not extend this far down the reach. These two figures
show that model response to the calibration process depends
not only on the choice of generalised likelihood measure,
but also on the errors in the data set: the much higher quality
air photo flood extent has given a more clearly defined
calibration response than the noisy SAR data.

To unearth the spatial uncertainty in model predictions,
the uncertainty in the two-dimensional binary inundation
field must be visualised. Here, too, a relative confidence
measure is derived which expresses belief that a given pixel
will be flooded, given the uncertainty in model parameters.
This is done by taking the flood state as predicted by the
model for each pixel for each realisation and weighting it
according to the measure of fit F? to give a RCM of
flooding for each pixel i, RCM iﬂ°°d :

NR
Z f F<2>(®j’Y)
RCMiﬂood _ =1

Y F(e,.Y)
j=1

where /' takes a value of 1 for a flooded pixel and is zero
otherwise and F * (G) j ,Y) is the global performance measure
for model realisation h:j and data set Y. RCM " will assume
a value of 1 for pixels that are predicted as flooded in all
simulations and 0 for pixels always predicted as dry, as the
generalised likelihoods are renormalised to sum to unity.
Model uncertainty will manifest itself as a region of pixels
with intermediate values, maximum uncertainty being
indicated by pixels with RCM " ~0.5. Such a
RCM " map is shown in Fig. 6 for models calibrated
against the SAR and air photo data, along with the respective
inundation shoreline. It is evident that variations in
RCM ™ follow the microtopography and paleo-features
of the floodplain to be identified as these are inundated in
some cases depending on the value of Manning’s # specified
for a particular reach. Thus RCM if'°°d exhibits a high degree
of spatial heterogeneity and the calibration process has

an

generated a continuous gradient from regions of RCM iﬂoc’d =
1 (e.g. channel) to RCM "™ = 0 (e.g. high ground).
Furthermore, the localised model response is clearly
demonstrated by the RCM iﬂ°°d evaluated on the air photo
observation, which shows a marked increase in uncertainty
away from the conditioning observation.

Figure 7 shows the objective function and generalised
likelihood for model predictions when compared with point
maximum free surface elevation data. Model response is
seen to lie somewhere between the responses for SAR and
air photo data. An optimum for the upstream Manning’s »
is broadly identifiable in the same region of the parameter
space as for the air photo data. This model response is mostly
reconcilable with the response for the air photo data, as both
are essentially comparing water surface elevations, and the
results are replicated for the mid- and downstream reaches
of the model.

The effectiveness with which each data source or
combination of data sources constrains the parameter sets
can be assessed by quantifying the uncertainty in these
weighted parameters, for example by treating them as a
probability distribution. One measure of the uncertainty in
a distribution is the Shannon entropy, defined in this case
by:

NR
H=-YL(®,1Y) log,L(®,|Y) (12)
j=1

where j is the model realisation index and NR represents
the total number of model realisations (i.e. 500). This can
be used to quantify the spread in a distribution, irrespective
of its form (e.g. multimodal). The variance of a distribution
can also be used to quantify uncertainty, which may give
good results for unimodal distributions. The Shannon
entropy for parameter distributions calibrated against the
various data sets available is given in Table 3. Although the
absolute differences between the entropy values are small,
the relative differences reflect the differences in model
calibrations observed above. For example, the parameter
distribution entropy for the internal stage gauges is lower
than for the downstream discharge, showing that the stage
data have constrained the friction parameters more
effectively. The entropy values can also be divided broadly
into two classes: accurate stage measurements or their
derivatives (from internal gauges or air photo data), with H
<= 8.9, and the other data (SAR and downstream discharge).

The previous discussion has been limited to calibrations
using a single set of observations. Attention is now turned
to combining two or more data sets in the updating process
of Eqn. 9. The methodology for the updating process
implemented in this study is outlined in Table 4. A prior
uniform distribution is conditioned firstly against data from
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Table 3. Shannon entropy measure, H, based on the individual
performance measures evaluated against available observational
data sources. H is a maximum (= log, NR ~ 8.966) for the case of
the uniform prior distribution.

Observational data Shannon entropy

measure, H
Stage at internal gauge 1, Elsloo 8.871
Stage at internal gauge 2, Grevenbicht 8.900
Discharge at downstream boundary, Maaseik 8.921
Satellite radar-derived inundation shoreline 8.935
Air photo-derived inundation shoreline 8.890
Maximum free surface elevation survey 8.887

the internal gauge at Elsloo, then updated by the Grevenbicht
and finally by the Maaseik data. The updating process thus
uses data moving sequentially down the reach. Figure 8
shows the results of this updating procedure in the form of
histograms of the resulting parameter distributions. The first
conditioning data set (Elsloo stage) affects only the upstream
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0.0

Fig. 6. Relative confidence map of predicted inundation,

RCM ", using the F ) performance measure for (6a)

the full Monte Carlo ensemble conditioned on the
satellite radar data and (6b) the air photo data. A
contiguous flood shoreline can be extracted from each
observational data source and is also shown.
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Fig. 7. Dotty plots of objective function (7a—c) and generalised
likelihood (7d—f) values using the sum of absolute errors to compare
grid-scale model predictions with point maximum free surface
elevation data surveyed along the floodplain. As goodness of fit to
the available observational data increases, the value of the objective
Sunction and corresponding generalised likelihood decreases and
increases respectively.
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Table 4. Combination sequence of generalised likelihood measures associated with individual evaluations of observational hydrometric
data calculated using the form of Bayes equation expressed in Eqn. 9.

Prior generalised likelihood, L (O)

Current evaluation given observational data, Y  Posterior generalised likelihood, L[)(Q | Y)

Uniform prior distribution
LQIY)
LQIY,))

Stage at internal gauge 1, Elsloo LP(Q [Y)
Stage at internal gauge 2, Grevenbicht LP(Q Y, ,)
Discharge at downstream boundary, Maaseik LP(Q 1Y,

Manning’s n significantly, the other distributions remaining
largely uniform. This is a further example of the model’s
localised response to friction coefficients. Updating with
the Grevenbicht data serves to reduce uncertainty in the mid-
section Manning’s », but does not significantly affect the
other parameters, apart from adding some noise. The
addition of the Maaseik discharge data further reduces
uncertainty for the upstream and mid-section, especially for

the tails at high Manning’s » values.

Generalised likelihoods previously evaluated for each
source of observation data are then combined according to
their generally prevailing availability for inundation model
evaluation. For example, hydrometric data would be
expected to be more commonly available for model
calibration than SAR data, with air photo and ground-
surveyed water elevations rarer still. The value of each data
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Fig. 8. A posteriori parameter distributions (PPD) of selected LISFLOOD-FP parameters after conditioning on hydrometric observations
evaluated using the Heteroscedastic Maximum Likelihood Estimator as the criterion of model performance. Figures S8a—c correspond to
parameters conditioned on stage data recorded at internal gauge 1, Elsloo, only, 8d—f correspond to parameters conditioned on a combination
of individual evaluations of model predictions of stage at Elsloo and internal gauge 2, Grevenbicht; and 8g—i to parameters conditioned on all
available hydrometric observations (i.e. combination of individual evaluations of stage at the two internal gauges and discharge at Maaseik).
The resulting distribution values are plotted as bars (remembering that the initial population was uniformly distributed).
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Table 5. Combination sequence of generalised likelihood measures associated with individual evaluations of all available observational

data calculated using the form of Bayes equation expressed in Eqn. 9.

Combination Prior generalised likelihood,

Current evaluation given observational

Posterior generalised likelihood,

L(©) data Y L@©]Y)
1 Uniform prior distribution LP(G) | Y, , ;) (combined hydrometric Lp(G) | Y Hy M)
generalised likelihood)
2 LQ | Yisd) Satellite radar-derived inundation shoreline L(® | Y a sar)
3 LP(Q |Y Hyd. § ) Air photo-derived inundation shoreline Lp(G) |Y Hyd, SAR, A
4 L(Q | Y i sar_air) Maximum free surface elevation survey L(® | Y ia sar air 7sz7)

source at each stage of the updating process is considered
in terms of: (1) conditioning the a posteriori parameter
distributions (PPD) and the subsequent reduction in variance
(i.e. increase in parameter identifiability) of these updated
distributions; and (2) global uncertainty reduction according
to the Shannon entropy measure. The combination sequence
is described in Table 5.

Figure 9 shows the development of the a posteriori
parameter distributions and reduction in variance at each
stage of the updating process. The results show that the
addition of SAR data to the distribution already conditioned
against hydrometric observations only affects the upstream
friction, and then only slightly. The addition of air photo
data reduces uncertainty in the upstream Manning’s »
further, considerably more than the SAR data. The effect of
the air photo data on the other friction coefficients is
minimal, as would be expected given the model’s evident
localised response and the air photo coverage, which is
limited to the upstream third of the reach. Inclusion of the
surveyed water surface elevations further reduces
uncertainty in all three Manning’s # distributions, reflecting
the global nature of the data. Again, it appears that accurate
water surface elevations or their surrogates are more
effective in reducing parameter uncertainty. Figure 10 shows
the reduction in global Shannon entropy as a result of this
process, which again reflects the varying worth of the
observed data. Comparison of the plots in Figs. 9 and 10
show that the reduction in variance is not reflected well in
the reduction in Shannon entropy, and in this case the
Shannon entropy is not a particularly sensitive measure of
the reduced parameter uncertainty evident in the parameter
distributions.

Conclusions

This paper has sought to develop methods for assessing the
relative utility of different observational data types for the
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calibration of distributed floodplain inundation models. For
a 35-km reach of the River Meuse below the gauging station
at Borgharen a benchmark data set for the 1995 flood event
was assembled consisting of hydrometric data at the model
boundaries and two internal measurement points, air photo
and SAR images of flood extent and a post-event survey of
84 maximum water levels. Appropriate generalised
likelihood measures were constructed for each data set and
evaluated for 500 realisations of a simple two-dimensional
hydraulic model, LISFLOOD-FP. The realisations differed
in terms of the friction values assigned to each of three
channel sub-reaches to give a three-dimensional parameter
space. Channel friction values were sampled uniformly
within this space and floodplain friction values were held
constant. Comparison and combination of the various
generalised likelihood measures were then conducted to
quantify (1) the uncertainties associated with the simulation
of various distributed hydraulic variables and (2) the
reduction in uncertainty over effective parameter
specification afforded by particular data sources and
combinations of data sources.

The preceding discussion has highlighted a number of
important points. First, whilst previous studies have
highlighted the utility of flood extent data in constraining
model predictions (e.g. Bates and De Roo, 2000), this paper
has shown that the evaluation of internal predictions of stage
also offer considerable potential for reducing uncertainty
over effective parameter specification. The air photo data
has similar properties as it provides an effective surrogate
measure of water surface elevation when combined with an
accurate DEM. Discharge data, on the other hand, is much
less effective because of the essentially mass conservative
nature of the model and the flow dynamics of this particular
event.

Second, the analysis has shown that model response to
the calibration process is different for high and low flows,
thereby lending support to the conclusions of Romanowicz
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Fig. 9. A posteriori parameter distributions (9a—1) of selected LISFLOOD-FP parameters after conditioning on a combination of individual
evaluations of all available observational data. Individual model performance measures have been combined using a form of the Bayes
equation (Eqn. 9) according to the sequence in Table 4. The reduction in variance from an initial uniform distribution (Combination 0) at each
stage in the process of parameter conditioning is shown in Fig. 9m. In this instance, variance may be used as an indice of parameter
uncertainty reduction because PPDs are unimodal throughout.
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Fig. 10. Change in Shannon Entropy measure, H, based on the a
posteriori generalised likelihoods for the sequence of combining
individual performance measures in Table 4. H is a maximum (=
log, NR & 8.966) when all the realisations are equally likely (the
case for a uniform prior distribution, Combination 0) and a
minimum of 0 when one single realisation has a generalised
likelihood of 1 and all others have a generalised likelihood of zero
(Beven and Binley, 1992).

and Beven (2003) who found marked differences in effective
friction parameters for events of different magnitude. Here,
it has been demonstrated that a similar effect can occur on
an intra- as well as an inter-event scale. However, the present
study also demonstrates that model response to the
calibration process depends not only on the (subjective)
choice of generalised likelihood measure, but also on the
errors in data used, with, for example, the air photo data
being much more effective than the coincident SAR image
in discriminating between parameter sets. This somewhat
contradicts the results of Horritt and Bates (2002) who found
no difference in ability to constrain uncertainty in
LISFLODD-FP between SAR flood extent images of
markedly different quality. This may relate to the manner in
which the SAR data were processed for this application and
the breakdown of the snake algorithm for urban areas on
the floodplain in this case. Differing response to data may
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also be considered an example of model overfitting to
uncertain data and highlights the need not to treat
observations as if they were error-free. This compares with
the study of Horritt and Bates (2002) where errors in the
observations were taken into account in an uncertain
classification procedure that led to more consistent results
between data sets with different accuracies.

Third, the localised model response is clearly
demonstrated by the RCM " maps, which show a marked
increase in uncertainty away from the conditioning
observation. Such behaviour is likely typical of distributed
models and reinforces the need to map uncertainties back
into real space in order to understand this spatial response
(c.f. Aronica et al., 2002).

Lastly, analysis of the ability of different data
combinations to reduce the entropy of the simulation
ensemble reflects the properties of the calibration process
discussed above, although the Shannon entropy is not found
to be a particularly sensitive measure in this instance. An
updating process using increasing amounts of information
has been shown here to lead to a monotonic decrease in
parameter uncertainty, although in many environmental
applications this may not be the case due to irreconcilable
differences between data sets. Data consistency here stems
from the fact that all observations are of water level or
approximations to water level, such as flood extent (a strong
surrogate) and discharge (a weak surrogate).

The steady decrease in parameter uncertainty also results
from the choice of generalised likelihood measures, which
give a large proportion of simulations with high generalised
likelihood values. This would not be the case if arbitrary
rejection criteria (e.g. a thresholding of a continuous
numerical performance measure to reject ‘unphysical’
simulations) or more discriminatory objective functions
were used. Such a process might lead to decreased parameter
uncertainty for a single observed data set, but lead to
parameter distributions so constrained as to be incompatible
between data sets. Rejection criteria may be used in some
cases to reduce parameter uncertainty, but this approach
would require careful application and justification, for
example by adopting physically meaningful criteria for
rejection. Put another way, in this study consistency of the
data sets has been ensured by rejecting the rejection
approach.

Future research in this area should examine the
significance of rejection in models conditioned in an
uncertainty analysis framework to define criteria that are
physically sensible and allow the combination of multiple
data sets in a consistent fashion. Additional studies could
also examine the significance of subjective assumptions
made in applying the GLUE method to environmental
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problems. In particular, this should examine the importance
of initial parameter ranges in cases, such as river inundation,
which are more linear than those typically found in rainfall—
runoff modelling for which the GLUE methodology was
originally developed.
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