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Abstract

The political pressure on the scientific community to provide medium to long term flood forecasts has increased in the light of recent
flooding events in Europe. Such demands can be met by a system consisting of three different model components (weather forecast, rainfall—
runoff forecast and flood inundation forecast) which are all liable to considerable uncertainty in the input, output and model parameters.
Thus, an understanding of cascaded uncertainties is a necessary requirement to provide robust predictions. In this paper, 10-day ahead
rainfall forecasts, consisting of one deterministic, one control and 50 ensemble forecasts, are fed into a rainfall-runoff model (LisFlood) for
which parameter uncertainty is represented by six different parameter sets identified through a Generalised Likelihood Uncertainty Estimation
(GLUE) analysis and functional hydrograph classification. The runoff of these 52 * 6 realisations form the input to a flood inundation model
(LisFlood-FP) which acknowledges uncertainty by utilising ten different sets of roughness coefficients identified using the same GLUE
methodology. Likelihood measures for each parameter set computed on historical data are used to give uncertain predictions of flow hydrographs
as well as spatial inundation extent. This analysis demonstrates that a full uncertainty analysis of such an integrated system is limited mainly
by computer power as well as by how well the rainfall predictions represent potential future conditions. However, these restrictions may be
overcome or lessened in the future and this paper establishes a computationally feasible methodological approach to the uncertainty cascade

problem.
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Introduction

The European Flood Forecasting System (EFFS) project,
funded by the European Union, has the eventual aim of
making continuous operational real-time forecasts of river
discharges and inundation in the major rivers in Europe up
to 10 days ahead, based on mesoscale rainfall forecasts
provided by the European Medium Range Weather
Forecasting Centre (ECMWF) and other national
meteorological forecasting services (de Roo et al., 2003).
Such a project requires a combination of modelling
capabilities, including rainfall forecasting, runoff generation
predictions based on those rainfall forecasts, and hydraulic

flood wave propagation based on the runoff predictions.
Taking account of uncertainty in all of these model
components is important in risk-based decision making for
issuing flood warnings, ordering evacuations, operation of
flood control reservoirs and basins, planning for potential
future change in flood behaviour, etc.

While uncertainty in predictions may well decrease in
future as the different process representations in the models
are improved, it will never be eliminated. Weather forecasts,
for example, have greatly improved in the last two decades,
as increased computer power and more integrated
measurement systems have allowed general circulation
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models to run at finer resolutions with improved
initialisation. Rainfall forecasts, however, are still heavily
dependent on sub-grid scale parameterisations of the rainfall
forming processes; these cannot take complete account of
understanding of the behaviour of rainfall cells in different
meteorological conditions (see e.g. Hewitson and Crane,
1996; Joubert and Hewitson, 1997). Convective cells, in
particular, cannot be resolved at the current mesoscale grid
sizes of 10—40 km used in 5 to 10 day ahead predictions.
Thus, rainfall forecasts are still limited by the resolution of
the simulated atmospheric dynamics and the sensitivity of
the solutions to the pattern of initial conditions and sub-
grid parameterisations (Buizza ef al., 1999; Downtown and
Bell, 1988; Harrison et al., 1999)

There is a somewhat different problem in the forecasting
of flood runoff. Hydrological models, whether using
measured or forecast rainfalls, are also limited by their
representation of the small scale flow dynamics but this is
as much a problem of knowing the local characteristics (or
parameters) of sub-catchment areas as it is of representing
the dynamics themselves. Effective values of the parameters
required by hydrological models, as affected by local spatial
heterogeneities and nonstationarities, seem to have only
loose associations with the type of soil, rock, topographic
forms and vegetative cover for the hillslopes that make up a
catchment area (see Beven, in press). Thus, it has proven
very difficult to make accurate prior estimates of effective
parameter values and to get good simulations of streamflow
hydrographs without calibration of parameter values by
comparison of model predictions with historical data (Gupta
et al., 2003). The problem then is that distributed
hydrological models with many different grid elements and
many different parameters for each grid element do not
provide a well-posed calibration problem when there are
no discretisation scale observables with which to assess local
parameter values (Beven, 1989, 2001). There will then be
some inevitable uncertainty in the predictions of runoff
generation, compounded by the uncertainty in the rainfall
forecasts.

Similar considerations apply to hydraulic models. Grid
scales are still large relative to the scales of momentum
dissipation, turbulence and secondary currents caused by
local heterogeneities in channel and flood plain geometry
and cover, and this will inevitably affect the model
parameters (Marks and Bates, 2000). Again, local effective
values of model parameters may need to be calibrated but
only limited observations may be available to achieve such
a calibration. Hence, there will be some inevitable
uncertainty in the predictions of flood inundation and flood
wave propagation, compounded by the uncertainty in the
runoff generation predictions (Aronica et al., 1998, 2002;
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Pappenberger et al., in press-b; Romanowicz and Beven,
1998, 2003; Romanowicz et al., 1994,1996).

Uncertainty, therefore, cascades from rainfall forecasts,
through the runoff generation prediction to the flood wave
forecasts. Each stage of the cascade has to deal with non-
linear transformations, from atmospheric conditions to
rainfall forecasts, from rainfalls to runoff forecasts, and from
runoff to flood wave and inundation forecasts. Thus, it is
difficult to use traditional linear statistical methods for
cascading the uncertainties through the forecasting system.
It is, indeed, difficult to make a rigorous assessment of the
uncertainties at all, because of sheer computational
constraints, particularly in the atmospheric forecasts.
Uncertainties in non-linear systems can often be estimated
simply using some form of Monte Carlo simulation
technique. However, in such a complex modelling system
it is still computationally infeasible to perform such an
analysis fully and thus first estimates of the magnitude of
the uncertainty can be achieved only by some approximate
methods.

There have been previous attempts to deal with
uncertainties in real-time flood forecasting systems. Each
has been associated with some form of approximation e.g.
the Bayesian forecasting system (Krzysztofowicz, 2002;
Kyriakidis et al., 2001); the US National Weather service
ensemble forecasting (Koren et al., 1999); the River Flow
Forecasting system (Moore ef al., 1990); Transfer Function
methods (Young, 2002; Young and Beven, 1994); the
Generalized Likelihood Uncertainty Estimation (GLUE)
method (Romanowicz and Beven, 1998, 2003; Romanowicz
et al., 1994). However, all the references mentioned
constrain the uncertainty analysis to only two model
components (e.g. from weather prediction to a rainfall—
runoff model, or from an upstream discharge to an
inundation model) and no study is known to the authors
which propagates the uncertainty from a weather forecast
model fully down to an inundation model. Note that the
GLUE analysis presented here depends not only on prior
estimates of effective model parameter values but also on
model conditioning based on performance evaluations
against past observations.

The objective of this paper is to introduce a framework
which cascades uncertainty through such an entire modelling
system (Fig. 1). Each of these components is liable to
uncertainty. In the following, the problems in each modelling
component are introduced, starting with the rainfall forecast,
then the rainfall-runoff model and finally the flood
inundation model. A full description of each model is beyond
the scope of this paper and the reader is referred to
Pappenberger ef al. (in press-a), Gouweleeuw et al. (2005),
Hunter et al. (2005) and de Roo ez al. (2000) for more details.
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Fig. 1. Sketch of the uncertainty cascade

Assessing sources of uncertainty

ASSESSING UNCERTAINTY IN THE RAINFALL
FORECASTS

The rainfall forecasts used in this study are based on the
European Centre for Medium Range Weather Forecasting
(ECMWF) control and ensemble forecasts (known as the
Ensemble Prediction System or EPS). These provide a single
deterministic forecast and 50 additional realisations for the
next 10 days with a grid scale of 80 km. In addition, a
deterministic forecast is provided, which is the control
forecast (unperturbed) at higher resolution (40 km) and thus
should, in principle, provide better precipitation predictions.
A detailed description of the ECMWF Numerical Weather
Prediction model can be found in a number of references
(Buizza et al., 2001; Molteni et al., 1996; Persson, 2001)
and Gouweleeuw et al. (2005).

Rainfall forecasts are available for each grid square
(approximately 40 km by 40 km) at one hour time steps
over the 10-day period. The forecasts are updated daily with
individual realisations based on perturbations of the initial
conditions at the start of the period. Furthermore, the EPS
includes a simulation of random model error due to
parameterised physical processes (so-called stochastic
physics, see Buizza et al., 1999). Results (Mullen and
Buizza, 2001) have shown that both stochastic physics and
higher resolution have a measurable positive impact on
precipitation prediction. This is, therefore, a limited
assessment of the potential uncertainties in future rainfalls.
In the near future, with growing computer power, it is
expected that the grid resolution will be increased, that the
forecasts will be updated more frequently and that more
ensembles will be run.

It is not possible to say whether one ensemble forecast is
more likely to occur than another. They are therefore taken
as equally likely. The possibility of conditioning N day ahead
forecasts on the observed rainfalls after 1, 2 or more days,
relative to the forecasts of reinitialised forecasts as new data
become available, has not been explored in this study since,
operationally, the NWP model itself is initialised every 12
hours as new data are received. Moreover, the question of

whether the forecast ensembles represent a true sample of
rainfall probabilities is not discussed.

ASSESSING UNCERTAINTY IN THE RUNOFF
MODEL

The runoff generation model used here is the LisFlood model
(de Roo, 2000; de Roo et al., 2000, 2001). This is a
distributed model with a water balance version (LisFlood-
WB) that is, in this case, run on a daily basis and can then
be used to provide initial storage conditions for a flood
prediction version (LisFlood-FF) that is run for a 1 km grid
for selected basins with a 1h time step. LisFlood-FF can be
run using either measured or forecast rainfalls, interpolated
to the 1 km grid.

LisFlood-FF uses representations of surface and
subsurface flow processes that are lumped at the 1 km grid
scale. Thus, although initial estimates of soil hydraulic
characteristics and other parameters can be obtained from
maps of soil and vegetation type, the process representations
must really be considered as sub-grid parameterisations of
the complex, heterogeneous and nonstationary nature of the
local flow pathways. Thus some calibration of the effective
values of the parameters will generally be necessary. Here,
this has been achieved by comparing the predictions of the
model for a historical period when observed rainfalls are
available, prior to the use of the model for forecasting.

The approach to model calibration is based on the General
Likelihood Uncertainty Estimation (GLUE) concepts
(Beven and Binley, 1992). This approach rejects the idea of
an optimal model representation in favour of an equifinality
concept that recognises that many different parameter sets
might produce acceptable or behavioural simulations
(Beven, 1993). Predictions made with all the behavioural
simulations then allow an evaluation of the output
uncertainty arising from parameter and model structure
uncertainty. The different behavioural simulations can be
associated with a relative likelihood according to how well
that parameter set has performed during a calibration or
conditioning period. The likelihoods can be updated as new
data become available, which may also lead to the rejection
of more models as being non-behavioural if they do not
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Table 1. Parameters, which have been varied by a multiplier for the Monte Carlo analysis of the LisFlood model (adopted from

Pappenberger ef al., in press-a)

Parameter

Initial data source Multiplier

(uniform dist)

Saturated hydraulic conductivity (upper soil layer, Ks(S1))
Saturated hydraulic conductivity (lower soil layer, Ks(S2))
Porosity (upper soil layer, Theta(S1) )
Porosity (lower soil layer, Theta(S2))

Saturated hydraulic conductivity (upper groundwater layer, Ks(G1))
Saturated hydraulic conductivity (lower groundwater layer, Ks(G2))

Manning Roughness Channel (NC)

Manning Roughness Overlandflow (NO)

Maximum Leave Area Index (ML)

Maximum percolation from upper to lower response box (P)

HYPRES database 0.1-10
HYPRES database 0.1-10
Soil cover / Corine data base 0.1-1.2
Soil cover / Corine data base 0.1-1.2
HYPRES database 0.1-10
HYPRES database 0.1-10
Channel Order 0.1-5

Land use / Corine data base 0.1-10
AVHRR satellite images 0.1-10
Expert Analysis 0.1-10

provide acceptable simulations of the new data (Freer et
al., 2003).

Such behavioural simulations are generally identified by
the evaluation of different Monte Carlo realisations of
parameter sets. A rigorous Monte Carlo study of LisFlood,
however, as a distributed model with a large number of grid
elements and a large number of parameters required in each
grid element, would demand very great computer resources.
Therefore, again, some approximations will be required.
Here, a selection of the more sensitive parameters was
chosen for use in the analysis based on previous experience
with the model. In addition, spatially variable parameters
(such as hydraulic conductivity of the surface soil layer)
were modified only by applying a multiplier for that
parameter to the whole field. In this way the dimensionality
of the calibration problem was reduced significantly. Table
1 gives a summary of the parameters that were varied in the
Monte Carlo sampling. Each model realisation was
evaluated against observed discharges measured at the
upstream boundary of the nested flood plain inundation
model. At this stage, an attempt has been made to condition
parameter sets for individual subcatchments for which
observed discharges are available. There is, in principle, no
problem in extending the analysis in this way, only increased
computational requirements.

ASSESSING UNCERTAINTY IN THE HYDRAULIC
MODEL

A similar approach was taken to assessing uncertainty in
the hydraulic model, LisFlood-FP (Bates and De Roo, 2000).
This is a simplified routing model that combines a one-
dimensional kinematic representation of the main channel
flow with a grid square representation of the flood plain
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over which two-dimensional flow is simulated using a
storage cell concept. Typically, model resolution is of the
order of 10—100 m with time steps of the order of 1s. With
grids of between 10* and 10° cells, typical computation times
on a desktop PC for full dynamic flood events of ~100 hours
duration are ~5 minutes or less. The approach has been
shown to be capable of predicting maximum flood extent
in areas of complex, low-lying topography and to compare
favourably with alternative hydraulic model formulations
(Bates and de Roo, 2000; Horritt and Bates, 2003). Boundary
condition data required by the model consist solely of the
upstream inflow hydrograph at the head of the reach being
considered. Other input data are a high resolution, high
accuracy Digital Elevation Model of the floodplain
topography (typically derived from aerial stereo-
photogrammetry or laser altimetry) and basic information
on the channel geometry (width, depth and slope). Lastly,
the model requires the specification of patterns of effective
channel and flood plain roughness parameters which in
theory can be specified separately for each computational
cell.

Again, some simplification of this high-dimensional
calibration problem is required, particularly since it is known
that simulations using storage cell codes are relatively
insensitive to flood plain roughness, given the approximate
representation of the geometry and flood plain infrastructure
(Aronica et al., 2002; Romanowicz et al., 1996). As in
previous studies, it was here assumed that single effective
values of roughness for channel sub-reaches and flood plain
elements respectively would be sufficient to obtain
behavioural simulations. For the simulations reported in this
paper, the roughness parameters were varied by increments
across a physically feasible range and the simulations
assessed against observed patterns of flood inundation
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derived from aerial photography and satellite Synthetic
Aperture Radar imagery.

All uncertainties which have been identified previously
should be considered within a cascading system. The next
section discusses problems with such an approach and
suggests a possible methodology.

Cascading uncertainty through the
forecasting system — using functional
similarity to reduce computational
demands

Within the system described above, each time a forecast is
made there are 52 rainfall forecasts available (50 ensembles,
one high resolution deterministic forecast and one control
forecast at the coarser ensemble resolution — see
Gouweleeuw et al., 2005). Each rainfall forecast should be
run through all the behavioural realisations of the runoff
generation model to provide upstream discharge inputs to
all the behavioural flood wave routing models. Uncertainty
in the forecasts should then be assessed over all
combinations of rainfall inputs, runoff predictions and flood
routing models. It can be readily seen that even for small
samples of behavioural simulations, the total number of
simulations required would multiply rapidly. Assuming that
the rainfall forecasts can be provided on a continuous basis
by ECMWF, this may be computationally feasible given,
say, a large parallel PC system. However, using the type of
distributed models employed in this study, such a task
demands very significant computational resources even
when the analysis is run off-line (so that time is not critical)
rather than in real time.

There are two ways of resolving this computational
problem. One would be to simplify the runoff generation
and flood wave routing models (for example using the type
of transfer function models explored in Lees et al., 1994;
Romanowicz and Beven, 1998). The other is to reduce the
number of runs required. The latter approach has been taken
here by using the concept of functional similarity of
parameter sets.

The concept of functional similarity arises quite naturally
from the idea of equifinality within the GLUE methodology.
In any model calibration or evaluation period there will be
many parameter sets that provide an acceptable fit to the
observations. These will necessarily be somewhat similar
in their functioning in the evaluation period, although it is
still expected that they will differ in the way in which they
achieve acceptability with respect to any particular
performance measure and will produce somewhat different
simulations when used in forecasting. However, to reduce

the computational burden, the assumption is made that
particular parameter sets can be identified within which these
differences are smaller than those between regions. Thus,
the idea is to classify the behavioural simulations into
different functional types, and use only representative
parameter sets for each functional type in the forecasting.

To implement this procedure, the behavioural hydrographs
predicted by the rainfall-runoff model at a given point on
the river network (here the head of the reach for which
hydraulic modelling is undertaken) have been classified by
cluster analysis, in which hydrographs are compared to each
other by a similarity measure. The more dissimilar two
model hydrographs being compared are, the more likely it
is that they will be assigned to different clusters. It is possible
to force the classification of a certain number of clusters to
meet computational constraints but this can result in
misclassification. The classification method is described in
more detail in Pappenberger and Beven (in press). Each class
of behavioural hydrographs can then be represented in
prediction by a single (or small number of) models, weighted
by the sum of likelihood weights of all the behavioural
parameter sets in that class.

This method was also used to define functional sets of
parameters in the hydraulic model, using as conditioning
information gauging station and air photo data from a further
large flood event which occurred in 1993. For this event
the channel was split into three sub-reaches delimited by
internal gauging stations and the friction parameters for each
sub-reach were allowed to vary freely. Since the inundation
predictions are less sensitive to floodplain friction, the

O (@) (@)

n=52 n=6 n=10
Rainfall Rainfall-Runoff  Flood Inundation

forecast model model

Fig. 2. Sketch illustrating the uncertainty propagation and the
implementation
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coefficient was fixed at n,=0.06. A Monte Carlo analysis
using 500 simulations was conducted for the 1993 event
with Manning’s # friction parameters for each sub-reach
drawn randomly and uniformly from the range 0.02 to 0.05.
The ten best performing parameter sets from this analysis
were then used for the simulation of the 1995 event.

The uncertainty cascade is summarised in Fig. 2. All 52
rainfall forecasts are used as inputs into the rainfall-runoff
model, which is represented by a certain number of
parameter sets (6 in this case). The likelihood weighted
outflow hydrographs of the 52*6 realisations builds the
upstream boundary condition for the inundation model,
which is again represented by a certain number of parameter
sets (10 in this case to minimise the computational burden).
Thus a total of 3120 different inundation distributions are
computed for each forecast. It is possible to construct
predictive percentiles from these realisations.

Construction of prediction percentiles

The prediction percentiles for the rainfall-runoff model were
constructed by using the likelihood measure associated with
each behavioural parameter set since each rainfall-runoff
forecast is assumed to be equally likely ‘a priori’. It is
therefore not necessary to make strong prior assumptions
about the likelihood of different parameter value
combinations. In addition, it is also possible to compute
prediction percentiles for flows over a certain threshold at
any point in the catchment / flood plain system (Gouweleeuw

et al., 2005; Pappenberger ef al., in press-a) and maps of
inundation probabilities. The information content of the
latter, represented as a risk of inundation as the event
progresses, is much easier to communicate to end users,
including policy makers, emergency services and the public.
For the predictions of flood inundation it is necessary to
construct a prediction quantile for each model grid cell,
which is based on an overall likelihood measure. This
measure is computed by multiplying the performance of the
rainfall-runoff part, as represented by the cumulative
likelihood weights associated with each cluster of predicted
discharge hydrographs, with the performance measure from
the calibration of the flood inundation model

Application to the Meuse flood of
1995

The methodology for cascading uncertainty through the
flood forecasting system was demonstrated by an application
to the Meuse catchment, upstream of Maaseik (~21 000 km?)
in Belgium. Discharge observations are available at the
Borgharen gauging station, at the upstream boundary of the
35-km reach simulated by the LisFlood-FP flood inundation
model.

Two different 10-day ahead forecast scenarios were
available for the model evaluation, one starting on 21
January 1995 at 12:00 and the other one on 22 January 1995,
also at 12:00. The second set has been chosen to evaluate
possible updating techniques for the runoff model, which

Prediction Peribd 1

Prediction Pe;

2500
2000 -
‘“; Evaluation and Cluster Period
o
5
£ 1500
£
1000
500
1 1
23.12.1994 01.01.1995 11.01.1995

21.01.1995

31.01.1995 10.02.1995  20.02.1995

Date

Fig. 3. Measured outflow hydrograph at Borgharen which shows the period used for the evaluation and cluster process. Furthermore the
prediction period of the ECWMEF forecast is shown
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could be also extended to the inundation evaluation.

The rainfall-runoff model has been calibrated on hourly
flow data, starting from 23 December 1994 right up to the
starting time of the forecasts (see Fig. 3). The likelihood
measure used is the Multicomponent Mapping method as
described in Pappenberger and Beven (in press). This
methodology allows the definition of errors around
evaluation data as a measure designed in the form of a
pyramidal frustum in time and magnitude around
observations. The performance of hydrographs is computed
according to combinations of the measure over all time steps.
The behavioural parameter sets are then clustered into
functional classes, which show a similar flow behaviour.

The flood plain model was pre-conditioned on
observational data available for the December 1993 flood
event; these consisted of a mosaic of air photo images of
maximum inundation extent and two stage hydrographs
internal to the model domain.

Results and Discussion

FORECASTS FROM 21 JANUARY

Analysis of the functional similarity of behavioural
parameter sets (see previous discussion) led to the selection
of six parameter sets to represent the parameter uncertainty
of the rainfall-runoff model (the performance of these sets
is shown in Table 2). The parameter sets have been clustered
according to the hydrograph flow at Borgharen they
produced in the evaluation period. These six sets resulted
in 6 forecasts of the control, 6 forecasts of the high resolution
rainfall forecast and 300 forecasts for the ensemble rainfall
forecasts. The results of this initial step in the cascading
process are shown in Fig. 4. The top sub-figure shows the 5
and 95% percentiles of predicted discharge at Borgharen
based on the ensemble runs. The figures show an
initialisation problem due to the fact that the ECMWF
forecasts need a certain ‘spin-up’ time to balance internal

Table 2. Likelihood measures of the 6 parameter sets identified in
the functional classification

Set Likelihood Measure Likelihood Measure
until 21January until 22 January
1 0.8324 0.8333
2 0.8516 0.8507
3 0.8836 0.8857
4 0.8649 0.8683
5 0.8481 0.8470
6 0.8713 0.8730

state variables. Therefore, the results would have to be
disregarded for a short lead time.

Later, the observations are bracketed by the uncertainty
bounds and the model performs reasonably well. However,
neither the timing nor the magnitude (especially the width
of the uncertainty bounds) are acceptable. The study of
Pappenberger et al. (in press-a) demonstrated the capability
of the model to reproduce and predict within uncertainty
bounds when ‘true’ rainfall is used rather than predicted.
This suggests a deficiency in the rainfall forecasts, especially
because the performance of the control run and the
deterministic forecast drop off after 150 hours. Nevertheless,
similar to the ensemble forecasts, the model cascade does
show good predictions in the initial phase, which is
reasonable bearing in mind higher uncertainties in longer
range forecasts.

It is possible to illustrate the capability of this methodology
to predict peak over threshold time predictive quantiles (see
Fig. 5 for the example of flows over 1500 m’s™). The
measured peak over threshold is indicated by the vertical
line. Naturally, the three plots show different responses and
especially the analysis for the control and high resolution
forecasts should be treated with the utmost care due to the
small sample size used in calculating these plots. According
to this analysis, one would have predicted a possibility of
~18% (for ensembles), ~33% (for control) and ~33% (for
high resolution deterministic) to have 0 hours of flow above
the threshold chosen. However, the measured data show that
the 1500 m®s! threshold was actually exceeded for 118 h.
The cumulative distribution functions give a possibility of
~63% (for ensembles), ~65% (for control) and ~65% (for
deterministic) that the flow over 1500 m*s™' would have
been exceeded for less than 175 hours. This example
illustrates the difference in the approach proposed in this
paper in comparison to traditional model exercises. The
political decision for further action can be informed by an
estimate of the probability of making an error.

The error in the rainfall predictions also has a significant
influence on the inundation predictions. The observed
discharge at the time of the air photo manages (but only
just) to bracket the observed discharge (see Fig. 6) reflecting
the findings above. Bankfull discharge in the Borgharen-
Maaseik reach is approximately 1500 m*s™ and this would
partially explain the limited inundation observed in the 5
and 50% quantile plots. However, given the difficulties of
representing complex floodplain geometry (including small-
scale dyke structures) within a relatively coarse model, the
observed shoreline is reasonably well defined by the 95%
quantile.

The spatial distribution of inundation uncertainties for the
later, SAR-derived, shoreline (Fig. 7) is remarkably similar
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measured time of peak over threshold is 175h -see vertical line) ensemble forecasts. The 5%, 50% and 95% quantiles are shown as

well as the envelope between the 5 and 95% quantiles. The mapped
inundation is indicated by a dark black line. (Forecasts from 21

to those evaluated against the air photo data for the first

sub-reach (which is reasonable given that the observations channel accounts for the more obvious inundation observed
were collected under similar hydraulic conditions). The close in the lower two sub-reaches in the 5 and 50% quantile plots.
proximity of a number of small lakes and ponds to the main It is interesting (and unsurprising) to note that the uncertainty

388



Cascading model uncertainty from medium range weather forecasts (10 days) within the EFFS

Fig. 7. Predicted water levels (grey scale) at time of SAR overpass
with ensemble forecasts. The 5%, 50% and 95% quantiles are shown
as well as the envelope between the 5 and 95% quantiles. The
mapped inundation is indicated by a dark black line. (Forecasts
Sfrom 21 January)

bounds of high predicted water levels are larger in regions
of constricted flow, particularly in the highly engineered
sub-reach 2.

If, as in traditional forecasts, only the control forecast is
utilised (Fig. 8, time of air photo) a poor performance with
respect to matching the observed shoreline can be observed,
which is a direct result of the failure of the rainfall-runoff
model to reproduce the observed discharge at Borgharen
using the control forecast. Predicted discharges are
approximately bankfull or less, which explains why only a
very minor inundation was predicted on the floodplain. This
lack of water may be compensated for in traditional

Fig. 8. Predicted water levels (grey scale) at time of air photo with
control forecasts. The 5%, 50% and 95% quantiles are shown as
well as the envelope between the 5 and 95% quantiles. The mapped
inundation is indicated by a dark black line. (Forecasts from 21
January)

deterministic calibration through the use of large, effective
friction coefficients, but not in an integrated system utilising
behavioural parameter sets conditioned on a previous event
or events. Furthermore, an erroneous result of this
considerable underestimation of inundation in all predictions
is that the difference between the 95 and 5% quantile plots
(i.e. the 90% uncertainty envelope) appears very small in
many regions, indicating a more certain but, in this case,
incorrect set of predictions. Without an appreciation of all
components of the forecasting system, this highlights one
stage of the process where considerable opportunity for
serious misinterpretation exists.

The high resolution deterministic forecasts (Fig. 9, time
of SAR overpass) do not lead to any significant improvement
compared to the control or ensemble forecasts and follow
the discussion above. This analysis highlights that there is a
characteristic division between the six control and
deterministic hydrographs in two groups of three. One of
these groups predicts the discharge at approximately
bankfull or less (for the inundation model) which explains
the low inundation of the 5% and 50% percentile. The
second group is much closer to the observations and thus
the upper limit (95%) leads to more reasonable predictions.
This can be explained by two factors. Firstly, as mentioned
above, extreme events are much less likely to be predicted
correctly. Thus it has to be expected that the upper limit
matches the measured disaster shore line. Secondly, the
grouping of the hydrographs is based on the much lower
peak flows of a previous period; thus it cannot be expected
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Fig. 9. Predicted water levels (grey scale) at time of SAR overpass
with deterministic forecasts. The 5%, 50% and 95% quantiles are
shown as well as the envelope between the 5 and 95% quantiles. The
mapped inundation is indicated by a dark black line. (Forecasts
Sfrom 21 January)

that extrapolated data match with similar performance due
to the non-linearity of the response surface. Moreover,
effective parameter values might change with event
magnitude for good physical reasons (Romanowicz and
Beven, 2003).

FORECASTS FROM 22 JANUARY

Figure 10 shows the predictions from 22 January onward;
these use recorded rainfall before the updated forecast starts.
It is possible to recompute the likelihood weights and
clusters of behavioural models at each time that new data
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become available, as a form of updating of the forecasting
procedure. In this case, the clusters which represent the
behavioural parameter sets used for this analysis did not
change due to only small changes in the flow within the 24-
hour period, although small changes in the likelihood
measures can be observed (see Table 2). The predictions
suffer from the same difficulties as on the day before.
However, the pattern of the flow uncertainty bounds seems
to have changed and the model under-performs in the first
75 hours. Nevertheless, the uncertainty bounds of the model
still suggest a flood event in the near future.

It is interesting to note that, despite the failure of rainfall-
runoff predictions to bracket the observed discharge with
the ensemble forecasts, the spatial arrangement for the SAR
derived shoreline of inundation uncertainties (Fig. 11) varies
very little from the initial forecast period. The general
narrowing of the 90% uncertainty envelope, again
particularly evident in sub-reach 2, can most likely be
attributed to the erroneously lower discharges routed through
the rainfall-runoff model.

Moreover, the predictions with the control forecasts at
the time of the air photo, mark an improvement in the ability
of the rainfall-runoff model to reproduce the observed
discharge at Borgharen using the control rainfall-fields for
the second forecast period. Similar observations can be made
for the deterministic forecast.

Conclusion

In real time flood inundation prediction, it can be useful to
include medium range rainfall forecasts in the modelling
system to achieve longer lead times for decisions on flood
alert status. However, such forecasts, and the prediction of
rainfall-runoff and flood inundation models, are inevitably
uncertain. Therefore, strategies to cascade uncertainties
through such a model framework have to be developed.
Here, two 10-day ahead rainfall forecasts in the form of 50
ensemble, 1 control and 1 deterministic forecast
(Gouweleeuw et al., 2005) illustrate a possible methodology.
No prior likelihood can be assigned to these rainfall forecasts
so that it is necessary to assume that all these predictions
occur with the same probability. These forecasts have been
used as an input for the rainfall-runoff model LisFlood for
the 1995 flood event on the river Meuse. The parameter
uncertainty of the rainfall-runoff model has been determined
within a GLUE analysis (Pappenberger ef al., in press-a).
To minimise the computational burden, the responses of the
Monte Carlo analysis of the model were classified into
functional classes utilising the Multicomponent Mapping
method (Pappenberger and Beven, in press). Likelihood
measures could be computed for the six parameter sets
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Fig.10. 4. Prediction quantiles for discharge at Borgharen on the Meuse after the 22nd of January based on 10 day ensemble forecasts of
rainfalls. B. Predictions using 6 representative hydrological models and the control rainfall prediction. C. Predictions using 6 representative
hydrological models and the deterministic rainfall forecast

stemming from this analysis on the basis of all the
behavioural parameters that they represent. The analysis
suffers from under-performing rainfall predictions and
therefore the value of the predictions is lessened. In this
analysis, neither the control nor the deterministic forecasts
could improve the model results significantly in comparison
to the ensemble forecasts. However, the model predictions
are capable of bracketing the real flow over a large range
and only initialisation problems occur.

The quality of the input predictions cascades with the
inundation model, which has been calibrated on a SAR and
an air photo image of flood inundation. It has been
demonstrated that the inundation model can give reasonable
predictions within the limitations of the input. The predicted
inundation percentiles provide further evidence that the
forecasting of extreme events is a difficult business, as only
the upper boundary is actually in good agreement with the
observations.

Admittedly, the significance and dominance of the rainfall
prediction error is well known and documented (see e.g.
Anderson et al., 2002; Koussis et al., 2003) and therefore it
is not a new finding. Moreover, further research has to be
conducted on the influence of the spatial rainfall forecast

variability on the cascading uncertainty system (Arnaud et
al., 2002).

However, this paper concentrates not on this limitation
but rather introduces a method to deal with uncertainties in
a cascading model system. Advances in the predictions of
rainfall as well as a better understanding of the uncertainties
in the rainfall-runoff and inundation components will
hopefully narrow the prediction quantiles in the future.
However, as demonstrated in this paper, promising results
may be expected from such further progress.
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Fig. 11. Predicted water levels (grey scale) at time of SAR overpass
with ensemble forecasts. The 5%, 50% and 95% quantiles are shown
as well as the envelope between the 5 and 95% quantiles. The
mapped inundation is indicated by a dark black line. (Forecasts
Sfrom 22 January)
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