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Abstract

Although it is well known that forest canopies reduce the amount and intensity of precipitation at the ground surface, little is known about
how canopy interception modifies extreme events. This research investigated the effects of forest cover on intensity-duration-frequency
relationships using a stochastic model to extrapolate measured rainfall and throughfall to throughfall expected during extreme events. The
model coupled a stochastic model of rainfall with stochastic representations of evaporation and precipitation transfer through canopies.
Stochastic evaporation was governed by probability distributions sensitive to storm size, and transfer through canopies was governed by a
black-box linear system. The modelled reduction of extreme-event intensities by canopies was 5-30%, depending on duration and return
interval. The reduction was 15-20% in low return interval events (2 y) at all durations. In contrast, intensities of high return interval events
(90 y) were proportionally more reduced at short durations (~30% reduced) than at long durations (~5% reduced). The model suggested that
evaporative losses reduced intensity in the frequent events (2 y return interval), but water transfer through the canopy was more important for
the reduction in intensity in the rarest extreme events. High return intervals of long duration were least affected by canopies because evaporative
losses were the least proportion of rainfall. Extreme events larger than 10- or 20-y return interval probability threshold occurred only 31—

69% as often in throughfall as in rainfall.
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Introduction

Forest canopies modify precipitation so that throughfall
differs in amount and intensity from rain falling on forests.
Of the processes involved in canopy interception, the best-
described is evaporation, where work has included process-
level investigations at small spatial and temporal scales (e.g.
Rutter ef al., 1971; Murphy and Knoerr, 1975; Gash et al.,
1999; Klaassen, 2001) and development of models useful
at larger spatial and temporal scales (e.g. Sellers ef al., 1996;
Ramirez and Senarath, 2000). In contrast, published
observations of canopy effects on intensity are rare. Trimble
and Weitzman (1954) were the first to report the effect of
canopies on intensity, but little progress has been made since
to quantify how vegetation affects precipitation rates.
Several studies have shown lagging and damping of rainfall
intensities under canopies (e.g. Rutter ez a/., 1971; Massman,
1983; Schellekens et al., 1999; Xiao et al., 2000b; Keim

and Skaugset, 2003), but most canopy interception research
has been to estimate time-integrated quantities. Keim (2003)
developed a black-box approach to predict throughfall
intensities at high temporal resolution during rainfall, but
there have been no investigations of this process at longer
timescales that encompass extreme events. As a result, little
is known about the overall effects of canopy interception
on catchment hydrology aside from simple water budgets.

A promising approach to understand the effects of canopy
interception on evaporation and intensity smoothing over
long time scales is stochastic modelling. Stochastic models
supplement existing data to clarify interactions between soil,
vegetation and atmosphere that affect the water cycle.
Predicting effects of human activities on these interactions
is facilitated by a stochastic approach that can account for
temporal variability as well as deterministic relationships.
Precipitation is one hydrological variable that is well suited
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to stochastic representation, and an extensive literature
documents progress in developing these models (see Wilks
and Wilby, 1999, for a partial review). Combining stochastic
precipitation models with process-based hydrological
models can produce powerful tools for application in a
variety of unmeasured situations, such as efforts to predict
streamflow (e.g. Kurothe et al., 1997; Cameron et al., 1999;
Burlando and Rosso, 2002), soil erosion (e.g. Tiscareno-
Lopez et al., 1993; Baffaut e al., 1998), landsliding (Benda
and Dunne, 1997a), sediment transport (Benda and Dunne,
1997b), and catchment geomorphology (Tucker and Bras,
1998).

Identifying appropriate model structure and values of
parameters for stochastic models of rainfall requires data
that contain all the variability that the stochastic simulations
are expected to reproduce. This requires long-term records
(20 years or longer) of rainfall from meteorological stations.
Unfortunately, similar data of throughfall to parameterise a
stochastic model of throughfall are lacking, mainly because
most throughfall data were collected for specific research
over short periods of time by varying methods.

The goal of this research is to use existing data of rainfall
and throughfall to estimate the effects of forest cover on
intensity-duration-frequency relationships of rainfall and
extreme events. In this paper, a new stochastic model of
temporal throughfall is presented that uses stochastic
representations of canopy evaporation and intensity
smoothing to modify an existing stochastic model of rainfall,
without requiring long records of throughfall. Parameters
describing the stochastic interception effects can be
estimated from relatively short (i.e. 1 or 2 seasons) records
of rainfall and throughfall by estimating evaporation and
intensity smoothing effects of canopies separately.

Methods

MODEL OVERVIEW

The stochastic model of throughfall consists of a stochastic
model of rainfall modified by stochastic evaporative loss
for every storm and stochastic smoothing of intensity within
each storm (Fig. 1). Evaporation from canopy interception
is represented by stochastic evaporation loss at a 6-hour
timescale and stochastic intensity smoothing is represented
by a linear convolution operating at a 5-minute timescale.
The 6-hour time step for simulating evaporation matches
the length of a storm (mean storm lengths from the data
used were 4—18 h, depending on the site). The 5-minute
timescale for intensity smoothing is near the limit of
resolution of the tipping-bucket rain gauge data used to
parameterise the model. It was selected as a compromise
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Fig. 1. Schematic of a stochastic model of temporal throughfall.

between the desire to simulate processes at short timescales
and to reduce effects of errors in the data.

To achieve the objectives of understanding the effects of
vegetation on statistical properties of throughfall, the number
of variables was kept small and the model structure simple.
The greatest simplifications are in simulation of evaporation.
Specifically, the model simulates evaporation at a 6-hour
timestep by subtraction of evaporated mass, evenly
distributed over each 6-hour time period. The model does
not simulate serial correlation of evaporation at any time
scale or variance of evaporation at shorter time scales.
Therefore, realisations of the model may not be suitable as
boundary conditions for other physically-based models of
catchment hydrology or soil-vegetation-atmosphere transfer
of water. The model does, however, respect the long-term



distribution of storm-scale evaporation. This allows
estimation of throughfall statistics, especially those
pertaining to extreme events.

RAINFALL

The stochastic representation of throughfall does not depend
strictly on the structure of the rainfall model. However,
simulating the intensity-smoothing phenomena in
throughfall at short timesteps requires a stochastic model
of rainfall that simulates rainfall intensities at the same short
timestep. This work used a rainfall model by Rupp et al.,
(2000) which is structured as a multiplicative random
cascade. In short, a multiplicative random cascade begins
with the total rainfall mass over the period to be simulated,
then disaggregates mass to lower (higher-resolution)
timescales by assigning mass stochastically to successively
subdivided time periods (Schertzer and Lovejoy, 1987;
Gupta and Waymire, 1993). The proportioning of mass from
one timescale into time periods at the next lower timescale
is governed by probabilities determined by mass of rainfall
and timescale (similar to the models of Olsson, 1998 and
Menabde and Sivapalan, 2000). The advantages of the
random cascade structure include proper representation of
the temporal scaling of rainfall and good reproduction of
variance at long timescales (both important for simulating,
for example, intensity-duration-frequency curves), as well
as the explicit simultaneous simulation of rainfall at several
nested timescales.

The rainfall model was calibrated using data from several
sources in western Oregon, USA. The long-timescale data
were observations of daily rainfall (1889—1999) from
Corvallis, Oregon (75 m msl). The medium-timescale data
were observations of hourly rainfall (1984—1999) from
Corvallis. The short timescale data and mean annual
precipitation of 2260 mm were from a tipping-bucket rain
gauge (1988-2000) near Johnson Creek (250 m msl) in the
central Oregon Coast Range, 20 km northeast of Reedsport,
Oregon. The climate of this area is strongly seasonal, with
80% of precipitation occurring in frontal storms during
October to March, and only 5% occurring during the summer
months. Snowfall and convective rainstorms are negligible.
Extreme precipitation events normally occur during autumn
and winter, when subtropical frontal storms are enhanced
by orographic uplift.

EVAPORATION

The proportion of precipitation that is intercepted and
evaporated is a complicated function of many meteorological
and vegetative conditions (e.g. Murphy and Knoerr, 1975;
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Gash et al., 1999; Klaassen, 2001). Deterministic approaches
to modelling evaporation by these processes have dominated
the canopy interception literature (e.g. Rutter et al., 1971;
Gash, 1979; Xiao et al., 2000a), and these models could
serve as a way to use stochastic weather data to predict
evaporation. The objectives of this research are only to
estimate vegetation effects on precipitation in the statistical
sense. Therefore, it was decided to simplify the model
structure and model the evaporation solely as a stochastic
function of precipitation amount.

The evaporation data available were summarised by storm
total. For estimating evaporation at the 6-hour time scale,
the probability distribution of proportional evaporative
losses in 6-hour time steps was assumed to be the same as
that of the storm-total proportional evaporative losses for
any given precipitation amount. Thus, observations of storm-
total precipitation and throughfall were used to parameterise
evaporation loss probabilities.

Rainfall — throughfall data
Rainfall and throughfall data were asembled from five
forests where the dominant species was Douglas-fir
(Pseudotsuga menziesii). Two of these sites were in the
McDonald/Dunn Research Forests of Oregon State
University near Corvallis, Oregon, USA. The site in the
McDonald Forest was a young natural stand with 48-year
old trees that averaged 37 m tall. Throughfall was collected
in ten 157-mm-diameter rain gauges (Krygier, 1971). The
site in the Dunn Forest was a thinned, natural stand with
trees 60 years old that averaged 32 m tall. Throughfall was
collected in three troughs, 19 mm x 4 m, each routed to
tipping-bucket rain gauges (Keim and Skaugset, 2003). Two
sites were in the Gifford Pinchot National Forest of south-
western Washington State, USA. One Washington site was
Cedar Flats Research Natural Area near Mt. St. Helens,
where the oldest trees were 600 years old and up to 84 m
tall. Throughfall was collected in seven trough collectors
identical to those used in the Dunn forest (Keim and
Skaugset, 2003). The other Washington site was at the Wind
River Canopy Crane, near Carson, Washington, where the
oldest trees were 500 years old and up to 60 m tall.
Throughfall was collected in 24 roving 10-cm-diameter
tipping-bucket gauges (Link ef al., in press). The final site
was a plantation in the Malalcahuello Forest Reserve, [Xth
Region, Chile, where the trees were 27 years old and 25 m
tall. Throughfall was collected in one gutter, 10.5 cm x 24 m,
routed to a storage tank (Iroumé and Huber, 2002; with
additional original data for this research).

Climates at the five sites all exhibit seasonal precipitation
patterns, dominated by marine frontal storms with
precipitation enhanced by orographic effects. Snow is most
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common at the sites in Washington, but these data were
removed from the analysis. Overall, these five sites
encompass a range of age and canopy structure of Douglas-
fir stands, providing this study with a broad inferential base
across the range of this species.

Data for this project were of varying temporal and spatial
resolution. The coarsest temporal resolution was in the data
from the McDonald Forest, where storm-total measurements
were made at depth resolution of 0.254 mm. There was no
effort to verify that the 10 gauges used were sufficient to
estimate the mean throughfall in this stand. Data from the
Dunn forest and Cedar Flats were collected by event-
recording dataloggers connected to tipping buckets at a
resolution of 0.127 mm. Geostatistical analyses of the spatial
variability of throughfall indicated that the lengths of the
collecting troughs were similar to the minimum lag at which
pairs of storm-total observations of throughfall were least
correlated in both stands (Keim, 2003). Data from the Wind
River Canopy Crane were collected by event-recording
dataloggers connected to tipping buckets at a resolution of
0.254 mm. Comparison with 44 storage gauges, measured
and relocated manually after varying lengths of time at this
site, indicated 2.1% study-wide difference between the two
types of gauges and suggested that the tipping bucket data
were accurate estimates of the mean throughfall (Link et
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al., in press). A recording float in the throughfall storage
tank at the Chilean site recorded throughfall in intervals of
0.24 mm. The trough at that site was ten times larger than
the minimum catch area required to estimate the mean
of throughfall in that stand (A. Huber, personal
communication).

Stochastic representation

Two features of the relationship between storm-total
precipitation and storm-total throughfall (precipitation —
evaporation) in these forest stands combine to permit simple
stochastic representation. First, the relationship was similar
among the five sites (Fig. 2). Differences in study methods,
forest age, canopy structure and tree size suggest that
evaporation data might differ systematically among stands,
but climatic and storm-to-storm variability overwhelmed
these differences sufficiently for all stands to be treated alike.
Second, fractional throughfall has the lowest mean, highest
variance and highest skew for small storms, but highest
mean, lowest variance and lowest skew for large storms
(Fig. 2).

This was modelled by treating throughfall, T (%), as a
random variable associated with the independent variable
storm-total rainfall, R (mm), and represented by a gamma

0.1 1

10 100

1000

Gross Precipitation (mm)

A Chile

0 Oregon, USA (McDonald Forest)
® Oregon, USA (Dunn Forest)

O Washington, USA (Cedar Flats)
® Washington, USA (Wind River)

Fig. 2. Relationship between total storm precipitation and percent throughfall in five different
Douglas-fir forests in Chile and the northwestern USA.
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probability density function (PDF) with parameters that
varied by storm-total precipitation. The possible values of
T, modelled this way range from zero to infinity. This allows
for T,> 100, which indicates that evaporation is less than
occult precipitation (impaction of cloud droplets or
condensation on canopy surfaces), but disallows negative
T, that indicates more evaporation than rainfall. There were
data for several storms where Tp > 100 (Fig. 2), and Tp <0
is impossible.
The gamma distribution is given by

Rf"le(%‘Rj
» = T (1)

where T, is the percent throughfall occurring in any given
storm or 6-hour period, R is the total precipitation in that
same period, « and @ are parameters, and I is the gamma
function. Values of orand & were estimated for 18 ranges of
R; the limits of each range were defined to include at least
30 observations and the ranges were allowed to overlap by
50%. L-moments (Hosking, 1990) were used to find the
best-fit sets of « and & for PDFs of T in each range of R
(Fig. 3); then these parameter sets were aassociated with
the midpoint of the range and curves to o and & were fitted
as functions of R (Fig. 4).

Probability Density

5-8 mm
1-3mm

\1/6 30-47 mm
S\O‘ 13-18 mm
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The best fits for the R-o and R-6 curves (Fig. 4) were
found by minimising the sum of squared differences between
the moments predicted by candidate R-« and R-6 curves
and the observed moments of 7 (Fig. 5). Inability to identify
« in storms larger than 10 mm (Fig. 4) led to reduction in
the parameterisation of the model by one by defining o =
1/60>f(R), with f(R) defined to fit predicted 7, to the observed
means (Fig. 5). In essence, this procedure fitted & to the
mean R-TF curve by varying a6, which is the first moment
ofthe gamma distribution (mean T at each rainfall intensity).
Parameter fits were obtained only after setting the asymptotic
expected mean T =382 for large storms (Figs. 2, 4). This
value was chosen as the expected mean 7' for the largest
storms on the assumption that the largest storms would have
the least evaporative loss, yet not much more than the largest
storms observed. In a rainfall-throughfall relationship
familiar in canopy interception work (e.g. Leyton, 1967),
this asymptote corresponds to the slope of the linear
regression of 7 (mm) on R (mm) for large storms. Values of
this asymptote in the literature range from about 0.6 to 1.0,
depending on vegetation and climate, which corresponds
to 0 to 40% evaporative loss from the largest storms.

The result of varying parameters of the gamma distribution
smoothly through rainfall space is an R-dependent PDF. In
this way, percent throughfall is represented stochastically,

84+ mm

150

% Throughfall

Fig. 3. Probability density of percent throughfall as a function of storm size for rainfall-throughfall data lumped across five sites in Chile and
the northwestern USA. Each subplot shows a histogram of observed percent throughfall for a range of total rainfalls (gray line), and a fitted
gamma distribution (black line). Only five sample ranges of total throughfall are shown; the completed analysis contained 18 overlapping
ranges. Throughfall for some storms in excess of 100% indicates occult precipitation > evaporation.
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Fig. 5. First four moments of percent throughfall for each of 16 ranges of total precipitation (dots at median of each range), and moments
modelled using a gamma distribution with precipitation-dependent parameters (solid lines). Data are lumped from five sites in Chile and

northwestern USA.

with just one independent fitted parameter (¢) and one
physically-based parameter (asymptotic T).

INTENSITY SMOOTHING

After removing the stochastic evaporation from the random
cascade model of rainfall at the 6-hour timescale (272 days),
the cascading downscaling of precipitation to the 5.625-
minute timescale (27 days) was resumed for subsequent
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simulation of intensity-smoothing effects of vegetation
(Fig. 1).

Intensity smoothing was modelled following Keim (2003).
He used a linear system convolution to model a time series
of throughfall from a time series of rainfall and mimic
damping and lagging rainfall intensity by the canopy. This
method treats the canopy as a catchment using the familiar
unit hydrograph approach to flow modelling (Dooge, 1959,
1973). The model predicts throughfall rate, 7(f) (mm h™),



from rainfall rate, R(r) (mm h™):
t
T(t) = [Rg(t-r)dr @)
0

where 7is a shift in time, and g(z — 7) is a transfer function
defining the response of 7(f) at time shifts 7 after R(¢).
Conceptually, Eqn. (2) describes how the signal R(¢) is
filtered by g(# — 7) to produce an output signal 7(¢).
Following the approach of Keim (2003), the system was
defined with a single input of precipitation corrected for
evaporation (i.e. all precipitation that will eventually reach
the ground), using the 5.625-min-resolution (2% d) stochastic
simulations for R(f) corrected for evaporation.

In practice, g(z — 7) is not known a priori, and must be
inferred from 7(¢r) and R(¢). Keim (2003), using the
summation form of Eqn. (2), estimated the form of g(¢ — 7)
for 48 rainstorms from the Dunn Forest and Cedar Flats
sites by optimising parameters in trial forms of g to maximise
model efficiency (Nash and Sutcliffe, 1970) to predict
measured throughfall in response to rainfall. Three findings
of Keim (2003) were useful for this modelling: (1) simple,
one-parameter models of g(z — 7) were adequate to simulate
7(¢) with high model efficiency (see Fig. 6 as an example);
(2) values of parameters were statistically independent of
measured storm characteristics; and (3) transfer function
parameters were not significantly different between the two
stands. Intuition suggests that transfer times through
canopies should vary among sites but, as was the case with
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evaporation, variability among events was greater than
differences among sites, so the canopies were lumped for
model parameterisation.

Taking advantage of these characteristics, the exponential
distribution was selected as a simple, one-parameter transfer
function to govern intensity transformations by canopies.
The exponential distribution is given by:

at

gt)y=ae ™, 3)

where a is a parameter. Some form of exponential drainage
from canopy storage is a common assumption. Although
data from laboratory tests have shown that this simplest form
Eqn. (3) does not describe canopy storage as well as related
forms with additional parameters (e.g. Calder, 1977; Keim,
2003), it performs nearly as well as higher-parameter models
in the face of variable field conditions (Keim, 2003).

The values of a over all 48 storms at all throughfall
collectors in the Dunn Forest and Cedar Flats site (Keim,
2003) appeared to be log-normally distributed (Fig. 7). To
simulate intensity smoothing in the model, a was generated
randomly from this distribution to parameterise Eqn. (3),
then, using Eqn. 2, the evaporation-corrected 5.625-minute
simulation of rainfall was convolved with Eqn. (3) to
generate the final simulation of stochastic throughfall. The
median value of @ was 0.10, which corresponds to a mean
residence time of precipitation in the canopy of 10 minutes.

8 =
Rainfall 2 Model
7 a Transfer
§ Function
6 B
S
5 0O 20 40 60 80
] Minutes
S~
€4
£
3
2 I
1
Throughfall: Measured / Modeled
0
15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
24 January 2002

Fig. 6. Example of throughfall predicted (thin black line) from rainfall (gray line) using a simple linear system governed by an exponential
transfer function (inset) and optimised to reproduce observed throughfall (thick black line). Data are from the Dunn Forest site in western

Oregon, USA.
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60

0 02 04 06 08 1
Exponential Parameter

Fig. 7. Histogram of best-fit parameters for an exponential
distribution transfer function in a linear system for predicting
throughfall rates from rainfall rates at the Dunn Forest and Cedar
Flats study sites, northwestern USA. The solid line indicates the best
fit of the lognormal distribution to the data.

Results and Discussion

EVAPORATION

Over a 179-year simulation, the stochastic model of
throughfall predicted interception loss of 24% of gross
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precipitation (7, = 76), matching the lumped data. Thus, the
representation of interception evaporation that was
dependent on rainfall and generated by a gamma distribution
was able to reproduce long-term observed mean evaporation
rates. However, modelled variance of T was about 20%
higher than that observed for storms larger than 60 mm (Fig.
5; note the log-scale axes), leading to poorer simulation of
evaporation in the largest storms, specifically in the events
with T > 100 (Fig. 8). Parameterising the gamma
distribution to remedy these problems is possible, but
choosing an objective way to do this would be difficult given
sparse data.

INTENSITY-DURATION-FREQUENCY: EXTREME
EVENTS

Comparing intensity-duration-frequency (IDF) curves of
throughfall simulations with rainfall simulations (Fig. 9)
showed a general reduction in extreme precipitation events
by the canopy (Fig. 10). This reduction in intensity averaged
15-20% for all durations and return periods; however, the
reduction varied with event frequency and duration. Low
return period events showed a constant intensity reduction
by the canopy across the full range of durations (solid gray
line, Fig. 10). Rainfall intensities of large, high return period
events were reduced more at short durations and less at long
durations than were small, low return period events (solid
black line, Fig. 10).

100 1000

Six-Hour Precipitation, R (mm)

Fig. 8. Example stochastic simulation of 8 years of throughfall as a percentage of simulated rainfall. Each dot
represents a six-hour period, which is defined as the length of a storm. Compare to data in Fig. 6.

30



A stochastic model of throughfall for extreme events

1000 Rainfall
E ™~
~ 100 - S .
E \5\\
T~ e ]
: '\1.\\‘%\. i
g 10 - \kx\
€ Ny N\
— \
e
1 \
1000 ‘ ‘ ‘ Throughfall
- - T (yr):
E e
= 100 s TAS
E | gg" . »Q\.v\iiEN
L 5,: - k\‘\\ i <ol
= & S SN
NN
E NN
~
1 T T 1
0.01 0.1 1 10 100 1000

Duration (hr)

Fig. 9. Intensity-duration-frequency relationships for a 179-year stochastic simulation of rainfall and throughfall. Each dot
is a simulated (not fitted) value plotted at the Weibull plotting position for a series of annual maximum intensities. T, is the

return period.
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Fig. 10. Attenuation of simulated extreme events by forest canopy in
a stochastic model of throughfall. Open circles are ratios of
throughfall intensities to rainfall intensities calculated for a 2-year-
return-period (T ) event (gray line is the log-linear regression
relationship), and filled circles are for a 90-year event (black line is
the regression relationship). Dashed lines indicate regression
relationships for three other return periods.

At long durations, the largest events are less attenuated
by forest canopy than the smaller, more frequent events
because mean Tp increases with R, and there is least total
interception loss in the largest long-duration storms. The
canopy effect of intensity smoothing does not affect IDF
curves in the long duration storms because the smoothing
occurs at shorter timescales.

The attenuation of intensities by the canopy at the shortest
durations (< 1 h) includes effects of both evaporative loss
and intensity smoothing. The high return period intensities
are most affected by the intensity smoothing effect because
of the assumptions of the convolution model. Specifically,
rainfall during periods of high intensity is smoothed
proportionally regardless of the magnitude of input, but
antecedent throughfall rates are on average a smaller
proportion of rainfall during the very highest intensities.
The resulting aggregate intensity is therefore a smaller
proportion of high intensity rain than low intensity rain. It
is also possible for some throughfall events not to be
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contemporaneous with the corresponding (i.e. in the same
year) rainfall events. This could occur if, for example, occult
precipitation exceeds evaporative loss producing T,>100
in the maximum annual throughfall event, while the
maximum annual rainfall event occurred at some other time.
However, this is not likely to be the source of the most
extreme throughfall events.

Another way to quantify the difference between IDF
curves of rainfall and throughfall is by the difference in
return period of events of a given magnitude. This type of
analysis allows the frequency of events above thresholds of
interest to be estimated. For example, threshold values of
precipitation intensity and duration have proven useful for
identifying events that are sufficient to cause widespread
landsliding (e.g. Caine, 1980; Keefer et al., 1987; Larsen
and Simon, 1993; Terlien, 1998) without requiring
identification of the physical causes of individual slides.
The 10-y and 20-y return intervals were selected as example
intensity-duration thresholds.

Modelled events large enough to reach these thresholds
occurred less frequently in throughfall than in rainfall (Fig.
11) because of simulated evaporation and intensity
smoothing by canopy interception. Return intervals for
throughfall events equivalent to 10-y precipitation events
ranged from 15 to 32 years, depending on duration.
Similarly, return intervals for throughfall events equivalent
to 20-y precipitation events ranged from 29 to 52 years,
depending on duration. If the example thresholds correspond
to, say, landslide-producing events, these results suggest that

\ Return period of throughfall

hillslopes under forest canopies are likely to experience
destabilising hydrological conditions with only 31 to 69%
of the frequency experienced by hillslopes in openings.

The lack of sufficient data makes it impossible to verify
or refute the predictions of the model in relation to intensity
smoothing and IDF curves. The results of the model suggest
that canopies are most effective in attenuating the most
extreme intensities, but it is important to remember that there
are only limited observations of this phenomenon (e.g. Keim
and Skaugset, 2003) and the predictions in the field have
not been fully tested. Many more rainfall and throughfall
observations during intense rainfall and at high temporal
resolution would be needed for direct testing of the
predictions presented in this paper. The strategy of
estimating effects of canopies on extreme events by
extrapolating from data of those effects in smaller events
follows the paradigm suggested by Hall and Anderson
(2002). These methods, uncommon in hydrology, may be
the only way to make predictions about events that are not
normally measurable.

There are many sources of uncertainty in the 179-year
simulation of rainfall and throughfall presented here. These
include errors in measuring rainfall and throughfall and
errors arising from small sample sizes in estimating
probability distributions governing both the rainfall and
throughfall models. Assessing the effects of these
uncertainties on predictions of the model using established
methods such as GLUE (Beven and Binley, 1992) is
prevented by the lack of data suitable for model validation.
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Fig. 11. Simulated effect of canopy interception evaporation and intensity smoothing on the frequency of extreme precipitation
events over example thresholds of 10- or 20-year return period. Symbols indicate the return interval of throughfall events equal to
precipitation events of 10y (open triangles) and 20 y (filled circles) return intervals for several durations.
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Generally speaking, uncertainty increases with return period
for two reasons. First, uncertainty is greatest in the extreme
tail of probability distributions of rainfall. Second, the model
of evaporation and intensity smoothing depends mainly on
data from mundane events. Formal analysis of uncertainty
awaits development of methods appropriate to models of
extreme events (Hall and Anderson, 2002) and users of the
model presented in this paper should exercise caution in
applying the results.

Conclusions

This research has demonstrated that stochastic
representations of canopy transformation of precipitation
by evaporation and intensity smoothing can be coupled with
a stochastic model of rainfall to produce a stochastic model
of throughfall. By explicitly modelling the evaporation and
intensity-smoothing effects separately, the model can be
parameterised using relatively short sets of data. This allows
the model to be used to estimate the probabilistic effects of
forest canopies on extreme precipitation events without
requiring long records of throughfall.

Comparing the predicted intensity-duration-frequency
(IDF) relationships for rainfall and throughfall in the context
of landslide initiation suggests the importance of vegetative
cover in controlling hydrological processes. When
parameterised with data from five forests in Chile and the
USA, the model predicts reductions in extreme events by
up to 30% in magnitude or about 50% in frequency.
Parameterising the model for other climates and vegetation
would result in different estimates of vegetative effects on
extreme events.

As far as the authors know, these are the first published
IDF curves for throughfall. Because no data exist to allow
direct construction of these curves, the model results can be
only untested estimates. It is unlikely that data will ever
exist to test these predictions directly, so indirect tests must
suffice. More work would be required to develop such tests,
which might consist of a combination of innovative field
measurements and models.
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