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Abstract

The flow forecasting performance of eight updating models, incorporated in the Galway River Flow Modelling and Forecasting System
(GFMFS), was assessed using daily data (rainfall, evaporation and discharge) of the Irish Brosna catchment (1207 km?), considering their
one to six days lead-time discharge forecasts. The Perfect Forecast of Input over the Forecast Lead-time scenario was adopted, where
required, in place of actual rainfall forecasts. The eight updating models were: (i) the standard linear Auto-Regressive (AR) model, applied
to the forecast errors (residuals) of a simulation (non-updating) rainfall-runoff model; (ii) the Neural Network Updating (NNU) model, also
using such residuals as input; (iii) the Linear Transfer Function (LTF) model, applied to the simulated and the recently observed discharges;
(iv) the Non-linear Auto-Regressive eXogenous-Input Model (NARXM), also a neural network-type structure, but having wide options of
using recently observed values of one or more of the three data series, together with non-updated simulated outflows, as inputs; (v) the
Parametric Simple Linear Model (PSLM), of LTF-type, using recent rainfall and observed discharge data; (vi) the Parametric Linear perturbation
Model (PLPM), also of LTF-type, using recent rainfall and observed discharge data, (vii) n-AR, an AR model applied to the observed
discharge series only, as a naive updating model; and (viii) n-NARXM, a naive form of the NARXM, using only the observed discharge data,
excluding exogenous inputs. The five GFMFS simulation (non-updating) models used were the non-parametric and parametric forms of the
Simple Linear Model and of the Linear Perturbation Model, the Linearly-Varying Gain Factor Model, the Artificial Neural Network Model,
and the conceptual Soil Moisture Accounting and Routing (SMAR) model. As the SMAR model performance was found to be the best among
these models, in terms of the Nash-Sutcliffe R? value, both in calibration and in verification, the simulated outflows of this model only were
selected for the subsequent exercise of producing updated discharge forecasts. All the eight forms of updating models for producing lead-
time discharge forecasts were found to be capable of producing relatively good lead-1 (1-day ahead) forecasts, with R’ values almost 90% or
above. However, for higher lead time forecasts, only three updating models, viz., NARXM, LTF, and NNU, were found to be suitable, with
lead-6 values of R’ about 90% or higher. Graphical comparisons were made of the lead-time forecasts for the two largest floods, one in the
calibration period and the other in the verification period.

Keywords: forecast updating, autoregressive model, linear transfer function, neural networks

clearly dependent on the quality of the quantitative

Introduction and objective of the
study

The main purpose of river flow forecasting systems is the
forecasting of flood magnitudes in real time so as to give
timely warning to the water management authorities and
other end-users of an impending flood at a particular location
or to estimate the progress of a flood wave in a critical or
‘high-alert’ scenario. The lead-times of such forecasts
generally vary from six hours to six days or more, depending
on catchment size, etc. Apart from the hydrological
modelling considerations, the accuracy of such forecasts is
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precipitation forecasts (OPFs) available which, for lead
times of more than a few days, drops off quite rapidly. Time
series analysis techniques applied for precipitation
forecasting can be disappointing, particularly for the daily
time step, but in the hourly time step case when coupled
with a rainfall-runoff model which is itself coupled to a
discharge error forecasting model, it can provide real
improvement in the forecasts (Brath et al., 2002). In their
study, univariate time series models, both linear (ARMA)
and non-linear (Neural Networks and Nearest Neighbour)
models were used to improve the forecasts of a conceptual
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model, both for OPF estimation and for discharge updating.
Hence meteorologists hold a vital key to successful river
flow forecasting and real progress in such forecasting
depends on the degree to which meteorologists become full
and equal partners in the development of flow forecasting
systems. Apart from flood forecasting, such flow forecasting
systems, when operating in non-updating (simulation) mode,
(using the exogenous inputs of precipitation and possibly
also the recent outputs generated by the model but excluding
the use of the recently observed discharges as model inputs),
are of use in the day-to-day monitoring, operation, control,
and management of water resource projects and hydraulic
structures. In contrast to the ‘Rainfall to Runoff’
transformation models which operate without forecast
updating, in ‘simulation (i.e. design) 'mode, real-time flood
forecasting models and procedures attempt to compensate
for the deficiency in matching the simulation mode
hydrograph to the corresponding observed hydrograph. This
is achieved by utilising additional input information from
the most recently measured discharges. The quantities that
may be updated are the discharge, the parameters, the state
variables, or the input (WMO, 1992). Only discharge
updating is considered in this study.

Designing a river flow forecasting system involves:
understanding the behaviour of the catchment response to
rainfall, devising or selecting a suitable rainfall-runoff
model, incorporating meteorological forecast information
for use in real-time flow forecasting, and producing regular
reliable forecasts, over the required range of lead-times, at
the necessary time intervals. A rainfall-runoff model can
be selected from any of the three broad categories (see
O’Connell, 1991), viz, empirical metric or ‘black-box’
models, ‘conceptual’ quasi-physical models, and grid (or
pixel)-type ‘distributed physical-process’ models. Wheater
et al. (1993) emphasised hybrid metric-conceptual (HMC)
models as a separate model category, and Young (2002)
showed that transfer-function-type models can efficiently
characterise the relations between the rainfall-runoff data.
Statistically, such data are amenable to simple conceptual
interpretation (as HMC models), and are also ideal for
incorporation in a real-time adaptive forecasting system
based on recursive state-space estimation having the form
of an adaptive Kalman filter. Whether on-line recalibration
of hydrological model parameters at each time step is
warranted is debatable (WMO. 1992). Other types of hybrid
models such as the HL-RMS, developed by the US National
Weather Service (Koren ef al., 2003, 2004), attempt to bridge
the divide between the distributed physically-based and the
lumped conceptual model. Combining these two approaches,
transforms a good conceptual model into something more
akin to a physically-based model, in the sense that its

parameters can be estimated from physical properties rather
than by calibration. Similarly, the new distributed hybrid
TOPKAPI rainfall-runoff model (Ciarapica and Todini,
2002; Liu and Todini, 2002), which evolved from
consideration of the conceptual Xinanjiang-ARNO model
and the ‘physically-conceived” TOPMODEL, “appears to
be a promising tool worthy of further investigation”.

Depending on the model structure, a discharge forecast
updating facility may be an integral part of the model, as in
a simple linear transfer function model (e.g. the PSLM and
PLPM models), but it is more often an ‘add-on’ component
that is operated in sequence or in parallel with the substantive
model and calibrated separately. While both of these
updating approaches are represented in the present study,
the emphasis here is on discharge forecast updating as a
separate issue to that of modelling the rainfall-runoff relation
(with no consideration of recursive parameter updating or
of state updating by Kalman filter, etc.) and on the
comparison of the performances of all of the eight updating
procedures now incorporated in the Galway River Flow
Modelling and Forecasting System (GFMFS), as the
forecast lead time is increased.

Lying at the bottom of the scientific scale, the empirical
input-output ‘black-box’ (system/theoretic, or metric)
models, generally ‘Tumped’ or ‘semi-lumped’, simply
attempt to relate precipitation input to stream flow as output,
with little or no regard to the individual hydrological
processes involved. It is largely an exercise in pattern
recognition, selection of a structure to mimic the essentials
of the pattern and curve fitting or calibration of the model.
Neural networks are examples of versatile (but not
parsimonious) ‘black-box’ models.

The physically-inspired ‘conceptual’ models, on the other
hand, usually lumped but also amenable for use in ‘semi-
lumped’ and in ‘semi-distributed’ form, attempt to simulate
the perceived dominant hydrological mechanisms of the
catchment response to rainfall, e.g. interception,
evapotranspiration, infiltration, snowmelt, and both
groundwater and surface water flow routing, perhaps
including interflow, etc., using simple prescribed physically-
plausible empirical and heuristic mathematical relations for
each mechanism represented.

In contrast, the more sophisticated distributed physically-
based models which, by definition, are ‘distributed’ both as
regards inputs and hydrological processes, are based
explicitly on current understanding of the physics of the
hydrological processes involved in the generation of run-
off and on accounting for the areal distribution, not only of
the rainfall but also of hydrological mechanisms and
variables such as storage. While the ‘bottom-up’ distributed
physically-based models are undoubtedly far more scientific
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than the other three ‘top-down’ model types (including the
HCM models), and have dominated modelling research for
more than a decade now, their application in operational
river flow forecasting systems is not yet widespread. This
is partly due to their inherent complexity, substantial
software and training costs, extensive data demands and still
unresolved problems of scale in applying the physical laws
for point processes to the grid elements or pixels of a digital
elevation model. However, it is also due to a lingering
perception among operational flood forecasters and some
researchers that the river flow forecasts produced by such
complex ‘bottom-up’ models are not necessarily superior
to those of simpler, more primitive top-down’ models and
they can indeed be worse (Michaud and Sorooshian, 1994;
Seyfried and Wilcox, 1995; Woolhiser, 1996; Ye et al., 1997;
Smith et al., 2003; Reed et al., 2004). However, both camps
have their enthusiastic supporters.

Evidence of recent substantial progress in distributed
modelling is the emergence of the spatially distributed water
balance model (LISFLOOD), the multi-purpose modelling
tool that has been developed explicitly for the simulation of
floods in large European drainage basins. It is an element
ofthe ambitious European Flood Forecasting System (EFFS)
Project (2000-2003), funded by the EC-Fifth Framework
Programme, which has the objective of combining state-of-
the-art expertise in meteorology and hydrology on a
European scale, the ultimate aim being to issue a 10-day
pre-warning of floods. While there is general agreement that
real and sustained progress is being made in distributed
modelling (Ciarapica and Todini, 2002; Liu and Todini,
2002; Koren et al., 2003), there is still a lack of consensus
on the final outcome of such efforts, scale and parameter
estimation still being identified as the biggest hurdles to
overcome in distributed modelling (Koren et al., 2004). No
‘distributed physically-based’ models are used in this study,
but some of the updating procedures considered could be
used just as effectively with such models as with those
lacking in scientific pedigree. While the ‘black-box’ lineage
of these relatively simple updating procedures might well
render them anathema to developers of ‘physically-based’
models, operational forecasters might well adopt a more
pragmatic and less fundamentalist approach!

Apart from naive flow forecasting models of the time-
series variety, based solely on the observed discharge series,
updating information may be incorporated in a ‘real-time
flood forecasting system’ in one of three broad categories:

(i) the rainfall-runoff model is first calibrated and run in
simulation mode and subsequently estimated
corrections, based on a separately calibrated empirical
time-series model of previously observed forecast
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errors, or of the corresponding simulated and observed
discharges, are applied to the simulation mode output
forecast;

(ii) the rainfall-runoff model and the corresponding ‘error
correction’ or updating component are calibrated
simultaneously, offline, using previously observed data,
and both are applied simultaneously, in an integrated
manner, for real time forecasting, and

(iii) an adaptive modelling structure is applied, whereby the
model parameters and/or states are updated recursively,
perhaps even at each time step, e.g. by recursive least-
squares (RLS), the instrumental variable method (Young
1974; 1984; Young and Jakeman, 1979), or automatic
updating through the use of an extended Kalman filter
that provides the capability for real-time probabilistic
forecasts of flood occurrence and flood magnitude
(Georgakakos, 1986), a recent example of which, in the
context of transfer-function-type models, is the ‘state
estimation’ form applied by Young (2002) as a state
estimation and data assimilation device.

Only the first two of the three categories listed above,
however, are represented in this study of updating flow
forecast procedures.

The specific objective of the present study is to evaluate
the flow forecast performance of the eight updating models
and procedures that have been incorporated in the GFMFS
(O’Connor et al., 2001; Goswami et al., 2002a,b) and to
compare their resulting forecast efficiencies in lead-time
forecasting in the context of an Irish catchment, for lead-
times of one to six days. As the chosen updating models
encompass a reasonably wide range of procedures, from
simple Auto-Regressive models to the more complex Neural
Networks, other well-known updating procedures or models,
albeit more sophisticated and statistically superior (e.g.
Young, 1974, 1984), were not included. Such a comparative
study has been carried out for the River Brosna catchment
in Ireland, for the Ferbane gauging station, (at which the
contributing catchment area is 1207 km?), using daily
rainfall, evaporation and discharge data, for the period 1996
to 2001 inclusive.

The GFMFS software package used in
the study

The GFMFS is a Windows-based software package, recently
developed in the Department of Engineering Hydrology,
National University of Ireland, Galway, having evolved from
a series of seven International Workshops on River Flow
Forecasting, held in Galway between 1985 and 1997.
Extended for this study, it now comprises a suite of models
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for simulation, updating and real-time flow forecasting
application, for lead-times of 1 to 6 days. Although reliable
quantitative precipitation forecasts (QPFs) of more than a
few days ahead are not currently available, discharge
forecasts of up to six days ahead are used in this study for
the purpose of discriminating between the effectiveness of
the updating models, using actual rainfall data rather than
QPFs as input, as explained below.

The application of these models in real-time forecasting
mode, in common with other hydrological forecasting
models, requires knowledge (or at least the best possible
estimates available) of the input values over the lead-time
of the discharge forecast. In the present work, as in other
heuristic hydrological research studies (e.g. WMO, 1992;
Kachroo and Liang, 1992), where the models are tested on
the historical data but mimic the ‘real-time’ operational
mode, the ‘perfect input foresight over the lead-time of the
output forecast’ scenario is used as an operational input
scenario. The adoption of this ‘ideal’ input scenario, apart
from the simplification it introduces, at least eliminates those
errors and uncertainties introduced by imperfect knowledge
of the input variables over the forecast lead-time, i.e. the
deficiencies in the QPFs of the precipitation forecasting
model, so that the intercomparison of the discharge updating
models is unaffected by complications arising from the
efficiency or otherwise of that QPF model. Thus, while the
form of updating considered in this study is ‘pseudo-real-
time’, rather than ‘real-time’, the updating models can
equally well be applied in the ‘real-time’ updating scenario
but with a much lower forecasting efficiency for the higher
forecast lead-times.To assess (and distinguish between) the
performance of the eight updating models, it is necessary to
use forecast lead-times of up to six days.

The GFMFS reflects a small fraction of the modelling
efforts of the Galway International Postgraduate Hydrology
Courses (now sadly terminated). It incorporates five of the
simpler rainfall-runoff models routinely used in Galway
(four system/theoretic ‘black-box’ and one ‘conceptual’) to
be run in simulation (non-updating) mode and eight models
(including two naive models) to be run in updating mode.
The GFMEFS is also capable of combining either non-
updated or updated flow forecasts by the methods of simple
average (SAM), weighted average (WAM) and artificial
neural network (ANN), to produce ‘consensus’ forecasts
(Shamseldin ef al., 1997). Descriptions of the models and
combination techniques incorporated in the GFMFS are
widely available, e.g. in O’Connell ef al. (1970); Nash and
Foley (1982); Nash and Barsi (1983); Khan (1986); Kachroo
et al. (1988); Kachroo (1992, a, b); Liang (1992); Ahsan
and O’Connor (1994); Liang et al. (1994); Zhang et al.
(1994); Tan and O’Connor (1996); Shamseldin (1997);

Shamseldin et al. (1997); Xiong et al. (2001). Brief
descriptions of these simulation (non-updating) models are
given in the Appendix.

The forecast updating models

Eight forecast-updating models were applied in this study.
Persistence (e.g. a tendency for high values to follow high
values, as displayed by its sample autocorrelation function)
is a recognised characteristic of observed discharge series.
This arises primarily from the storage effects of the system
but also from some degree of persistence in the exogenous
system inputs such as rainfall. Seasonal influences and, to a
lesser extent, some element of long-term trend due to
changes in agricultural practices, climate change,
urbanisation, etc. may also be present in the discharge series.
Likewise, persistence in the values of model output residuals
(i.e. model forecast errors) of both conceptual and black-
box models is also common. In the case of a model-error
series, rendered stationary if necessary by differencing or
some other transformation, persistence is taken to be an
indication that not all of the deterministic nature of the input-
to-output relation was captured by the model, as otherwise
the errors might be expected to consist of pure ‘white noise’
rather than being ‘coloured’ by a persistence structure.
Therefore, in operational real-time forecasting, modellers
conventionally attempt to exploit such persistence by using
a univariate error-forecasting model designed to estimate
the errors likely to occur in the immediate future, i.e. over
the next few time steps. These error forecasts are then added
as a correction to the corresponding forecasts of the
substantive model to provide the updated forecasts. Such
coupling of a substantive model with its corrective error-
forecasting model is perhaps the most widely used forecast
updating procedure but there are other forecasting options,
some of which are ‘causal’ (i.e. involving one or more
exogenous input variables) rather than ‘univariate’ in
approach.

Whereas persistence in the error series of a rainfall-runoff
model can be used to advantage in forecast updating,
heteroscedasticity in the time-series of errors (i.e. variability
in the variance), which is also a recognised characteristic of
such series, is an unwelcome complication in least-squares
estimation. However, the assumption of homogeneity of
variance, i.e. homoscedasticity, greatly simplifies
mathematical and computational treatment and may lead to
good (but admittedly statistically inferior) estimation results
even if the assumption is not true. In the updating procedures
applied in this study, heteroscedasticity in the time-series
of errors was not taken into account.

The updating procedures applied in this study, using the
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Brosna data, were:

(i) the standard linear Auto-Regressive (AR) model, applied
to the residuals obtained after applying a substantive
simulation (non-updating) rainfall-runoff model to the
catchment data;

(ii) the Neural Network Updating (NNU) model, also applied
to such residuals as input;

(iii) the Linear Transfer Function (LTF) model, applied to
the simulated and the recently observed discharges;

(iv), the Non-linear Auto-Regressive eXogenous-Input
Model (NARXM), also a neural network-type structure,
but having wide options of using recently observed
values of one or more of the three Brosna data series,
together with the non-updated simulated outflows over
the forecast lead-time, as inputs;

(v) the Parametric Simple Linear Model (PSLM), of the LTF-
type, using recent rainfall and discharge observations;

(vi) the Parametric Linear perturbation Model (PLPM), also
of the LTF-type, using recent rainfall and discharge
observations;

(vii) n-AR, an AR model applied to the observed discharge
series only, as a naive updating model; and

(viii) n-NARXM, a naive form of the NARXM, using only
the observations of discharge, excluding all exogenous
inputs.

These eight forecast updating models clearly fall into the

‘black-box’ category, and all are used for short lead-time

forecasts (of days rather than weeks).

THE AUTO-REGRESSIVE (AR) FORECAST ERROR
ESTIMATION MODEL FOR FORECAST UPDATING
The classic model of the persistence structure of a time series
is the simple linear univariate Auto-Regressive (AR) model.
As the persistence structure of the output of a linear storage
system subjected to a ‘white-noise’ input (which by
definition has no persistence) is identical to the persistence
structure of the unit impulse response of the system, the
objective of AR modelling is to identify an AR model
structure such that the persistence structure of its unit
impulse response series matches, as closely as possible, the
persistence structure of the time series being modelled, as

Simulated
discharge series

Simulation error

y

reflected by its serial autocorrelation function. If such a
model can be identified and its input (obtained by back-
routing the time series through the model) shown by its
correlogram to be essentially ‘white noise’, then the model
can be considered a good approximation of the generating
mechanism of that time series. Mathematically, an AR
process of order p is defined by the equation (Box and
Jenkins, 1976)

€u= é+¢1(e[ _é)+¢2(et—1_é)+ -------- +¢p(e[—p+1_é)+a[+1
(h

in which e, is the model forecast error (or ‘residual’) at time
t, the series having mean g, a, is the value at time # of a pure
‘white noise’ sequence with zero mean and constant
variance, 0%, and the ¢, , for i = [ to p, are the parameters
of the auto-regressive model. The residual e, in the AR
forecast-error updating model (Fig. 1) is defined by
& =Q —Q, for all values of 7. The parameters ¢ of the
AR model are usually estimated by the Yule-Walker (Box
and Jenkins, 1976, pp. 82—84) or more simply by the method
of ordinary least squares (OLS), the former method having
been adopted in the case of the GFMFS.

Having calibrated the AR model, an estimate of the lead-
1 (the ‘one-step-ahead’) forecast &, , made at the forecast
time origin ¢, of the error e, , at time /+/, is given by

é+1/t -€= &1(@ - é)"" &2(@—1 - é)+ -------- + é\p (Q—p+1 - é)
2)

on taking the expectation Efa] = 0. The lead-L forecast
error &, ,,, made from a forecast origin 7, may be obtained
from the following equation:

é+L/t =€+ &1([@&4]_ é)"'éz([@n_fz]_ é)"' -------- +&p([§+up]_é)
(3)

where the square brackets denote the conditional expectation
of the quantity between the brackets.

Having obtained the estimate of the discharge forecast
error for the desired lead time L >1, the updated discharge
forecast for that lead time, for a forecast time origin ¢, is
given by

series

Observed
discharge series

Updated discharge
AR series
Updating
Model Lead-time forecasts

Fig. 1. Schematic diagram of the standard linear Auto-Regressive (AR) updating model
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Quui =QuL +&.1i 4)

where Q. is the corresponding simulation forecast of the
substantive rainfall-runoff model (based on recently
observed inputs and on forecasted inputs over the lead-time
L)and &, , is the estimate of its error.

Thus, having estimated the forecast errors €, , for
specified lead times L using the auto-regressive procedure,
the corresponding updated forecasts of the outflow can be
obtained by applying the errors successively to the
corresponding estimates Q,,, of the outflows for those lead-
times obtained by applying the substantive model. It may
be noted that the forecast values of inflows over the forecast
lead-time L must first be used to obtain these non-updated
QHL estimates. For regular real-time flow forecasting (for
the selected time step), the procedure for issuing the updated
forecasts for the specified lead-times has to be repeated for
each time step, as soon as the newly observed flow value
for that lead-/ becomes available, thereby adding that lead-
1 value to the historical discharge record. This results in
recasting the forecasts for the whole specified range of lead-
times (1, L), at each time-step, i.e. for each successive
forecast origin.

THE LINEAR TRANSFER FUNCTION (LTF) MODEL
FOR FORECAST UPDATING

Recognising that the AR forecast error estimation model of
the last section can be written as

o(B)e -2)- o) (@ -Q)—(Q—é)}m(f)(q —3)—
»(B)Q-Q =2

Peetanonchai (1995), as a generalisation of AR model,
suggested the linear transfer function LTF form

ABIQ-Q)-c(B)&-C)-a ®
for use in forecast updating, in which
A(B)=|-aB-a,B?-...-a B and
C(B)=|c, +¢,B+c,B? +....+chqJ, a concept extended to
real-time ‘consensus’ forecasting by Shamseldin and

O’Connor (1999).
Since AB)Q =[A(B),,xQ and

C(B)Q = [C(B)]lex (j , and recognising that the ‘Gain

Factor’ G of the LTF model has the form G= {@} Q

NB) o &
the LTF updating model defined by Eqn.(5) reduces to the

standard form applied in the GFMFS for this study, i.e.

A(B)Qt = C(B)Qt +a (6)

in which the parameters of the model are estimated by the
method of Ordinary Least Squares (OLS). While the OLS
parameter estimates of the LTF model are expected to be
asymptotically biased, and recursive procedures which
produce unbiased estimates (Ljung and Soderstrom, 1983;
Young, 1984; Norton, 1989) would be better, this problem
was not addressed as it was not considered to be essential
in the context of comparing the lead-time discharge forecasts
of the selected eight updating models, using daily data.
Having calibrated the model, its updated Lead-1 forecast
of the discharge, for a forecast time origin ¢, is given by

QHJI = [l_ A(B)JQ + é(B)QJrlll = [élB+ éZBZ tot épohﬂ+

_+[60+QB+6ZBZ+....+6QB°' » o
B being the backward shift operator, the Lead-2 forecast
being

(jl+2/t = é‘l(jhl/t + éZQ +ot ép(?t—ml + éoéul + é.l(’jt + (’;Q(’jl—l +
= éth + é?Qt—l +ot athf p+l + éoQt+1 + 6’1Qt + éthfl +ot éthfqu
et 8Qqn (®)

and so on. Thus, a linear transfer function model is applied
as a generalisation of the AR forecast error estimation
method of the previous section. Note that the LTF model
collapses back to the AR form if A(B)=C(B)=®(B). A
schematic diagram of an LTF updating model is given in
Fig. 2. Despite their simplicity, AR models are still effective
forecast error estimation tools (Xiong ef al., 2001).

THE NEURAL NETWORK UPDATING (NNU) MODEL

This artificial neural network is applied, in the GFMFS
package, in the context of providing a non-linear function
mapping of a set of inputs (the inputs being the errors of
forecast estimation based on the flow values produced by
the substantive model operating in simulation mode) into
the network output (i.e. the updated lead-time forecast
discharge). However, the specific mathematical form of the
relationship is unspecified, although the network structure
must be pre-configured before training. The structure of the
neural network, as used in updating mode, is similar to that
described in the appendix and shown in Fig. A.3.

THE NON-LINEAR AUTO-REGRESSIVE
EXOGENEOUS-INPUT MODEL (NARXM)

In this updating procedure, another neural network is
applied, in what may be considered loosely as a non-linear
auto-regressive formulation, providing a non-linear function
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Simulated :
discharge series LTF Updated Q1scharge
. series
Updating
Model
. Observed. Lead-time forecasts
discharge series

Fig. 2. Schematic diagram of the Linear Transfer Function (LTF) updating model

mapping of a set of exogenous inputs (i.e. the input rainfall,
input evaporation, the substantive model estimated outflows
over the lead time, and the most recent observed outflows)
into the single network output (i.e. the updated lead-time
forecast of the discharge) (Shamseldin and O’Connor, 2001).
The structure of the neural network is similar to that given
in the appendix and shown in Fig. A.3.

THE LTE-TYPE PARAMETRIC SIMPLE LINEAR
MODEL (LTF-PSLM)

In this base-line LTF-type parametric simple linear model
(LTF-PSLM), the representation of the transformation
process of the input rainfall series R to the output discharge
series Q, for discrete time steps, is given by

Q=2aQ +2XoR, +& ©)
j=1 j=0

i.e. the R series is used as part of the exogenous input rather
than the simulated outputs (5 used in the LTF updating
model described earlier. The model is calibrated by the
method of ordinary least squares (OLS), (ignoring the effects
of the resulting parameter estimates being asymptotically
biased), the updating form of the model, for a forecast time
origin ¢, being

Quan :z&thfﬁl‘anA)jprfm (10)
=t j=0

When operating in the non-updating mode, the past
computed values of O are used on the right- hand side of
the transfer function equation, whereas in updating mode,
as considered here, the most recent observed values of O
are to be used (on the right-hand side) as input to the model.
While the LTF-PSLM is clearly ‘naive’ in the context of
rainfall-runoff modelling, it is not so in the context of
updating models, where ‘naive’ refers to an updating model
based solely on the discharge record.

THE LTE-TYPE PARAMETRIC LINEAR
PERTURBATION MODEL (LTF-PLPM)

The mathematical form of the LTF-type parametric linear
perturbation model (LTF-PLPM) for updating is identical
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to that of the LTF-PSLM, the only difference being that the
series of departures of inputs and outputs from their seasonal
mean values are used in the transfer function equation
instead of the actual recorded series as used in LTF-PSLM.
The updated output departure forecast is then simply added
to the corresponding seasonal forecast to give the updated
discharge forecast of the LTF-PLPM.

THE NATVE AUTO-REGRESSIVE (n-AR) MODEL

A naive linear auto-regressive updating model may be fitted
to the observed discharge series alone provided it displays
significant persistence. For order p, the univariate n-AR
model has the form,

an =Q +§21([Q1+|71]_ 6)+52([Qt+|—2]: 6)"‘
(. ,]-Q) (D

i.e. using the observed discharge series rather than the
forecast error series used in the AR forecast-error estimation
model described earlier. The same principle as used for
forecast error estimation is used for such naive estimation
of the discharge forecast. The updated forecast flow values
for the specified lead-times can be estimated directly by
iteratively using the auto-regressive equation, once the
model parameter values have been estimated. Hence, it is a
simple univariate time series forecasting model, considered
as a naive (‘base-line’) model against which the performance
of more substantive updating models, incorporating the
simulated forecasts of a rainfall-runoff model, can be
compared. It is not suitable for forecasting more than one
or two steps ahead.

THE NATVE NON-LINEAR AUTO-REGRESSIVE
EXOGENEOUS-INPUT (n-NARXM) MODEL

The principle of the naive form of non-linear auto-regressive
exogenous-input (n-NARXM) updating model, having the
structure of a neural network, is similar to that of the naive
auto-regressive updating model, but in this case the lead-
time forecast of outflows is expressed as a finite, non-linear
aggregate of current and previous discharge values, instead
of the linear weighting in the case of the n-AR model. As it
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is much more general than the naive AR updating model,
one would reasonably expect it to perform better. Both are
‘black-box’ univariate updating models.

The model efficiency evaluation
criteria

The performance of a model must be judged on the extent
to which (i) it satisfies its objective of simulating the real
world phenomenon (accuracy), (ii) the achieved level of
accuracy persists through different samples of data
(consistency) and (iii) it can sustain the achieved level of
accuracy when subjected to diverse applications and tests
other than those used for calibrating the model (versatility).
A forecast efficiency criterion is therefore necessary to judge
the performance of a model. Fifteen different indices of
model performance evaluation are included in the GFMFS
package, viz., (i) Mean Square Error (MSE), (ii) Normalised
Error Function Value, (iii) Coefficient of Efficiency (R?),
(iv) Modified Index of Efficiency Rzi (v) Index of Volumetric
Fit (/VF), (vi) Index of Agreement, (vii) Modified Index of
Agreement, (viii) Coefficient of Determination, (ix) Relative
Error (RE) of the Peak, (x) Root Mean Square Error
(RMSE), (xi) Square-Root-RMSE, (xii) % Bias, (xiii) Log
RMSE, (xiv) Square-Root-Nash-Sutcliffe Efficiency, and
(xv) Visual Comparison.”

In the present study, the Nash-Sutcliffe (1970) model
performance evaluation index, R’, which is based on the
Mean Square Error (MSE), is adopted as the primary model
efficiency index. While it is used, in the GFMFS, as the
main index, the visual comparison method is also employed
on selected events. Other expressions of model forecast error
include the Mean Absolute Deviation (MAD) but the MSE,
which penalises the forecasting model much more for large
errors than for small errors, irrespective of the magnitude
of'the variable at which such errors occur, is far more widely
used by catchment modellers and it forms the basis of the
objective function used to calibrate the models in the
GFMFS. Clearly, both R* and MSE are global indices,
representative of the entire period under consideration.
Although the R index is convenient (many model calibration
methods are based on a least-squares matching of model
output to observed output), its relative insensitivity is also
well recognised and its weakness, particularly when the
mean of the calibration differs greatly from that of the
validation period, e.g. one wet and the other dry, is well
known (Kachroo and Natale, 1992). It remains, however,
the most widely used model efficiency index.

Note that the type of forecast considered here is the ‘point’
forecast, i.e. a single number representing the ‘best’
prediction, rather than the ‘prediction interval’ type of

forecast. Increasingly, as the need to provide a rigorous
framework for the uncertainties associated with model
parameters and forecasts is addressed, and the need to link
the forecasts to an assessment of the associated hazard risks
and costs receives more attention, the emphasis has perhaps
shifted away from trying to improve the ‘point’ forecast.
However, as the authors consider that the ‘point’ forecast is
still important, it is the focus of this study.

Modelling in simulation and updating
modes and discussion of the results

All the five substantive models in simulation mode were
applied individually to estimate the discharge from the given
rainfall and evaporation data of the River Brosna catchment
(up to the Ferbane gauging station). Out of the total of 2192
(1996-2001) days of daily discharge data, the weighted
average daily rainfall and daily evaporation data, the first
1461 days of data were used for model calibration and the
last 731 days for verification. Table 1 shows the values of
the Nash and Sutcliffe (1970) forecast performance
evaluation index, R?, for each of the substantive models, all
operating in simulation mode. It is observed, from Table 1,
that the non-updated forecast performance of the SMAR
model is clearly the best, in terms of R, having values of
85.0% and 78.17% for the calibration and verification
periods respectively.

In applying the first type of updating noted in the
‘Introduction’, whereby the rainfall-runoff model is first
calibrated and run in simulation mode and subsequently
correction estimates (based on a separately calibrated
empirical time-series model) are applied to the simulation
mode output forecasts to obtain updated forecasts. In this
study, the simulated output from the substantive SMAR
model was used along with the observed discharge data to
obtain the error series for application in the AR and the NNU
updating models. The most recent simulated discharges of
the SMAR model were also used as exogenous inputs in
the LTF and NARXM updating models. However, for the
other four updating models, namely P-SLM, P-LPM, n-AR
and n-NARXM which involve the second type of updating
noted in the Introduction, the coupled rainfall-runoff model
and updating facility are calibrated simultaneously, offline,
using previously observed data, and are likewise
subsequently applied simultaneously (as a coupled model)
to produce the forecasts, the simulated output from the
SMAR model is not involved. These six updating models,
together with the naive n-AR and the n-NARXM, were used
to estimate the updated forecasts for the forecast lead times
of 1,2, 3, 4,5 and 6 days.

The values of R? in the calibration and verification periods
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Table 1. Values of Nash-Sutcliffe efficiency index, R?, for each model, in simulation mode

S.N. Model Values of R in %
Calibration Verification

1 a Non parametric simple linear model (NP-SLM) 40.67 39.69
b Parametric simple linear model (P-SLM) 33.87 31.56
2 a Non parametric linear perturbation model (NP-LPM) 76.12 75.70
b Parametric linear perturbation model (P-LPM) 78.53 71.92
3 Linearly varying gain factor model (LVGFM) 44.85 46.62
Atrtificial neural network model (ANN) 73.73 60.65
5 Soil Moisture Accounting and Routing model (SMAR) 85.00 78.17

respectively, for each of the updating models, are presented
in brackets in Table 2. This table shows the ranking of the
updating models, in terms of R’ values in calibration (R ?),
for the lead-1 to lead-6 day forecasts. It is seen in Table 2
that, for the lead-1 forecast, among the eight updating models
considered in the present study, two models, viz. the non-
linear auto-regressive exogenous-input neural network
model (NARXM) and the linear transfer function (LTF)
forecast model gave the best forecasts, with values of R’
exceeding 95%. Five other updating models, viz. the LTF-
type parametric simple linear model (P-SLM), the LTF-type
parametric linear perturbation model (P-PLPM) model, the
Neural Network Updating (NNU) forecast error model, the
standard linear AR-error model and the naive NARXM also
gave good forecasts, with values of R’ above 90%. Even
the eighth updating model, the naive AR-model, gave a
relatively good forecast, its value of R * being quite close to
90%. To summarise, all eight updating models considered
are capable of producing relatively good lead-1 day
forecasts.

For the lead-2 and lead-3 day forecasts, only three
updating models, the non-linear NARXM, the linear transfer
function model (LTF) and the NNU error updating model,
gave very good forecasts, with values of R’ higher than
90%. For the lead-4 to lead-6 days forecasts, only two
models, the non-linear NARXM and the LTF updating
model gave consistently good forecasts, with values of R ?
above 90%. Indeed, the NNU model also gave relatively
good lead-4 day to lead-6 day forecasts, the value of R?
being quite close to 90%. Three other models, the two LTF-
type updating models based on rainfall input and the AR-
error updating model, gave fairly good higher lead-time
forecasts, with values of R > = 76% or more. The remaining
two naive models, which do not use the rainfall input, have
values of R’ barely above 50%, showing quite clearly that
all of the updating models based on rainfall perform
significantly better than the two naive models based on
observed discharges only.
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So, the results expressed solely in terms of R’ indicate
that the three models NARXM, the LTF, and the NNU are
the most suitable for higher lead time forecasts (for lead-2
days and above). Even the other three models, P-SLM, the
P-LPM and the AR-updating model, gave fairly good higher
lead-time forecasts, whereas the two naive models proved
to be unsuitable, at least for the data set of the River Brosna
catchment. The patterns for the R’ values in verification are
similar to those in calibration. As stated earlier, in all the
above lead-time forecasting applications of the models, the
‘perfect foresight of input over the forecast lead-time’
scenario was used. Clearly, if the actual rainfall forecasts
over the lead-times, for each day, were used instead of those
of'this scenario, the R’ values would no doubt be lower than
those achieved in this study, as the inaccuracies and
uncertainties associated with the hydrological models would
be compounded by those of the meteorological forecasts.
Such rainfall forecasts were not available to the authors for
this study.

As an extension of the above exercise, model output
combination techniques were applied to each of the 6-lead
day forecasts from the three best updating models NARXM,
the LTF and the NNU model, so as to examine whether such
‘consensus’ forecasts would provide lead-time forecasts
superior to those provided by the individual models. Values
of R?, for each of the 6-lead day combined forecasts, i.e.
from the weighted average method (WAM) and the Neural
Network combination method (NNAM), are shown at the
bottom of Table 2. While there is some improvement in the
value of R’ for lead-1 day to lead-3 day forecasts, there is
virtually no improvement in the value of R’ for lead-4 to
lead-6 day forecasts, i.e. in the case of the Brosna catchment,
the ‘consensus’ updated forecasts for higher lead times were
not significantly better than those of the individual models.
Apart from consideration of the R? results, which only give
a global picture of flow forecasting performance over the
whole data set, the performance of the models on selected
flood events was also examined. The lead-time forecasts
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Table 2. Ranking of the 8 updating models for various forecast lead-times (in days), in terms of R*: (R?calibration, R?verification)

Rank Lead -1 Lead - 2 Lead - 3 Lead -4 Lead - 5 Lead - 6
1 NARXM NARXM NARXM NARXM NARXM NARXM

(95.99, 96.41) (94.01, 93.91) (93.19, 92.97) (92.35,91.99) (91.86, 91.49) (91.63, 91.29)
2 LTF LTF LTF LTF LTF LTF

(95.79, 96.68) (93.51, 93.84) (92.58, 92.67) (91.69, 91.75) (91.15,91.12) (90.77, 90.64)
3 P-SLM NNU NNU NNU NNU NNU

(94.45, 95.99) (90.81, 86.18) (90.13, 85.30) (89.64, 84.87) N(89.24, 84.48)  (88.87, 84.20)
4 P-LPM P-LPM P-LPM P-LPM P-LPM AR-model

(94.33, 96.09) (88.17, 91.18) (84.65, 88.68) (82.41, 86.67) (80.87, 84.68) (81.10, 82.07)
5 NNU P-SLM P-SLM AR-model AR-model P-LPM

(92.12, 87.58) (88.08, 90.82) (83.89, 88.21) (81.85, 83.62) (80.76, 82.36)P-  (79.72, 82.90)
6 AR-model AR-model AR-model P-SLM P-SLM P-SLM

(91.95, 94.01) (84.38, 86.79) (82.97, 85.40) (80.75, 85.95) (78.25, 83.76) (76.16, 81.61)
7 n-NARXM n-NARXM n-NARXM n-NARXM n-NARXM n-NARXM

(90.15, 93.79) (75.40, 85.25) (66.60, 81.53) (60.65, 77.91) (55.60, 73.62) (51.25, 69.61)
8 n-AR n-AR n-AR n-AR n-AR n-AR

(89.75, 93.7) (74.53, 85.20) (65.29, 81.68) (59.06, 78.30) (54.35, 74.29) (50.59, 70.50)
MOCT WAM NNAM NNAM WAM WAM WAM

(96.10, 96.76) (94.12, 93.88) (93.27, 93.02) (92.34, 92.33) (91.84, 91.83) (91.56, 91.56)

NNAM WAM WAM NNAM NNAM NNAM

(96.09, 96.86) (94.09, 94.16) (93.22, 93.18) (92.14, 92.26) (91.61, 91.73) (91.53, 90.99)
Note: NARXM - Non linear autoregressive eXogenous model

P-SLM - Parametric simple linear updating model

MOCT - Methods of output combination
LTF - Linear transfer function model

P-LPM - Parametric linear purturbation updating model

NNAM - Neural network averaging method
NNU - Nueral network updating model

n-NARXM - Naive NARXM (Neural Network) model

WAM - Weighted averaging method
AR - Autoregressive updating model
n-AR - Naive AR model

estimated by the ‘best’ three updating models, in terms of
R’, namely the NARXM, the LTF and the NNU, were
compared with the corresponding observed hydrographs for
the two highest floods in the record, i.e. the December 1999
(91.5 m?*s™) flood, in the calibration period, and the
November 2000 (85.65 m*s™) flood, in the verification
period. The results are shown in Figs. 3 and 4. It is seen
from Fig. 3a that all the three updating models are capable
of producing lead-1 day forecasts that match the observed
flows very well, both in terms of peak value and the time to
peak, for this highest flood. Figures 3b and ¢ show that the
lead-2 and lead-3 day forecasts also match satisfactorily for
these three ‘best” models. Figures 3d — 3f show that the lead-
4 to lead-6 day forecasts produce a satisfactory match only

in the case of the first ranked model, i.e. the NARXM
updating model. In contrast, Figs. 4a and b, for the second
highest flood (occurring in the verification period), show
that only the LTF-updating model is capable of producing
lead-1 day and lead-2 day forecasts that match the observed
flows very well, whereas the forecasting performance of
the NNU model for the lead-1 and -2 day forecasts is just
about satisfactory. None of the lead-3 and -4 day forecasts
of these three ‘best” models produce a satisfactory match,
but surprisingly the lead-5 and 6 day forecasts of the LTF
and NNU updating models produced a satisfactory fit to
the peak of the hydrograph. The NARXM updating model,
which was ranked first in terms of the value of R’ for both
the calibration and verification periods, failed to reproduce
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the second largest flood well, for any of the lead times. These
results serve as a reminder that the forecasts of any globally
calibrated updating model, even if they give a high value of
R?, do not necessarily perform well on each individual flood
event, particularly as regards the peak and time to peak.

Summary and conclusions

In all, five non-updating models and eight updating models,
which are incorporated in the GFMFS software, were
applied in this study, using precipitation, discharge and
evaporation data from 1996-2001. The objective was to
compare the updating model/procedures for generating the
lead-1 to lead-6 day flow forecasts at the Ferbane gauging
station of the River Brosna catchment in Ireland. Among
the five non-updating models considered, the SMAR model
was found to be the best, in terms of the Nash-Sutcliffe
model forecast efficiency index R’. Hence, for real-time
forecasting, using the scenario of ‘perfect foresight of input
over the lead times’, the SMAR-estimated non-updated
discharge series was selected, for use with the observed
discharges, to calibrate all the eight updating models
available in the GFMFS. All eight were found to be capable
of producing relatively good lead-1 forecasts, on the basis
of the R’ values, corresponding to almost R? = 90%.
However, for higher (e.g. lead-2 to lead-6 days) lead times,
only three models, the NARXM, the LTF and the NNU,
produced good forecasts based on R’ values. Three other
models, the P-LPM, the P-SLM and the AR-error updating
model, also gave fairly good higher lead-time forecasts.
However, the two naive models, the n-AR and the n-
NARXM, which are based solely on the observed discharge,
were unsuitable for higher lead time forecasting for the River
Brosna at the Ferbane gauging station.

Zooming in on details of the forecast matching, graphical
comparisons were made for the two highest floods, using
the lead time forecasts of the three ‘best’ updating models
NARXM, LTF and NNU. These show that the NARXM
updating model, ranked first in terms of the value of R?, is
capable of producing very good lead-1 to -6 day forecasts
for the highest flood occurring in the calibration period, but
not so for the second highest flood occurring in the
verification period. The LTF updating model, ranked second
in terms of R?, was capable of producing very good forecasts
only for lead-1 day for the highest flood. In contrast, for the
second highest flood, the first ranked updating model, i.e.
the NARXM, was unable to produce good lead time
forecasts, whereas the second ranked LTF-updating model
produced very good lead-1 and lead-2 day forecasts for this
flood.

Graphical comparisons of the results of some of the

404

methods considered, in the context of forecasting the peak-
flow and the time-to-peak, suggest that the non-adaptive
updating procedures considered in this study are not
satisfactory over the whole range of flood magnitudes, i.e.
they have their successes but they also have their failures.
This can be attributed partly to the global MSE objective
function used to calibrate the models, as reflected in the
corresponding global Nash-Sutcliffe R’ forecast efficiency
index employed to evaluate their performance. Clearly, if
the forecasting of high flows, especially the peak-flow and
the time-to-peak, is the sole purpose of the exercise, then
an objective function which gives equal weight to a forecast
error value, irrespective of the flow magnitude at which it
occurs, is unlikely to provide a consistent optimum solution
for the peak flows. A weighted least squares objective
function (Zhang et al., 1994), concentrating on the range of
flow values of interest, might be a significant improvement.
A detailed analysis of the distribution of forecast errors over
the range of flow magnitudes might suggest a consistent
pattern of inadequacy that could result in a change in model
structure to compensate for such inadequacies in the
performance of the models. Perhaps a global objective
function such as the MSE is insufficient for peak flow
forecasting and that a more sensitive and responsive local
corrective procedure is required when things start to go badly
wrong, i.e. some kind of objective but adaptive local
calibration procedure may be necessary as a corrective
measure. Some of these issues, relating to problems in peak
flow forecasting, are currently under investigation by the
authors.
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Fig. 3 (a-f). Comparison of NARXM, LTF and NN-updating model forecasts for (a) lead-1 day to (f) lead-6 days, for the highest flood, of
December 1999 (in the calibration period).
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Fig. 4 (a-f). Comparison of NARXM, LTF and NN-updating model forecasts for (a) lead-1 day to (f) lead-6 days, for the second highest flood,
of November 2000 (in the verification period)

406



Assessing the performance of eight real-time updating models and procedures for the Brosna River

References

Ahsan, Mainul and O’Connor, K.M., 1994. A simple nonlinear
rainfall-runoff model based on the concept of a variable gain
factor. J. Hydrol., 155, 151-183.

Beven, K. and Pappenberger, F., 2003. Discussion on ‘Towards
the hydraulics of the hydroinformatics era’, by Abbott, M.B.,
Babovic, V.M., and Cunge, J.A., (in J. Hydraul. Res., 39,2001,
339-349). J. Hydraul. Res., 41, 331-336) .

Bardsley, W.E., 1983. An alternative distribution for describing
the instantaneous unit hydrograph. J. Hydrol., 62, 375-378.
Box, G.E.P. and Jenkins G.M., 1976. Time series analysis:

forecasting and control. Holden-Day, San Francisco, CA, USA.

Brath, A., Montanari, A. and Toth, E., 2002. Neural networks and
non-parametric methods for improving real-time flood
forecasting through conceptual models. Hydrol. Earth Syst. Sci.,
6, 627-640.

Ciarapica, L. and Todini, E., 2002. TOPKAPI: A Model for the
representation of the rainfall-runoff process at different scales.
Hydrolog. Process., 16, 207-229.

Georgakakos, K.P., 1986. A generalized Stochastic Hydro-
meteorological Model for Flood and Flash-Flood Forecasting;
1. Formulation. Water Resour. Res., 22, 2083—2095.

Goswami, M, O’Connor, K.M. and Shamseldin, A.Y., 2002a.
Structures and Performances of Five Rainfall-Runoff Models
for Continuous River-Flow Simulation. In: /ntegrated
Assessment and Decision Support, Proc. 1st Biennial Meeting
Int. Environmental Modelling and Software Society, 24-27 June,
2002, University of Lugano, Switzerland). 1, 476—481.

Goswami, M, O’Connor, K.M. and Shamseldin, A.Y., 2002b.
Rainfall-runoff modelling of two Irish catchments (one Karstic
and one non-Karstic). In: Celtic Water in European Framework,
Proc. Third Inter-Celtic Collogquium Hydrology and
Management of Water Resources, Dept. Engineering Hydrology,
NUI, Galway, Ireland. 151-164.

Kachroo, R.K., 1992a. River Flow forecasting, Part 5, Applications
of a conceptual model. J. Hydrol., 133, 141-178.

Kachroo, R.K., 1992b. River flow forecasting, Part 1, A discussion
of principles. J. Hydrol., 133, 1-15.

Kachroo, R.K. and Liang, G.C., 1992. River flow forecasting. Part
2. Algebraic development of linear modelling techniques. J.
Hydrol., 133, 17-40.

Kachroo, R.K. and Natale, L., 1992. Non-linear modelling of the
rainfall-runoff relation. J. Hydrol., 135, 341-369.

Kachroo, R.K., Liang, G.C. and O’Connor, K.M., 1988.
Application of the linear perturbation model (LPM) to flood
routing on the Mekong River. Hydrol. Sci. J., 33, 193-214.

Khan, H., 1986. Conceptual modelling of rainfall-runoff systems.
M. Eng. Thesis, National University of Ireland, Galway.

Koren, V., Reed, S., Smith, M. and Zhang, 7., 2003. Combining
physically-based and conceptual approaches in the development
and parameterization of a distributed system. In: Weather Radar
Information and Distributed Hydrological Modelling. IAHS
publlication no. 282, 101-108.

Koren, V., Reed, S., Smith, M., Zhang, Z. and Seo. D.J., 2004.
Hydrology Laboratory Research Modelling System (HL-RMS)
of'the US National Weather Service. J. Hydrol., 291, 297-318.

Liang, G.C., 1992. A note on the revised SMAR model. Workshop
Memorandum, Department of Engineering Hydrology, National
University of Ireland, Galway (Unpublished).

Liang, G.C. and Nash, J.E., 1988. Linear models for river flow
routing on large catchments. J. Hydrol., 103, 157—-188.

Liang, G.C., O’Connor, K.M. and Kachroo, R.K., 1994. A
multiple-input single-output variable gain factor model. J.
Hydrol., 155, 185-198.

Liu, Z. and Todini, E., 2002. Towards a comprehensive physically-
based rainfall-runoff model. Hydrol. Earth Syst. Sci., 6, 859—
881.

Ljung, L. and Soderstrom, T., 1983. Theory and Practice of
Recursive Identification, MIT Press: Cambridge, Mass., USA.

Michaud, J. and Sorooshian, S., 1994. Comparison of simple
versus complex distributed runoff models on a mid-sized semi-
arid watershed. Water Resour. Res., 30, 593—605.

Nash, J.E. and Barsi, B.Il., 1983. A hybrid model for flow
forecasting on large catchments. J. Hydrol., 65, 125-137.

Nash, J.E. and Foley, J.J., 1982. Linear models of rainfall-runoft
systems. In: Rainfall-Runoff Relationship, V.P. Singh (Ed.),
Proc. Int. Symp. on Rainfall-Runoff modelling. Mississippi State
University, May 1981, USA. Water Resources Publications. 51—66.

Nash, J.E. andSutcliffe, J.V., 1970. River flow forecasting through
conceptual models, Part 1, A discussion of principles. J. Hydrol.,
10, 282-290.

Norton, J.P., 1986. An Introduction to Identification. Academic
press. London

O’Connor, K.M., 1976. A discrete linear cascade model for
hydrology. J. Hydrol., 29, 203-242.

O’Connor, K.M., Goswami, M., Liang, G.C., Katchroo, R.K. and
Shamseldin, Y.A., 2001. The Development of the ‘Galway Real-
Time River Flow Forecasting System (GFFS): Paper No. 035.
In: Sustainable Use of Land and Water, Proc. 19th European
ICID Conference, Brno & Prague, Czech Republic, 4-8 June,
2001. ISBN 80-238-7102-1 (Abstracts and CD of full texts).

O’Connell, P.E., 1991. A historical perspective. In: Recent
advances in the modelling of hydrologic systems, D.S. Bowles
and P.E. O’Connell, P.E. (Eds.), Kluwer, The Netherlands. 3—
30.

O’Connell, P.E., Nash, J.E. and. Farrell, J.P, 1970. River Flow
forecasting through conceptual models. Part 2. The Brosna
catchment at Ferbane. J. Hydrol., 10, 317-329.

Peetanonchai. B., 1995. 4 modification of the AR model for
updating of model forecasts. Unpublished Report for the Sixth
Intl. Advanced Course/Workshop on River Flow Forecasting
(24 April — 30 June, 1995, Dept. of Eng. Hydrology, National
University of Ireland, Galway).

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Se, D.J.
and DMIP Participants, 2004. Overall distributed model
intercomparison project results. J. Hydrol., in Press; (Corrected
Proof available on-line since 1st July 2004).

Seyfried, M.S. and Wilcox, B.P., 1995. Scale and the nature of
spatial variability: Field examples having implications for
hydraulic modelling. Water Resour. Res., 31, 173—184.

Shamseldin, A.Y., 1997. Application of a neural network technique
to rainfall-runoff modeling. J. Hydrol., 199, 272-294.

Shamseldin, A.Y. and O’Connor, K.M., 1999. A real-time
combination method for the outputs of different rainfall-runoff
models. Hydrol. Sci. J., 44, 895-912.

Shamseldin, A.Y., and O’Connor, K.M., 2001. A non-linear neural
network technique for updating of river flow forecasts. Hydrol.
Earth Syst. Sci., 5, 577-597.

Shamseldin, A.Y., O’Connor, K.M. and Liang, G.C., 1997.
Methods for combining the outputs of different rainfall-runoff
models. J. Hydrol., 197, 203-229.

Smith, M., Seo, D.J., Koren, V., Reed, S., Zhang, Z., Moreda, F.
and Kuzmin, V., 2003. Results of the Distributed Model
Intercomparison Project (DMIP). Hydrological Sciences
Programme HS 18, Incorporating hydrological process
knowledge into catchment modelling. EGS-AGU-EUG Joint
Assembly, Nice, France, 06-11 April 2004. Page 169.

Tan, B.Q. and O’Connor, K.M., 1996. Application of an empirical
infiltration equation in the SMAR conceptual model. J. Hydrol.,
185, 275-295.

407



M. Goswami, KM. O'Connor, K.P Bhattarai and A.Y. Shamseldin

Wheater, H.S., Jakeman, A.J. and Beven. K.J., 1993. Progress
and directions in rainfall-run-off modelling. In: Modelling
Change in Environmental Systems, A.J. Jakeman, M.B. Beck
and M.J. McAleer (Eds.), Wiley, Chichester, UK.

WMO 1992, Simulated Real-Time Intercomparison of
Hydrological Models. OHR-38. WMO-No. 779. Geneva
Switzerland.

Woolhiser, D.A., 1996. Search for a physically based runoff
model—a hydrologic El Dorado? J. Hydraul. Eng. ASCE 122,
122-129.

Xiong, L, O’Connor, K.M. and Goswami M., 2001. Application
of the Artificial Neural Network (ANN) in Flood Forecasting
on a Karstic Catchment. Conference Paper. In: Forecasting and
Mitigation of Water-Related Disasters, Proc. XXIX Congress
of the International Association of Hydraulic Engineering and
Research (IAHR), Beijing, China, 16-21 September, 2001.

Ye, W., Bates, B.C., Viney, N.R., Sivapalan, M. and Jakeman,
AlJ., 1997. Performance of conceptual rainfall-runoff models
in low-yielding ephemeral catchments. Water Resour. Res., 33,
153-166.

Young, P.C., 1974. Recursive Approach to Time Series Analysis,
Bull. Inst. Math. Appl., 12, 209-224.

Young, P. C., 1984. Recursive Estimation and Time Series Analysis:
An Introduction, Springer-Verlag, Berlin, Germany.

Young, P.C., 2002 Advances in real-time flood forecasting. Phil.
Trans. Roy. Soc., Phys. Eng. Sciences, 360, 1433—1450.

Young, P. and Jakeman, A. 1979. Refined instrumental variable
methods of recursive time-series analysis. Part 1. Single input,
single output systems. Int. J. Control, 29, 1-30.

Zhang, J.Y., O’Connor, K.M. and Liang, G.C., 1994. A software
package for river flow forecasting based on the SMAR model.
In: Water resources and distribution, W.R. Blain and K.L.
Katsifarakis (Eds.), Hydraulic Engineering Software V Vol.1,
Computational Mechanics Publications, Ashurst Lodge, Ashurst,
Southampton, UK, 163-170.

APPENDIX: The GFMFS Rainfall-Runoff models (which operate in

‘simulation’ mode)

SIMPLE LINEAR MODEL (NP-SLM AND P-SLLM)

The intrinsic hypothesis of the naive/primitive Simple Linear
Model (SLM) is the assumption of a linear time-invariant
relationship between the total rainfall and the total discharge.
In its discrete form, the non-parametric simple linear model
(NP-SLM) is expressed by the well-known convolution
summation relation,

ZR[J+1h' €& = GZ R[J+1b +e, with Zh'
=1
G, b= hé,anol Zb -1,

in which Q and R, are the discharge and rainfall respectively
at the /" time-step, h| is the j discrete pulse response
ordinate (weight), m is the memory length of the system, e,
is the forecast error term and G is the Gain Factor which
reflects the ratio of the total volume of the observed
discharge to that of the observed rainfall input (Kachroo
and Liang, 1992).

In its parametric form, the Simple Linear Model (P-SLM)
has a Linear Transfer Function (LTF)-type representation
of the transformation process of the input series R, to the
output series Q, for discrete data intervals, also referred to
as an Autoregressive Exogenous-input (ARX) type of model,
which can be written as the linear difference equation:

(A.1)

r S
Q=2aQ +2XoR ,ju+ (A.2)
j=0 i1
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in which a and o, are the autoregressive and exogenous-
input parameters respectlvely, which are conveniently
estimated directly by the method of Ordinary Least Squares
(OLS), f1is the pure time delay restricted to integer values
only, » and s are the orders respectively of the autoregressive
and exogenous-input parts, and e, is the model forecast error
term. Although the model is calibrated in updating mode,
when operating in the non-updating (simulation) mode, only
previously computed values of O, i.e. Q_ Q_,, etc. with
the exception of e, assumed to be zero, are used on the right
hand side of the above transfer function Eqn. (A.2).

LINEAR PERTURBATION MODEL (NP-LPM AND P-
LPM)

In the linear perturbation model (Nash and Barsi, 1983;
Kachroo et al., 1988; Liang and Nash, 1988; Kachroo and
Liang, 1992), it is assumed that, during a year in which the
daily rainfall is identical to its seasonal daily expectation,
the corresponding discharge hydrograph is also identical to
its seasonal expectation. However, in all other years, when
the rainfall and the discharge values depart from their
respective seasonal expectations, these departures
(perturbation) series are assumed to be related by a discrete
linear time invariant system (see Fig. A.1).

In the application of the LPM, it is necessary to obtain an
estimate of the expected values of the input (or rainfall) and
discharge for each date, i.e. day of the year 1-365.
Smoothing of the season mean series is done by Fourier
(i.e. harmonic) analysis (Kachroo ef al., 1988)
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For the non-parametric linear perturbation model (NP-
LPM), the relation between the two perturbation series may
be represented algebraically by the convolution summation
equation. Hence, this /inear component can be calibrated
by the OLS method. Although overall, the NP-LPM is non-
linear, being seasonally-based, it can be regarded as a
‘quasi-linear’ model.

The mathematical form of the /inear component of the
Parametric Linear Perturbation Model (P-LPM) is identical
in structure to that of the P-SLM, i.e. the LTF structure. The
only difference is that the daily series of departures of inputs
and outputs from their daily seasonal mean values are used
in the transfer function equation for the P-LPM instead of
the total rainfall and discharge series as used in the P-SLM.

THE LINEARLY-VARYING GAIN FACTOR MODEL
(LVGFM)
The LVGFM (see Fig. A.2), which is also a ‘quasi-linear’
model, involves only the variation of the Gain Factor G
with a selected index of the prevailing catchment wetness,
without varying the shape (i.e. the weights) of the normalised
response function (Ahsan and O’Connor, 1994). The model
has the familiar convolution summation structure, but is
based on the concept of a time-varying gain factor G, i.e.
m m
Q=G> R;,B, where B =1
=1

=1

(A.3)

In its simplest form, G, is linearly related to an index of the
soil moisture state Z of the catchment by the equation G,
= G/(z) = a + bz,, where a and b are parameter constants,
but more complex G (z) relations have also been used
(Ahsan and O’Connor, 1994). The values of Z are
conveniently obtained from the outputs of an auxiliary
rainfall-runoff model, such as the naive SLM, the form of
Z for the case of the SLM being

where G and h ; are estimates of the SLM Gain Factor and
pulse response ordinates respectively and Q is the mean
discharge in the calibration period. However, the output (':)l
of any other selected auxiliary model (e.g. SMAR) could
likewise be used for this purpose of estimating Z . The
overall operation of the LVGFM, as used in this study, has
the mathematical form

Qt = ai I:at-j+lBj + b Z[i I:'2(-j+lBj + q = i R(-j+1(aBj )+
j=1 =1 =1 m
(Zt R-jﬂXij )+ &
i=

j=1

=2 RiuB + 2 Rj.B +e (A.5)
=1 =1

/!

where B] =a BJ 41 = Z[R[>j+l R

> B, = 10.

The effective parameter sets B} and B] can be estimated
conveniently by the OLS method.

B]{' =b B;, and

ARTIFICIAL NEURAL NETWORK MODEL (ANNM)

The ANN provides a flexible non-linear mapping of the
inputs into the outputs without specifying a priori the
mathematical nature of the relation between inputs and
outputs. However, it must be configured in advance of
training/calibration, i.e. the structure of the network must
be specified. The GFMFS has adopted the ‘multi-layer feed-
forward’ type of artificial neural network which consists of
an input layer, an output layer and only one ‘hidden’ layer
located between the input and the output layers, as used by
Shamseldin (1997) for rainfall-runoff modelling.

Neural networks are by nature ‘parameter rich’; their
parameters have ‘no clear physical interpretation’ and
uncertainty inevitably arises in their identification and in
the use of the network for prediction (Beven and
Pappenberger, 2003). In spite of these drawbacks, the use

Q_ Gy -
— - . . .
- 3 - 6 Z Rt-j+1hj (A4) of neural networks in hydrology has proliferated in recent
1= years, often being used blindly and without question.
Linear
) Element
Inflow-Departure Series ~ Outflow-Departure Series
> A
7
Total Observe% e e Total Mode§
Input R Output Q
Seasonal-Mean Inflow « Seasonal-Model Forecast
> >
Undefined
Relation

Fig. A.1: Schematic diagram of the Linear Perturbation Model (LPM)
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Fig. A.2: Schematic diagram of the Linearly Varying Gain Factor Model (LVGFM)

Neural networks do not account explicitly for storage/
memory effects! Hence, if only the current and preceding
exogenous inputs, i.e. rainfalls, with or without
corresponding evaporation data, are used as inputs to the
network, it would require a number of preceding rainfalls
approximately equal to the effective memory length in order
to mimic the storage effects of the catchment, thereby
producing a non-parsimonious model. Following the
approach of Shamseldin (1997), the number of rainfall inputs
required can be reduced drastically by providing at least
the current forecast of discharge provided by an auxiliary
rainfall-runoff model, such as the naive SLM (or preferably
a better model such as SMAR), perhaps with one or more
of the preceding discharge forecasts, as inputs to the
network, thereby reducing the number of input neurons.
(Note that if preceding observed discharges are used as
inputs, instead of the forecasted values suggested above,
then the network would function as an updating model.)

In the GFMFS, for the results presented in this study, the
Simplex search technique was used for training the network.

Bias node Bias node

Neurons
(Rainfall,
upstream
observed
flows,
evaporation,
or output
from a
simple model
to consider
catchment __|
storage)

Simulated
discharge

Input Layer

Hidden Layer

Output Layer

Fig. A.3. Schematic diagram of the Artificial Neural Network (ANN)
model
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SOIL MOISTURE ACCOUNTING AND ROUTING
(SMAR) MODEL

The Soil Moisture Accounting and Routing (SMAR) model
is a lumped rainfall-evaporation—discharge model of the
conceptual type, which has been developed from the
‘Layers’ conceptual rainfall-runoff model of O’Connell et
al. (1970). In this model, the input variables, i.e. rainfall
and evaporation, are transformed into simulated discharge
through a series of steps which, in a very simplified manner,
mimic the dominant physical processes (excluding
snowmelt) in the rainfall-runoff transformation.

Using a number of empirical and assumed relations which
are considered to be at least physically plausible, the non-
linear water balance (i.e. soil moisture accounting)
component of SMAR model ensures satisfaction of the
continuity equation, over each time-step, i.e. it preserves
the balance between the rainfall, the evaporation, the
‘generated runoff’ (which eventually, after routing,
contributes to the simulated runoff) and the changes in the
various elements (layers) of soil moisture storage. The
routing component, on the other hand, simulates the
attenuation and the diffusive effects of the catchment by
routing the various generated runoff components through
linear time-invariant storage elements. For each time-step,
the combined output of the two routing elements adopted
(i.e. one for the sum of the generated ‘surface runoff’
components and the other for the generated ‘groundwater
runoff”) becomes the simulated discharge forecast. In the
GFMFS package, three two-parameter-distribution options
are available for routing the generated ‘surface runoff’
component, namely the classic Gamma (Nash IUH) (the
default method), the Negative Binomial (Pascal) (O’Connor,
1976) and (for sharp-peaked responses) the Inverse Gaussian
distribution (Bardsley, 1983). A single discrete linear
reservoir is used as the routing component for the generated
‘groundwater runoff’.

Two variants of the original SMAR model have been
incorporated in the GFMFS, the default 9-parameter
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Fig. A.4. Structure of the 9-paremeter SMAR conceptual model

SMARG model (refer to Fig. A.4) (with five water balance
parameters, 7, H, ¥, C, and Z; one weighting parameter for
groundwater routing, G; and three routing parameters, N,
NK and K,), and the 10-parameter SMARK model devised
for application on a karstic catchment, the tenth parameter
F being the coefficient for loss (or gain) from the ground
water storage.

The choice of three automatic optimisation algorithms,
i.e. the Genetic Algorithm, the Rosenbrock Direct-Search
Method and the Simplex Method, are available for the
calibration of the SMAR conceptual model. There is also
the option of sequential optimisation, starting with the
Genetic Algorithm, then the Rosenbrock Method and finally
the Simplex Method.
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