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Abstract. We present Top-kriging, or topological kriging,
as a method for estimating streamflow-related variables in
ungauged catchments. It takes both the area and the nested
nature of catchments into account. The main appeal of the
method is that it is a best linear unbiased estimator (BLUE)
adapted for the case of stream networks without any addi-
tional assumptions. The concept is built on the work of
Sauquet et al. (2000) and extends it in a number of ways. We
test the method for the case of the specific 100-year flood for
two Austrian regions. The method provides more plausible
and, indeed, more accurate estimates than Ordinary Kriging.
For the variable of interest, Top-kriging also provides esti-
mates of the uncertainty. On the main stream the estimated
uncertainties are smallest and they gradually increase as one
moves towards the headwaters. The method as presented
here is able to exploit the information contained in short
records by accounting for the uncertainty of each gauge. We
suggest that Top-kriging can be used for spatially interpolat-
ing a range of streamflow-related variables including mean
annual discharge, flood characteristics, low flow characteris-
tics, concentrations, turbidity and stream temperature.

1 Introduction

The Problem of Ungauged Basins (PUB) (Sivapalan et al.,
2003) is one of the central problems in hydrology and related
sciences. The problem consists of estimating streamflow-
related variables at locations where no measurements are
available. Estimates can be obtained by a range of methods
(e.g. Bl̈oschl, 2005). A particularly appealing set of meth-
ods are geostatistics, which allow estimation of a variable in-
cluding its uncertainty at locations where no measurements
are available (Journel and Huijbregts, 1978). The main ad-
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vantage of geostatistical methods is that they are best lin-
ear unbiased estimators (BLUE); best meaning that the mean
squared error is a minimum, linear meaning that the esti-
mate is a weighted mean of the data in the area, and unbi-
ased meaning that the mean expected error is zero (Journel
and Huijbregts, 1978, p. 304). Geostatistical methods have
evolved in the mining industry. The main problem consisted
of estimating the expected ore grade (and its uncertainty) of
a block using point samples of the ore grade in the area. To
this end the spatial correlations of pairs of points are plotted
versus their Euclidian distance. From this, the variogram is
estimated which is then used to estimate the variable at the
location of interest for a given block size from the point sam-
ples (Journel and Huijbregts, 1978).

The problem in catchment hydrology is quite differ-
ent. The main difference is that catchments are organised
into subcatchments. Unlike mining blocks, catchments are
nested. Water follows a stream network. It is therefore clear
that upstream and downstream catchments would have to
be treated differently from neighbouring catchments that do
not share a subcatchment. Therefore Euclidian distances be-
tween catchments are not the natural way of measuring the
spatial distance of catchments. Estimation of variables on
stream networks needs to use a topology that is different from
the usual Euclidian topology.

Most applications of geostatistics to catchment hydrol-
ogy, so far, have indeed used Euclidian distance between
catchments, usually measured as the Euclidian distance be-
tween the gauges or the catchment centroids (e.g. Daviau et
al., 2000; Adamowski and Bocci, 2001; Eaton et al., 2002;
Skøien et al., 2003; Merz and Blöschl, 2005). Given the
obvious nested structure of catchments it is surprising that
very little research has been done on extending geostatisti-
cal concepts to catchments. There is one notable exception.
Gottschalk and co-workers (Gottschalk, 1993a, b; Sauquet et
al., 2000) have addressed this very issue. Gottschalk (1993a)
first developed a method for calculating covariance along a
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Fig. 1. Atmospheric forcing and soil and vegetation contribute
to the runoff generation process locally and can be represented
by point variograms. The channel network organises runoff into
streams, which can be represented by the catchment boundaries.

river network and used this for interpolation along the net-
work (Gottschalk, 1993b). Sauquet et al. (2000) further de-
veloped this method for mapping annual runoff along the
river network using water balance constraints in the estima-
tion procedure.

In this paper we propose a method of geostatistical estima-
tion on stream networks that builds on the work of Sauquet et
al. (2000). It extends the original work in a number of ways.
First, we suggest that the interpolation method can be used,
in an approximate way, for a range of streamflow-related
variables including variables that are not fully mass conserv-
ing. Sauquet et al. (2000) interpolated mean annual runoff
which is a mass conserving variable. Second, we use vari-
ograms while Sauquet et al. (2000) used covariances. This al-
lows us to deal with variables that are non-stationary. Third,
we account for local uncertainties of the measurements that
may differ between locations. This allows us to exploit short
records. Last, we illustrate the potential of the approach for
estimating the uncertainty of the variable of interest in un-
gauged catchments.

In Sect. 2 we first review the basic concepts, and then
present the methodology in detail. In Sect. 3 we illustrate
the approach for the case of estimating the 100 year specific
flood in ungauged catchments in Austria. This includes a
comparison of the estimates with Ordinary Kriging as well
as an analysis of the estimation uncertainties in ungauged
catchments. Section 4 summarises the main implications for
hydrological regionalisation.

2 Method of Top-kriging

2.1 Concepts of Top-kriging

There are two main groups of variables that control stream-
flow (Fig. 1). The first group consists of variables that are
continuous in space. These variables include rainfall, evap-
otranspiration and soil characteristics. They are related to
local runoff generation. In this context, runoff generation is

conceptualised as a point process, i.e. runoff generation is as-
sumed to exist at any point in the landscape. This concept is
discussed in Woods and Sivapalan (1999). In a similar way,
other streamflow-related variables can be conceptualised as
continuous point processes on the local scale. For charac-
terising these variables, Euclidian distances are appropriate.
The spatial statistical characteristics of the point variables
can be represented by the variogram (Skøien et al., 2003).

The second group of variables is related to routing in the
stream network. These variables are affected by the catch-
ment organisation of nested catchments where runoff accu-
mulates along the stream network. Variables of this type in-
clude mean annual discharge, flood characteristics, low flow
characteristics, concentrations, turbidity and stream temper-
ature. These variables are only defined for points on the
stream network. They cannot be represented by Euclidian
distances. Rather they need to be represented by methods
that reflect the tree structure of the stream network.

We propose a method that combines these two groups of
variables in a geostatistical framework. We term the method
topological kriging or Top-kriging, as it takes into account
the topology of stream networks and nested catchments. The
continuous process in space defined for point variables is rep-
resented by a variogram. The channel network structure and
the similarity between upstream and downstream neighbours
are represented by the catchment area that drains to a partic-
ular location on the stream network. The catchment areas are
defined by their boundaries in space.

2.2 Kriging basics

In Euclidian kriging methods (such as Ordinary Kriging), the
variable of interest is represented as a random field of val-
uesz(x). Spatial similarity is represented by the variance
between pairs of points as a function of their Euclidian dis-
tance. Kriging is then the best linear unbiased estimator,
i.e. an interpolation method where the expected bias is zero
and the expected kriging error is minimised. An unknown
valueẑ(x0) of the variable at positionx0 (i.e. the target posi-
tion) can be estimated as a weighted average of the variable
measured in the neighbourhood:

ẑ(x0) =

n∑
i=1

λiz(xi) (1)

λi is the interpolation weight of the measurement at position
xi andn is the number of neighbouring measurements used
for interpolation. The weightsλi can be found by solving the
kriging system:

n∑
j=1

λjγij − λiσ
2
i + µ = γ0i i = 1, . . . , n

n∑
j=1

λj = 1
(2)

Theγij refers to the gamma value or the expected semivari-
ance between two measurementsi and j , as found from a
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theoretical semivariogram model.µ is the Lagrange param-
eter. σ 2

i represents the measurement error or uncertainty of
measurementi. The use of measurement errors in the krig-
ing equations is termed kriging with uncertain data (KUD)
(de Marsily, 1986, p. 300; Merz and Blöschl, 2005).

2.3 Interpolation and regularisation over catchment bound-
aries

In Top-kriging, the measurements are not point values but are
defined over a non-zero catchment areaA. In geostatistical
terminology,A is the support. A point variablez(x) can be
averaged over an areaA as:

z̄(A) =
1

A

∫
A

w(x)z(x)dx (3)

where z̄ is the spatially averaged variable andw(x) is a
weighting function. If there is reason to assume the variable
is conservative, or approximately conservative, as we do in
this paper, the aggregation is linear, andw(x)=1. If a non-
zero supportA is accounted for, the kriging system remains
the same, but the gamma values between the measurements
need to be obtained by regularisation (Cressie, 1991, p. 66).
Assuming the existence of a point variogramγp, the gamma
value or the semivariance between two measurements with
catchment areasA1 andA2, respectively, is:

γ12 = 0.5 × Var(z(A1) − z(A2))

=
1

A1A2

∫
A1

∫
A2

γp(|x1 − x2|)dx1dx2

−0.5 ×

[ 1

A2
1

∫
A1

∫
A1

γp(|x1 − x2|)dx1dx2

+
1

A2
2

∫
A2

∫
A2

γp(|x1 − x2|)dx1dx2

]
(4)

x1 andx2 are position vectors within each catchment used
for the integration. The first part of this expression integrates
all the variance between the two catchments, while the sec-
ond part subtracts the averaged variance within the catch-
ments. The second part is the smoothing effect of the sup-
port, which indicates that the variance of the averaged vari-
able decreases as the support area increases. Equation (4) can
be used to estimate the variogram of the averaged variable
from the point variogram. This procedure is termed regulari-
sation although most textbooks use the term only for the case
whenA1=A2. The gamma values are inserted into the krig-
ing matrix Eq. (2) and the kriging system can be solved in the
normal way to calculate the weightsλi for the interpolation
scheme. The important thing in Top-kriging is that the inte-
gration is performed over the catchment area that drains to
a particular location on the stream network. The location on
the stream network is the outlet of the target catchment. It is
hence possible to perform geo-statistics on stream networks.

x
1

A
2

A
1

x
2

Fig. 2. Schematic stream network and catchment boundaries with
point pairs shown.

The integration in Eq. (4) will, in most cases, be either
very complex or impossible to carry out analytically. The
integrals have to be replaced by sums and the catchment area
is discretised by a grid. It is important to note that the grid has
to be the same for each catchment every time it is discretised
(Isaaks and Srivastava, 1989, p. 326). In fact, even slight
differences of the grids or randomly chosen points will cause
numerical problems that are likely to flaw the results as test
simulations with the examples shown later have indicated.
Figure 2 shows a schematic of two nested catchments, their
discretisation by a square grid, and the distances between the
discretised points within the catchments.

Many variables are likely to have a nugget effect that rep-
resents variability at scales much smaller than the distance
between measurements. In the variogram the nugget appears
as a discontinuity close to the origin. A point variogram with
nugget varianceC0p can be expressed as:

γp(h) =

{
0 if h = 0

f (h) + C0p otherwise
(5)

whereh is spatial distance andf (h) is the variogram with-
out nugget. If we regularise Eq. (5) with Eq. (4) directly, the
nugget will vanish even for small catchments. We therefore
propose to regularise the nugget separately. The nugget vari-
ance can be seen as the variance of a spatially independent
random variable. Following Journel and Huijbregts (1978,
p. 154–156), the regularised nugget variance for two catch-
ments of different sizeC0(A1, A2), overlapping or not, can
be generalised as:

C0(A1, A2) = 0.5

(
C0p

A1
+

C0p

A2
−

2C0p · Meas(A1 ∩ A2)

A1A2

)
(6)
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Fig. 3. Effect of catchment size (left) and nesting (centre and right) on the kriging weightsλi (red numbers) as estimated by Top-kriging.x0
indicates the centre of the target catchment.

where Meas(A1 ∩ A2) represents the area shared by the two
catchments with areasA1 and A2. If the catchments are
nested this will be min(A1, A2), if they are not this will be
zero. The regularised nugget effect is then added to the reg-
ularised variogram of Eq. (4).

An advantage of kriging over some other interpolation
methods is that it provides an estimate of the kriging vari-
ance of the estimate at any location. The kriging varianceσ 2

R

represents the uncertainty of the estimates and is given by:

σ 2
R =

n∑
i=1

λiγi0 + µ (7)

γi0 is the gamma value between the target catchment and the
neighbouring catchments.

Figure 3 illustrates the merits of Top-kriging over Eu-
clidian kriging methods such as Ordinary Kriging. In all
three examples, the neighbouring catchments have the same
centre-to-centre distance to the target catchment (20 km in
the left panel, 10 km in the centre and right panels). In Ordi-
nary Kriging this would imply that the same weightsλi are
assigned to all the neighbouring catchments (0.25 in the case
of four neighbours, 0.5 in the case of two neighbours). In
Top-kriging the weights are different. The example on the
left shows the catchment size effect. The largest catchment
has the largest weight, because this is regarded as the most
certain, or having the least biased measurement in compar-
ison to the mean. Although the 49 km2 catchment on the
right is larger than the 25 km2 catchment at the bottom, their
weights are similar which is because the 49 km2 catchment
is closer to the 400 km2 catchment. This is because kriging
reduces the weights of clustered samples in contrast to, e.g.,
inverse distance methods (Isaaks and Srivastava, 1989, pp.
318-321).

The centre and right panels in Fig. 3 show the effect of
nesting. The sizes of the two neighbouring catchments are
the same in each case (100 km2 in the centre panel, 300 km2

in the right panel). The centre panel indicates that the catch-
ment that forms a subcatchment of the target catchment gets
a larger weight even though size and distance are the same
as those of the other catchment. The right panel shows the
reverse case. Although the neighbours have the same areas
and the same centre-to-centre distances to the target catch-
ment, more weight is attached to the catchment into which
the target catchment drains.

The weights have been obtained by the variogram shown
later in this paper with the measurement errors set to zero.
The relative effects of size and nesting would be similar for
other variograms.

3 Example application

3.1 Data

The concept of Top-kriging is applied to an Austrian data set
of 7000 catchments in this paper. For all of these catchments
the stream network and the catchment boundaries were avail-
able. About 600 of these catchments were gauged. For these
flood data were used with record lengths ranging from 5 to
110 years, most of them from 10 to 50 years. From these
data, the specific 100 year flood,Q100, was estimated us-
ing a Gumbel distribution. To be able to compare smaller
and larger catchments, theQ100 values were normalised to
a catchment size of 100 km2, following Merz and Bl̈oschl
(2005):

Q100N = (A · α−1)βQ100 (8)

whereA is the catchment area,α is the catchment area used
for normalisation (100 km2) and β was set to−0.33. Al-
though the kriging theory does not require the data to be nor-
mally distributed it is an advantage to reduce skewness. Be-
cause of this, theQ100N values were logarithmically trans-
formed before using them for interpolation:

z = ln(Q100N ) (9)
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The expected variance of the estimate of a Gumbel distribu-
tion is (e.g. Plate, 1993, p. 418):

σ 2
QT =

s2
Q

n

[
1 + 1.1396KT + 1.100K2

T

]
(10)

whereT refers to the return period of the flood,s2
Q is the

variance of the annual flood series,n is the number of annual
floods in the series andKT is a constant dependent on the
return period of the estimate:

KT = −

√
6

π
(ln(− ln(1 − 1/T )) + 0.5772) (11)

T =100 in the present case. The variance was also logarith-
mically transformed by

σ 2
i = σ 2

z = ln(1 + CV 2
Q100N ) (12)

where the coefficient of variation is expressed as
CVQ100N=σQ100N/µQ100N . µQ100N is the mean of
the data series. Before presentation, all values were back
transformed.

The Q100N values of the gauged catchments are referred
to as measurements in this paper to illustrate the characteris-
tics of Top-kriging. Their variancesσ 2

Q100 are referred to as
measurement errors to illustrate how Top-kriging estimates
uncertainties in ungauged catchments.

3.2 Estimation of point variogram

In order to apply Top-kriging a point variogram is needed
which we back-calculated from the ln(Q100N ) values at the
gauged catchments. Kyriakidis (2004), Mockus (1998) and
Skøien et al. (2003) provide methods for back-calculation.
As there are too many stations for using the variogram cloud
for fitting, we estimated a sample variogram with the pairs
grouped into bins, similar to Matheron’s (1965) traditional
estimator, but with two more dimensions, the areas of the
two catchments of a pair:

γobs(A1, A2, h) =
1

2n(A1, A2, h)

n(A1,A2,h)∑
i=1

[z(xi) − z(xi + h)]2

(13)

whereh= |h| is the distance between the centroids of the
catchments,n(A1,A2,h) is the number of catchment pairs
with areasA1 andA2, and distanceh between the centroids.
The bins were logarithmically distributed in all three dimen-
sions. To reduce the number of bins and to increase the num-
ber of pairs in each bin,A1 was always chosen as the smaller
area of the two catchments in a pair

Following Skøien et al. (2003) a point variogram with a
nugget effect of the following shape was assumed:

γp(h) = ahb(1 − e−(h/c)d ) + C0p (14)

a, b, c andd are parameters. The parameters can be inter-
preted as following:a is related to the sill of the variogram,c
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Fig. 4. Point variogram and regularised variograms of different
catchment sizes.

is a correlation length, whileb andd define the long and short
distance slope of the variogram in a log-log plot, respectively.
For a given bin, we calculated the regularised gamma values
and nugget variance according to Eqs. (4) and (6) using av-
erage areas and distances within each bin and a square catch-
ment area shape as an approximation. For each bin, we cal-
culated a weighted relative difference between the observed
gamma valueγobsand the regularised gamma value including
nugget effectγmod, according to the Weighted Least Squares
method of Cressie (1985):

Err(A1, A2, h) = n(A1, A2, h)

(
γobs(A1, A2, h)

γmod(A1, A2, h)
− 1

)2

(15)

By minimising the sum ofErr over all bins we found
the parameters of the point variogram Eq. (14) as a=2.99,
b=0.0812,c=9690,d=0.2568,C0p=1.9668.

From the point variogram we can now calculate a regu-
larised variogram between two catchments as a function of
their distance and catchment areasA1 and A2. Figure 4
shows the back-calculated point variogram together with a
number of regularised variograms for different catchment ar-
eas, as examples. In all cases a square catchment shape was
assumed. As the catchment area increases, the gamma values
decrease because of the smoothing effect of regularisation.
Catchments of different size will always have a variance be-
tween them, also when the centre-to-centre distance is zero.
This is the reason why all variograms between catchments of
different size start with an apparent nugget effect. The effect
of the point nugget effectC0p is dependent on the catchment
size and degree of overlapping. There may be some uncer-
tainty with estimating the point variogram as different point
variograms can give similar regularised variograms. How-
ever, Top-kriging is not very sensitive to this as regularised
variograms are used for catchment sizes that are of the same
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Fig. 5. Comparison between observed semivariances and mean and
standard deviation (error bars) of modelled semivariances. Green
line showsγobs=γmod.

order of magnitude as those on which the observed variogram
is based (Skøien and Blöschl, 2005b).

Figure 5 shows a comparison of the observed gamma val-
uesγobs and the gamma valuesγmod regularised from the
point variogram. For the presentation, the observed gamma
values were grouped and the mean and standard deviations
of the modelled gamma values for each group are shown.
The model has a tendency of overestimating the gamma val-
ues for small observed gamma values and the standard devia-
tions of the modelled gamma values are relatively large. This
is partly because the observed variogram Eq. (13) is more
complex than the regularised version of Eq. (14) and partly
because in some of the bins there are only few pairs. For the
purpose of demonstrating the characteristics of Top-kriging,
however, the fit was considered acceptable.

To assess the merit of Top-kriging relative to Ordinary
Kriging we also interpolated theQ100N values by Ordinary
Kriging using a variogram of the type of Eq. (14) with the pa-
rametersa=0.58,b=0.0010,c=29.8,d=0.667,C0p=0.0236

3.3 Results

To understand and illustrate the characteristics of Top-
kriging this paper focuses on two sub-regions of the entire
data set. We will discuss the estimates for individual catch-
ments in a regional context for both regions. The first region
is the river Mur and tributaries in Styria, southern Austria.
In this region the focus is on the estimates on the tributaries.
The second region is the river Inn and tributaries in Tyrol,
western Austria, where the focus is on the main stream. In
both examples, the Top-kriging estimates are compared with
Ordinary Kriging estimates that use the Euclidian distance
between the catchment centres to estimate the gamma values
in the Kriging system.

Fig. 6. Catchment area of the Mur and tributaries (km2). Arrows
show flow direction. Numbers refer to the stream gauges. Gauges
1–3 are situated directly on the Mur, the other gauges on the tribu-
taries. The region represents a rectangle of 52 by 35 km.

Figure 6 shows the catchment areas of the Mur and tribu-
taries as well as the stream gauges. Stream gauges 1–3 are
situated directly on the river Mur, the other gauges on the
tributaries. The catchment area of the Mur almost doubles
between stations 1 and 3, from 2300 km2 to 4400 km2. There
are four tributaries entering the river on this reach with catch-
ment areas ranging from 200–500 km2.

Figure 7 presents the estimates of the normalised specific
100 year floodQ100N from Top-kriging (top) and Ordinary
Kriging (bottom) colour coded on the stream network. The
measurements are shown as circles in both figures with the
same colour coding. For both methods, the estimates next to
the stream gauges are almost equal to the measurements of
the stream gauge itself.

The Top-kriging estimates on the main river are similar to
the measurements on the main river (gauges 1–3) and they
do not change much along the reach. The estimates on the
northern tributaries are much smaller than those on the main
stream which is consistent with the measurements on the
same tributaries (gauges 5 and 7). This is also reflected in
the estimates for the other northern tributaries. On the south-
ern side, the measurements are larger, so the Top-kriging es-
timates are generally much larger than those on the northern
side of the Mur.

The Ordinary Kriging estimates differ substantially from
the Top-kriging estimates. The main difference is that the es-
timates are not similar along the stream network as is the case
of Top-kriging but similar along Euclidian distance in space.
Although gauge 7 has measurements of 0.4 (red colour),
most of the Ordinary Kriging estimates along this tributary
are around 0.6 (yellow to green colours). This is because
the estimates along this tributary are too much influenced by
the measurements along the main river while they should be
mainly influenced by the downstream gauge as is the case in
Top-kriging. On the other hand, the estimates on the main
stream are somewhat underestimated by Ordinary Kriging as
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Fig. 7. Estimates of the normalised specific 100-year floodQ100N
from Top-kriging (top) and Ordinary Kriging (bottom) colour coded
on the stream network of the Mur region. The measurements
(i.e. values at the stream gauges) are shown as circles. Units are
in m3/s/km2.

they are too much affected by the measurements on the trib-
utaries.

In order to examine the merits of Top-kriging more quan-
titatively we performed a cross validation procedure for both
methods. A measurement was temporarily discarded from
the sample data set and theQ100N was then estimated by
both Top-kriging and Ordinary Kriging for the same location
from the remaining samples (Journel and Huijbregts, 1978,
p. 352). The difference between the estimate so obtained and
the measurement is a measure of the interpolation error. Fig-
ure 8 shows these differences for the two methods. The figure
indicates that the estimates from Top-kriging are similar or
better than the estimates from Ordinary Kriging in all cases
but one (gauge 6). The Ordinary Kriging error for gauge 6
is smaller because it assigns more weights to gauges left of
the region shown that possess largerQ100N values. It is also
worth noting that the errors are generally small for estimates
on the main river (gauges 1–3), while they can be larger for
the tributaries.

The kriging variances of the estimates in the Mur region,
Eq. (7), are shown in Fig. 9 colour coded on the stream net-
work. The kriging variances are expressed as the coefficient

Fig. 8. Cross validation errors ofQ100N for the eight gauges in the
Mur region. Station numbers as shown in Fig. 7.

Fig. 9. Uncertainties of the normalised specific 100-year flood
Q100N from Top-kriging (top) and Ordinary Kriging (bottom), ex-
pressed as the coefficient of variation, colour coded on the stream
network of the Mur region. Uncertainties of the measurements
(i.e. values at the stream gauges) are shown as circles.
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Fig. 10. Catchment area of the Inn and tributaries (km2). Arrows
show flow direction. Numbers refer to the stream gauges. Gauges
1–3 are situated directly on the Inn, the other gauges on the tribu-
taries. The region represents a rectangle of 43 by 29 km.

of variation (CV) of the estimate:

CV =
σR

Q100N
(16)

The points represent the measurement errorσ 2
i at the stream

gauges, again expressed as a coefficient of variation. The
measurements have CVs in the range 0.05–0.3. This is rather
large, and is related to relatively short record lengths for
some of the gauges. Both procedures estimate the lowest
uncertainties close to the measurements, equal to or larger
than the CV of the measurements. Note that the uncertainties
on the stream network have been plotted for stream reaches
of finite lengths as for these the catchment boundaries were
available. The small uncertainties, strictly speaking, apply to
the immediate neighbourhood of the gauges.

The uncertainties estimated by Top-kriging and Ordinary
Kriging are very different for most of the stream network.
Top-kriging (Fig. 9 top) gives relatively small uncertainties
on the main river with CVs of around 0.2. This is only
slightly larger than the CV of the measurements. On the other
hand, the uncertainties of some of the tributaries are consid-
erably larger. The uncertainties are small for those tributaries
where measurements are available, but rather large for tribu-
taries without any measurements. It is interesting that the un-
certainty increases substantially with decreasing catchment
area. For some of the smallest catchments, i.e. headwater
catchments, CVs of more than 1 are estimated. These point to
very uncertain estimates, which is not surprising as no mea-
surements are near.

The uncertainties estimated by Ordinary Kriging (Fig. 9
bottom) contradict what one would intuitively expect. Most
disturbing is that some of the smallest catchments have un-
certainties equal to or smaller than the uncertainty of the
main river. This is of course a result of the uncertainty being
a function of Euclidian distance between catchment centre
and measurements only, and not a function of the size and
nesting of the catchments.

Fig. 11.Estimates of the normalised specific 100-year floodQ100N
from Top-kriging (top) and Ordinary Kriging (bottom) colour coded
on the stream network of the Inn region. The measurements
(i.e. values at the stream gauges) are shown as circles. Units are
in m3/s/km2.

The second example presented in this paper is the Inn re-
gion for which the catchment areas are shown in Fig. 10.
Stream gauges 1–3 are situated directly on the river Inn, the
other gauges on the tributaries. Between gauges 1 and 3, the
catchment area increases from 5800 km2 to 8500 km2. There
are only two tributaries with an area of more than 100 km2

entering the Inn within this reach, but they are larger than
the tributaries of the Mur. The Sill is the tributary gauged
by gauge 4 just before the junction with the Inn, and has an
area of 850 km2. The Ziller is the tributary gauged by gauges
7–10, and has an area of 1135 km2.

The Top-kriging and Ordinary Kriging estimates of the
normalised specific 100-year floodQ100N are shown in
Fig. 11 top and bottom, respectively. TheQ100N measured
at the Sill (gauge 4) is similar to that measured at the Inn at
gauge 1. TheQ100N measured at the Ziller (gauge 7) is larger
than that measured at the Inn at gauge 1 but theQ100N at the
smaller tributaries (gauges 5 and 6) are much smaller than
those of the Inn. Although the measurements on the tribu-
taries show large variations, the Top-kriging estimates on the
Inn change very little, which is consistent with the measure-
ments.

Similar to the Mur case, the Ordinary Kriging estimates
deviate considerably from Top-kriging but they deviate in a
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Fig. 12. Cross validation errors ofQ100N for the eight gauges in
the Inn region. Station numbers as shown in Fig. 7.

different way because of different gauge locations. For the
Mur case, the main differences were the estimates of the trib-
utaries, which were too much affected by the main river. In
the Inn case (Fig. 11), the estimates on the tributaries are
similar to those of Top-kriging, but the estimates on the main
river are obviously too much influenced by measurements on
tributaries. The tributaries for which the centres are close to
the centre of the Inn lie outside the region shown in Fig. 11
and have small measuredQ100N similar to the southern trib-
utaries in Fig. 11.

The cross validation procedure confirms more quantita-
tively that the interpolation errors of Top-kriging are much
smaller than those of Ordinary Kriging (Fig. 12). The dif-
ference between the two methods is largest along the main
river (gauges 1–3). This is because estimates from Ordinary
Kriging have their largest errors along the main river, while
Top-kriging only gives small errors on the main river. The
difference is smaller along the tributaries, but Top-kriging
does give smaller errors than Ordinary Kriging for the ma-
jority of the gauges.

The estimated uncertainties of the estimates in the Inn re-
gion are shown in Fig. 13. Similar to Fig. 9, Fig. 13 shows
that the uncertainties next to the stations are equal to the mea-
surement uncertainties. The Top-kriging uncertainties along
the main river and along tributaries with measurements are
lower than the uncertainties of tributaries without measure-
ments as would be expected. The uncertainties generally in-
crease with decreasing catchment size. For the tributaries
that are gauged close to the confluence with the main river
(gauges 5 and 6) the uncertainty gradually increases as one
moves away from the gauge towards the headwaters. How-
ever, if the tributary is gauged (e.g. by gauges 5 and 6) the es-
timates of the headwater catchments are less uncertain than
the headwaters of ungauged tributaries (e.g. the tributaries

Fig. 13. Uncertainties of the normalised specific 100-year flood
Q100N from Top-kriging (top) and Ordinary Kriging (bottom), ex-
pressed as the coefficient of variation, colour coded on the stream
network of the Inn region. Uncertainties of the measurements
(i.e. values at the stream gauges) are shown as circles.

close to stream gauge 2). Overall, the Ordinary Kriging un-
certainties indicate that the Euclidian distances do not reflect
the intuitive distribution of estimation errors. The uncertain-
ties are far too uniform within the region as they do not take
into account the amount of information shared by gauged and
ungauged catchments. In contrast, Top-kriging captures ex-
actly this information, as expected.

4 Conclusions

We have presented Top-kriging as a spatial estimation
method for streamflow-related variables. It takes both the
area and the nested nature of catchments into account. The
main appeal of the method is that it is a best linear unbiased
estimator (BLUE) adapted for the case of stream networks
without any additional assumptions. Because of the mini-
mum number of assumptions we believe Top-kriging is the
most natural method of estimating streamflow-related vari-
ables on stream networks.

The method provides more plausible and, indeed, more
accurate estimates of the specific 100-year flood than Ordi-
nary Kriging in the regions examined here. In the example
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of the Mur region we showed how the estimates of the trib-
utaries are improved over Ordinary Kriging. In the example
of the Inn region we showed how the estimates on the main
stream are improved. In general, both the estimates on the
main stream and the tributaries will be superior to Ordinary
Kriging and the relative magnitude of the improvement will
depend on the location of the gauges. In essence, Top-kriging
treats upstream and downstream catchments differently from
neighbouring catchments that do not share a subcatchment.
This is also what one would do in manual interpolation. Typi-
cally, the effect of nesting will differ for upstream and down-
stream catchments. Larger catchments are generally given
larger weights than smaller catchments (Fig. 3) and they are
also likely to be well correlated with other large neighbours.
It is therefore more likely that the nesting will have more im-
pact on the weights of an upstream catchment than on those
of a downstream catchment.

In addition to accounting for nested catchments, the
method as presented here is able to exploit the information
contained in short records (Eqs.2 and 10). Variables es-
timated from short records are less certain than those from
longer records. By allowing the measurement error to vary
between gauges it was possible to use both short and long
records and attribute more confidence to the longer records.

Top-kriging not only provides estimates of the variable of
interest in ungauged catchments but also provides estimates
of their uncertainty. The uncertainty patterns estimated by
Top-kriging are very different from those of Ordinary Krig-
ing. While the Ordinary Kriging uncertainty only depends
on the centroid distances of gauged and ungauged catch-
ments, the Top-kriging uncertainties fully take into account
the nested nature of catchments. Figures 9 and 13 are typ-
ical of the way Top-kriging estimates interpolation uncer-
tainty. On the main stream, where most of the gauges are,
the estimated uncertainties are smallest. On tributaries that
are gauged close to their confluence with the main river, the
uncertainty gradually increases as one moves away from the
gauge towards the headwaters. If a tributary is gauged, the
estimates of the headwater catchments are less uncertain than
the estimates of headwater catchments of similar size with-
out a downstream gauge on the tributary. Locations between
gauges at large rivers can also be considered as ungauged.
However, it is in the headwater catchments where most of
the uncertainty resides. The IAHS Decade on Predictions in
Ungauged Basins (PUB) (Sivapalan et al., 2003) has predic-
tive uncertainty of hydrological variables as its main focus.
This is exactly what Top-kriging provides for the most natu-
ral case of best linear unbiased estimators.

Top-kriging assumes linear aggregation as it is a linear es-
timator. This means that, strictly speaking, the method only
applies to variables that are mass conserving over nested
catchments. We suggest that the method can also be prof-
itably used, as an approximation, for variables that do not
aggregate linearly but show a degree of averaging. The ex-
ample of the specific 100-year flood shown here is not mass

conserving and it was demonstrated that the Top-kriging es-
timates are much better than the Ordinary Kriging estimates.
In fact, although Top-kriging is based on linear aggregation it
does not necessarily reproduce the mass-balance of the vari-
able of interest (Sauquet et al., 2000). This is consistent with
our suggestion of the approximate use of Top-kriging for
a range of streamflow-related variables. Such variables of
interest in hydrology include mean annual discharge, flood
characteristics, low flow characteristics, concentrations, tur-
bidity and stream temperature.

Top-kriging as presented in this paper is based on a simple
linear aggregation scheme. There are numerous opportuni-
ties for extending this simple scheme and still retaining the
merits of a regionalisation procedure that naturally takes into
account the area and nested structure of catchments. There
are more complex ways of representing the logarithmic back-
transformation of the variable of interest (e.g. Clark, 1998;
Krige, 2004) and these could be used in a Top-kriging con-
text. We have in a different context extended Top-kriging to
a more complex scheme that takes auxiliary variables into
account (such as mean annual precipitation and a lake in-
dex) to improve the estimates beyond simple interpolation.
This is being used to estimate T-year floods for 26 000 km of
Austrian streams, which will be used for hazard zone plan-
ning in a project known as HORA. We are also planning to
extend Top-kriging to space-time aggregation. Initial tests
of space-time aggregation have been made in Skøien and
Blöschl (2005b) and Skøien (2005a). Results of the more
complex schemes will be reported in the near future.

Acknowledgements.The ideas of Top-kriging have evolved over
the past ten years. Early discussions with M. Sivapalan and
R. Grayson and more recent discussions with L. Gottschalk,
I. Krasovskaia, E. Leblois and E. Sauquet have significantly
contributed to our own ideas. The Austrian Academy of Sci-
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