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Abstract
This paper introduces TOPKAPI (TOPographic Kinematic APproximation and Integration), a new physically-based distributed rainfall-
runoff model deriving from the integration in space of the kinematic wave model.  The TOPKAPI approach transforms the rainfall-runoff and
runoff routing processes into three ‘structurally-similar’ non-linear reservoir differential equations describing different hydrological and
hydraulic processes. The geometry of the catchment is described by a lattice of cells over which the equations are integrated to lead to a
cascade of non-linear reservoirs. The parameter values of the TOPKAPI model are shown to be scale independent and obtainable from digital
elevation maps, soil maps and vegetation or land use maps in terms of slope, soil permeability, roughness and topology. It can be shown,
under simplifying assumptions, that the non-linear reservoirs aggregate into three reservoir cascades at the basin scale representing the soil,
the surface and the drainage network, following the topographic and geomorphologic elements of the catchment, with parameter values
which can be estimated directly from the small scale ones. The main advantage of this approach lies in its capability of being applied at
increasing spatial scales without losing model and parameter physical interpretation. The model is foreseen to be suitable for land-use and
climate change impact assessment; for extreme flood analysis, given the possibility of its extension to ungauged catchments; and last but not
least as a promising tool for use with General Circulation Models (GCMs). To demonstrate the quality of the comprehensive distributed/
lumped TOPKAPI approach, this paper presents a case study application to the Upper Reno river basin with an area of 1051 km2 based on a
DEM grid scale of 200 m.  In addition, a real-world case of applying the TOPKAPI model to the Arno river basin, with an area of 8135 km2

and using a DEM grid scale of 1000 m, for the development of the real-time flood forecasting system of the Arno river will be described.  The
TOPKAPI model results demonstrate good agreement between observed and simulated responses in the two catchments, which encourages
further developments of the model.

Keywords: rainfall-runoff modelling, topographic, kinematic wave approximation, spatial integration, physical meaning, non-linear reservoir
model, distributed and lumped

Introduction
The study of the impacts of land use and climate changes
on the hydrological regimes of river basins requires a better
understanding of how climate, topography-geomorphology,
soils and vegetation interact to control runoff at the field,
hillslope and catchment scales.  These interactions can be
represented within complex physically-based distributed
models (e.g. SHE: Abbott et al., 1986 a,b). But, traditional
physically-based distributed models usually work at a small
size and require a large amount of data and lengthy
computation times which limit their application.  Todini
(1988) has pointed out that a promising direction in model
development is to lump the differential equations at
increasing scales except for a few essential parameters and
to make them computationally affordable. Although the
validity of effective parameter values that must be used with

large scale catchments has been questioned (Beven, 1989),
nonetheless a correct integration of the differential equations
from the point to the finite dimension of a pixel, and from
the pixel to larger scales, can actually generate relatively
scale-independent physically- based models, which preserve
the physical meaning (although as averages) of the model
parameters.

On the basis of a critical analysis of two well known and
widely used hydrological rainfall-runoff models - namely
the ARNO (Todini, 1996) and the TOPMODEL (Beven and
Kirby, 1979; Beven et al., 1984; Sivapalan et al., 1987),
Todini (1995) recently proposed the TOPKAPI
(TOPographic Kinematic APproximation and Integration)
model. The ARNO model is a variable contributing area
semi-distributed conceptual model controlled by the total
soil moisture storage, and widely used for real-time flood
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forecasting. The major disadvantage of the ARNO model
is the lack of physical grounds for establishing some of the
parameters, which reduces its possible extension to
ungauged catchments. The TOPMODEL is a variable
contributing area model in which the predominant factors
determining the formation of runoff are represented by the
topography, the transmissivity of the soil and its vertical
delay.  However, the model preserves its physical meaning
only at the hillslope scale (Franchini et al., 1996), while it
degrades into a conceptual model at larger scales, with the
same problems mentioned for the ARNO model.

In contrast, the TOPKAPI model is based on the lumping
of a kinematic wave assumption in the soil, on the surface
and in the drainage network, and leads to transforming the
rainfall-runoff and runoff routing processes into three non-
linear reservoir differential equations which can be solved
analytically (Liu, 2002). The geometry of the catchment is
described by a lattice of cells (the pixels of a DEM) over
which the equations are integrated to lead to a cascade of
non-linear reservoirs. The parameter values of the TOPKAPI
model are scale independent and obtainable from a digital
elevation map, soil map and vegetation or land-use map in
terms of slope, soil permeability, roughness and topology.
It can be shown, under simplifying assumptions, that the
non-linear cascade aggregates into a unique non-linear
reservoir at the basin level, with parameter values that can
be estimated directly from the small scale ones without
losing physical meaning.

The present paper explains the overall structure and
methodology of the TOPKAPI model, the non-linear
reservoir equation and its solution technique, the data
requirements, and the model calibration procedure. To
demonstrate the quality of the TOPKAPI approach, a case
study of applying the TOPKAPI model to the Upper Reno
river basin is presented, to clarify the data and calibration
requirements of the model together with the aggregation
capabilities when moving from the distributed to the lumped
versions of the TOPKAPI model.  A real-world case of
applying the TOPKAPI model to the Arno river basin, with
an area of 8135 km2 and using a DEM grid scale of 1000 m,
for the development of areal-time flood forecasting system
for the Arno River is also presented.

Structure and methodology of  the
TOPKAPI model
The TOPKAPI is a comprehensive distributed-lumped
approach. The distributed TOPKAPI model is used to
identify the mechanism governing the dynamics of the
saturated area contributing to the surface runoff as a function
of the total water storage, thus obtaining a law underpinning

the development of the lumped model.
The model is based on the idea of combining the kinematic

approach with the topography of the basin; the latter is
described by a Digital Elevation Model (DEM) whose grid
size generally increases with the overall dimensions.  Each
grid cell of the DEM is assigned a value for each of the
physical characteristics represented in the model. The flow
paths and slopes are evaluated starting from the DEM,
according to a neighbourhood relationship based on the
principle of minimum energy cost (Band, 1986).

The integration in space of the kinematic wave equations
results in three ‘structurally-similar’ non-linear reservoir
equations describing different hydrological and hydraulic
processes. This lumping is performed on the individual cell
of the DEM in the distributed model, while in the lumped
model it is performed at the basin level. The equations
obtained for the local scale and for the lumped scale are
structurally similar; what distinguishes them are the
coefficients, which in one case have local significance and,
in the other, summarise the local properties in a global
manner.

The present TOPKAPI model (Fig. 1) is structured around
five modules that represent the evapotranspiration,
snowmelt, soil water, surface water and channel water
components respectively. For the deep aquifer flow, the
response time caused by the vertical transport of water
through the thick soil above this aquifer is so large that
horizontal flow in the aquifer can be assumed to be almost
constant with no significant response on one specific storm
event in a catchment (Todini, 1995).  Hence, initially, the
model does not account for water percolation towards the
deeper subsoil layers and for their contribution to the
discharge; this is planned as an additional model layer in a
future model development.

The soil water component is affected by subsurface flow
(or interflow) in a horizontal direction defined as drainage;
drainage occurs in a surface soil layer, of limited thickness
and with high hydraulic conductivity due to its macro-
porosity.  The drainage mechanism plays a fundamental role
in the model both as a direct contribution to the flow in the
drainage network and most of all as a factor regulating the
soil water balance, particularly in activating the production
of overland flow. The soil water component is the most
characterising aspect of the model because it regulates the
functioning of the contributing saturated areas. The surface
water component is activated on the basis of this mechanism.
Lastly, both components contribute to feeding the drainage
network.

The most complex and physically realistic model for
estimating actual evapotranspiration is the Penman-Monteith
equation, which has been widely used in many distributed
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Fig. 1. The components of the TOPKAPI model

models, e.g. SHE (Abbott et al., 1986 a,b), DHSVM
(Wigmosta et al., 1994).  However, a simplified approach
is generally necessary because in many countries the
required historical data for Penman-Monteith estimations
are not extensively available; and, in addition, apart from a
few meteorological stations, almost nowhere are real-time
data available for flood forecasting applications. Evapo-
transpiration plays a major role not only in terms of its
instantaneous impact, but in terms of its cumulative temporal
effect on the soil moisture volume depletion; this reduces
the need for an extremely accurate expression, provided that
its integral effect is well preserved. In the present TOPKAPI
model, evapotranspiration can be introduced directly as an
input to the model or computed externally or estimated
internally by a radiation method (Doorembos et al., 1984)
starting from the temperature and from other topographic,
geographic and climatic information, as described in the
ARNO model (Todini, 1996). Again, for reasons of limited
data availability, the snow accumulation and melting
(snowmelt) component is driven by a radiation estimate
based upon the air temperature measurements, which is also
borrowed from the ARNO model.  In the following sections,
the three basic components, the soil water, surface water
and channel water will be described in detail.

The distributed TOPKAPI model
THE SOIL WATER COMPONENT

Fundamental assumptions

(1) Precipitation is constant over the integration domain
(namely the single cell), by means of suitable averaging
and lumping operations of the local rainfall data, such
as Thiessen polygons and Block Kriging (de Marsily,
1986; Matheron, 1970) techniques;

(2) All of the precipitation falling on the soil infiltrates into
it, unless the soil is already saturated in a particular zone;
this is equivalent to adopting as the sole mechanism for
the formation of overland flow the saturation
mechanism from below, (Dunne, 1978);

(3) The slope of the water table coincides with the slope of
the ground, unless the latter is very small (less than
0.01%); this constitutes the fundamental assumption of
the approximation of the kinematic wave in the Saint
Venant equations, and it implies the adoption of a
kinematic wave propagation model with regard to
horizontal flow, or drainage, in the unsaturated area
(Henderson and Wooding, 1965; Beven, 1981);

(4) Local transmissivity, like local horizontal flow, depends
on the total water content of the soil, i.e. it depends on

Meteorological data
(precipitation, air temperature)

DEM Soil type Landuse

Evapotranspiration Model

Snowmelt Model

Soil Water Model

Surface Water ModelPercolation and Groundwater Model

Channel Water Model Lake and Reservoir Model
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the integral of the water content profile in a vertical
direction;

(5) Saturated hydraulic conductivity is constant with depth
in a surface soil layer but is much larger than that at
deeper layers; this forms the basis for the vertical
aggregation of the transmissivity.

Kinematic wave formulation for sub-surface flow

In the TOPKAPI model, the horizontal sub-surface flow, q,
is calculated by the approximation Eqn. (1) (Benning, 1994;
Todini and Ciarapica, 2001):

       ( ) αβ Θ= ~tan Lkq s
(1)
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where β is the slope angle, ks is the saturated hydraulic
conductivity in ms-1, L is the thickness of the surface soil
layer in m, Θ~  is the reduced soil moisture content, rϑ  is
the residual soil moisture content, sϑ  is the saturated soil
moisture content, ϑ  is the water content in the soil, ( )zϑ~  is
the mean value along the vertical profile of the reduced soil
moisture content and α is a parameter which depends on
the soil characteristics (Benning, 1994; Todini, 1995).

Combined with the equation for continuity of mass,  the
following system is obtained:
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where x is the main direction of flow along a cell, t is the
time, q is the horizontal flow in the soil due to drainage,
corresponding to a discharge per unit of width in m2 s–1, and
p is the intensity of precipitation in m s–1. The model is
written in just one direction since it is assumed that the flow
is characterised by a preferential direction, which can be
described as the direction of maximum slope.

Equation (2), rewritten in terms of actual total water
content in the soil, ( ) Θ−= ~Lrs ϑϑη , along the vertical
profile, with the substitution

                ( )
( ) ααϑϑ

β
L

LkC
rs

s
−

= tan (3)

leads to the kinematic equation
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Here, the term C represents in physical terms a local
conductivity coefficient, since it depends on soil parameters
for a particular position or a particular cell, which
encompasses the effects of hydraulic conductivity and slope,
to which it is directly proportional, and storage capacity, to
which it is inversely proportional.

Non-linear reservoir model for the soil water in a generic
cell

By integrating Eqn. (4) in the soil over the ith  DEM grid
cell, whose space dimension is X, gives
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where is
v  is the volume per unit of width stored in the ith

cell in m2, while the last term in Eqn. (5) represents the
inflow and outflow balance. A subscript s is introduced here
to distinguish this soil water equation from the ones relevant
to the overland and the drainage network flows.

It is quite evident that the coefficients CS are no longer
the physically measurable quantities, which are defined at
a point; rather, they represent integral average values for
the entire cell, which nonetheless are still strongly related
to the measurable quantities.

In the TOPKAPI model, the grid cells are connected by a
tree shaped network; water moves downslope along this tree-
shaped flow pathway starting from the initial cells (without
upstream contributing areas) representing the ‘sources’,
towards the outlet. According to this procedure, and
assuming that in each cell the variation of the vertical water
content along the cell is negligible, the volume of water
stored in each cell (per unit width) can be related to the
total water content that is equivalent to the free water volume
in depth, by means of the simple expression
            

ii
Xvs η= (6)

Substituting for ηi in Eqn. (6) and writing it for the
“source” cells in each flow pathway, the following non-
linear reservoir equation is obtained:
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Similarly a non-linear reservoir equation can be written
for a generic cell, given the total inflow to the cell, such
that
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where 
isV  is the volume stored in the ith cell in m3, u

oi
Q  is

the discharge entering the active cell i as overland flow from
the upstream contributing area in m3 s–1, and u

si
Q  is the

discharge entering the active cell as subsurface flow from
the upstream contributing area  in m3 s–1.

Soil moisture accounting in a grid cell

For the ith cell at each time-step, the soil water balance can
be calculated as follows:
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where T is the computational time interval in seconds, t0  is
the initial time of the computation step, )( 0

' TtV
is +  is the

solution of Eqn. (8) at the time t0 + T in m3, )( 0tV
is  is the

initial soil water storage in the ith cell at the time t0  in m3 ,
d
si

Q is the outflow discharge from the ith cell during the time
t0  to  t0 + T in m3 s–1,  

ioe is the saturation excess volume for
the ith cell in m3,  

ismV is the saturated soil water storage in
the ith cell in m3, Ea is the actual evapotranspiration within
the time interval calculated by the evapotranspiration model
in m,  and )( 0 TtV

is + is the soil water volume stored in the
soil in the ith cell at time t0 + T.

Up to this point it has been implicitly assumed that the
entire outflow from a cell flows into the downstream cell
immediately. However, this is not entirely true since note
has to be taken of the depletion effected by the drainage
network. Thus, for the cells in the channel network, the
outflow is still evaluated by Eqn. (9), but it is then partitioned
between the channel and the downstream cell according to
a gradient based upon the average slope of the four
surrounding cells. This allows determination of the amount
of subsurface flow feeding the drainage channel network.
This operation of flow partition is also performed for the
overland flow.

THE SURFACE WATER AND CHANNEL WATER
COMPONENTS

The input to the surface water model is the precipitation
excess resulting from the saturation of the surface soil layer.
In addition, the water in the soil can ex-filtrate on the surface
as return flow due to a sudden change in hillslope or soil

property, and thus also feeds the overland flow.  The sub-
surface flow and the overland flow together feed the channel
along the drainage network.

Non-linear reservoir model for overland flow and channel
flow in a grid cell

Overland flow routing is described similarly to the soil
component, according to the kinematic approach (Wooding,
1965) in which the momentum equation is approximated
by means of Manning’s formula.  The kinematic wave
approximation for overland flow is described as
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where oh  is  the water depth over the ground surface in m,
or  is the saturation excess resulting from the solution of the

soil water balance, either as the precipitation excess or the
ex-filtration from the soil in absence of rainfall in ms-1, on
is the Manning friction coefficient for the surface roughness
in 13

1 −− sm , oo nC 2
1

)(tan β=  is the coefficient relevant to
the Manning formula for overland flow, and 35=oα  is the
exponent which derives from using the Manning formula.
A subscript o denotes the overland flow.

By analogy with what was done for the soil, assuming
that the surface water depth is constant over the cell and
integrating the kinematic equation over the longitudinal
dimension, gives the non-linear reservoir model for the
overland flow for the ith cell  as
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where 

ioV  is the surface water volume in the cell in m3.
Similar considerations also apply to the channel network,

which is assumed to be tree-shaped with reaches having
wide rectangular cross-sections. In this case, the channel
surface width is not constant but is assumed to be increasing
towards the catchment outlet. Under these assumptions, the
non-linear reservoir model can be written for a generic reach
as

( )
( )

c

icii

i
c

i

iicu
cic

c V
XW

WC
QXWr

t
V α

α−+=
∂
∂ (14)

where 
icV is the volume of water stored in the ith channel

reach in m3, iW  is the width of the ith rectangular channel
reach in m, u

ci
Q  is the inflow discharge from the upstream
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reaches in m3 s–1, cr  is the lateral drainage input, including
the overland runoff reaching the channel reach and the soil
drainage reaching the channel reach in m s–1, cc nsC 2

1
0=

is the coefficient relevant to the Manning formula for
channel flow, s0 is the bed slope, assumed to be equal to the
ground surface slope, cn  is the Manning friction coefficient
for the channel roughness in 13

1 −− sm  and 35=cα  is the
exponent which derives from using the Manning formula.
The channel width Wi is taken to increase as a function of
the area drained by the i th cell on the basis of
geomorphological considerations, such that
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where maxW  is the maximum width, at the basin outlet, minW
is the minimum width, corresponding to the threshold area,
Ath  is the threshold area which is the minimum upstream
drainage area required to initiate a channel, Atot  is the total
area and 

idrA  is the area drained by the ith cell.

PHILOSOPHY OF APPLICATION OF THE
DISTRIBUTED TOPKAPI MODEL

Solution technique for the non-linear reservoir equation

The TOPKAPI formulation leads to three non-linear
reservoir equations describing the subsurface flow, the
overland flow and the channel flow.  In the first version of
the TOPKAPI model (Todini and Ciarapica, 2001), the
solution of the non-linear reservoir equation was based upon
a variable step fifth order Runge-Kutta numerical algorithm
due to Cash and Karp (1990).   Nowadays, the authors have
found that the non-linear reservoir equation can be solved
analytically based on an appropriate approximation (Liu,
2002), providing a more efficient scheme in terms of running
time. Details of analytical solutions based on appropriate
approximations are given in Appendix A.

Data requirements and parameters

The TOPKAPI model requires terrain data (e.g. from DTM
or DEM land survey), soil survey and vegetation or land-
use, as well as geographical co-ordinates and measurements
of precipitation, evapotranspiration or air temperature.

As far as the parameters are concerned, there are seven
classes of parameters in the TOPKAPI model, namely L
(thickness of the surface soil layer in m), ks (saturated
hydraulic conductivity in m s–1),ϑr  (residual soil moisture
content), sϑ (saturated soil moisture content), as (exponent

of the transmissivity law for the soil component, assumed
to be constant for all the cells), on (surface roughness in

13
1 −− sm ), and cn (roughness for the channel in 13

1 −− sm ) .  Five
of the parameters (L, k s ,ϑr , sϑ and as) relate to the soil and
control runoff production, whilst the other two ( on , cn ) are
routing parameters.

DEM application in the TOPKAPI model

The DEM application consists of: identifying and correcting
sinks and false outlets, identifying the connections among
the cells thereby giving the flow pathways, calculating the
steepness, and cumulating the drained area for the automatic
detection of the drainage network. Utilities serving these
purposes are provided in GRASS (Geographic Resources
Analysis Support System), but unfortunately they are not
suitable for application to the TOPKAPI model because they
are based on neighbourhood functions that use a moving
3 × 3 point spatial window, where the elevation of the central
point is compared with the heights of the eight connected
neighbours. For the TOPKAPI model, or in general for any
model using a finite difference approach, in the moving 3 × 3
point spatial window the four neighbouring cells adjacent
to each corner have to be neglected, which means physically
that drainage is only possible to the north, east, south or
west for the four adjacent cells at each edge.

Model calibration

The TOPKAPI model is considered as a physically based
model, with all parameters having physical meanings which
can be measured directly through fieldwork. Although it is
physically based, the model still needs calibration because
of the uncertainty of the information on the topography, soil
characteristics and land cover. Nonetheless the calibration
of the TOPKAPI parameters is more an adjustment than a
conventional calibration and is carried out by a simple trial-
and-error method.

In the TOPKAPI model, the initial soil saturation condition
can be set as follows. First, the initial soil saturation
percentage is set as the same value (e.g. 0.5) for all cells
according to a dry situation at the beginning of the
calibration period.  Then the TOPKAPI program is run to
obtain the soil saturation condition at a chosen time when
the soil is supposed to be in the same state as the initial
condition.  This procedure gives realistic values for the initial
condition, particularly with regard to the spatial distribution
of the saturation percentage. At the initial condition, it is
also assumed that there is no snow or surface water over the
slopes and the water depth in a generic channel cell increases
as a linear function of the channel width of the cell.
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Model parameter values are assigned according to the type
of soil, land cover and channel order by the method of
Strahler (1957).  The initial parameter values can be taken
from the literature, e.g. the values of the soil parameters ks ,
ϑr  and sϑ  can be taken from the USDA parameters for the
infiltration model of Green-Ampt. Initial values for
parameters no and nc can be estimated by referring to Tables
5.5 and 5.6 in the book on Open Channel Hydraulics by
Chow (1959) and the report on Roughness Characteristics
of Natural Channels by Barnes (1967), while as usually
varies 2.0 ~ 4.0 based on the soil property. In general, the
ranges of the values of the model parameter are: L=0.10
~2.00 m, k s = 10-6 ~ 10–3 m s–1, ϑs = 0.25~0.70, ϑr =
0.01~0.10, on = 0.05~0.40 m–1/3 s–1, cn =0.02~0.08 m–1/3 s–1.

The lumped TOPKAPI model
DESCRIPTION OF THE LUMPED TOPKAPI MODEL

The overall structure of the lumped TOPKAPI model is
shown schematically in Fig. 2.  A catchment is regarded as
a dynamic system composed of three reservoirs: the soil

reservoir, the surface reservoir and the channel reservoir.
In the flow simulation, on the basis of the soil condition
and actual evapotranspiration, the precipitation in the
catchment is partitioned into direct runoff and infiltration
using the Beta-distribution curve, which reflects the non-
linear relationship between the soil water storage and the
saturated contributing area in the basin.  The infiltration
and direct runoff are input into the soil reservoir and surface
reservoir, respectively.  Outflows from the two reservoirs
as interflow and overland flow are then drained into the
channel reservoir to form the channel flow.

As mentioned before, the TOPKAPI approach is a
comprehensive distributed-lumped approach. Theoretically
it proves that the lumped version of the TOPKAPI model
can be derived directly from the results of the distributed
version and does not require additional calibration.

In order to obtain the lumped version of the TOPKAPI,
the point kinematic wave equation is integrated over the
entire system of cells describing the basin. This is done first
by computing the total volume stored in the soil, on the
surface or in the channel network by adding up the single
cell volumes as a function of the geomorphology and
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topology of the catchment. Under the assumption that the
difference between the inflow to a cell and the time variation
of the water storage do not vary significantly in space, this
integration and aggregation results in a non-linear reservoir
equation for representing the basin as a whole of the form
(Todini and Ciarapica, 2001; Liu, 2002).

(16)

with

where i is the index of a generic cell, j is the index of cells
drained by the ith cell, N is the total number of cells in the
upstream contributing area, sTV is the water storage in the
catchment in m3, R is the infiltration rate in m s–1, A is the
catchment area,

isC  is the local conveyance for the ith cell,
fm represents the fraction of the total outflow from the mth

cell which flows towards the downstream cell, αs is a soil
model parameter assumed constant in the catchment, and

sb is a lumped soil reservoir parameter which incorporates
in an aggregated way the topography and physical properties
of the soil.

Equation (16) corresponds to a non-linear reservoir model
and represents the lumped dynamics of the water stored in
the soil. The same type of equation can be written for the
overland flow and for the drainage network, thus
transforming the distributed TOPKAPI model into a lumped
model characterised by three ‘structurally similar’ non-linear
reservoirs, namely ‘soil reservoir’, ‘surface reservoir’ and
‘channel reservoir’.

The infiltration rate term in Eqn. (16) must be evaluated
by separating precipitation into direct runoff and infiltration
into the soil. In order to obtain this separation, a relationship
between the extent of saturated areas and the volume stored

in the catchment is introduced, similar to what is done in
the Xinanjiang model (Zhao, 1977), in the Probability
Distributed Model (Moore and Clarke, 1981; Moore, 1985,
1999) and in the ARNO model (Todini, 1996). Given the
availability of the distributed TOPKAPI version, this
relationship can be obtained by means of extensive
simulation. At each time step the number of saturated cells
is compared to the total volume of water stored in the soil
over the entire catchment.  Denoting total water storage in
the soil by sTV , the soil water storage at the total saturation
condition by ssV , and the total saturation area by As, the
relationship between the extent of saturated areas and the
volume stored in the catchment can be approximated by a
Beta-distribution function curve expressed by:

(17)

where )(⋅Γ is the Gamma function, and r and s two
parameters of the Beta-distribution curve.

Surface runoff calculation

Surface runoff is the sum of direct runoff and the return
flow caused by ex-filtration. In the lumped TOPKAPI
model, the Beta-distribution function curve as expressed
by Eqn. (17) is thus used to compute, in the lumped form,
the overall inflow as infiltration R to the soil reservoir and
the overall saturation excess as direct runoff Rd (ms-1) entered
into the surface reservoir by the following equation:
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where 
1sTV , 

2sTV  represent the soil water storage in the
catchment at time t1, and t2=t1+∆t respectively where ∆t is
the computation time interval, and P represents the
catchment average net precipitation intensity (m s-1).

The soil water can ex-filtrate to generate the return flow.
In the present TOPKAPI model, the return flow is estimated
based on a limiting parabolic curve representing the
relationship between the return flow discharge and the
fraction of water storage in the catchment, which is estimated
based on the points from the distributed TOPKAPI model.
This parabolic curve can be expressed as:
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where rR is the return flow ex-filtration rate, returnQ
 is the

calculated return flow discharge on the surface during the
time interval t1 ~ t2, )(5.0

21 sTsTsT VVV +=  is the averaged soil
water storage in m3, and a1, a2 and a3 are parameters
estimated on the basis of the points from the distributed
TOPKAPI model.

Accordingly, the infiltration rate into the soil within the
time interval Dt can be computed by:

A
Q
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V

V
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V
V

R returnss
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−





−=

)( 12

12 (20)

The quantities R and Rd plus Rr are then input to the soil
reservoir and the surface reservoir, respectively (see Fig. 3).
The interflow and overland flow can be obtained by
computing the water balance, and are then together drained
into the channel reservoir to generate the total outflow at
the basin outlet.

Fields of application
Since its advent in 1995, the TOPKAPI model has been
applied to several catchments for different uses such as flood
forecasting, extreme flood analysis, and predicting
hydrological response under changed landscape conditions
caused by human activities. The distributed version of the
TOPKAPI model allows for its calibration on the basis of
physical considerations and, in particular, its extension to
ungauged catchments. The lumped version of the TOPKAPI
model allows for the extensive simulations needed when
used in combination with a stochastic rainfall generator for
deriving, through continuous simulation, extreme discharges
and flood wave volumes.

The model has been applied to the upper Reno river basin
(1051 km2) (Todini and Ciarapica, 2001) and the Arno river
basin (8135 km2) for flood forecasting (Liu, 2002), and to
the Magra catchment (1682 km2) for extreme flood analysis
(Liu and Todini, 2000). The DEM grid size employed
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Fig. 3.  TOPKAPI model results in the Upper Reno catchment: (a) small flood events, (b) major flood events
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increases with the catchment size, ranging from 200 m to
1 km for these three examples.

A case study applying both the distributed and lumped
TOPKAPI model to the upper Reno river basin and including
the distributed TOPKAPI model for developing a real-time
flood forecasting system for the Arno River is presented
here in detail.

The Upper Reno river basin case
study
CATCHMENT CHARACTERISTICS

Topography

The Reno River in Italy rises on the northern slopes of the
Apennines and flows inside the Emilia-Romagna region
(Fig. 4a) with a total watercourse of 210 km. The basin has
a surface area of 4930 km2 and a variation in height above
sea level of up to 2,000 m (see Fig. 4b).  The upper part of
the basin is gauged at Casalecchio on the outskirts of the
city of Bologna, and drains an area of approximately
1051 km2 within which it reaches its maximum elevation of
2000 m.  A digital elevation model (DEM) on a 400 × 400 m

grid is available for most of the Upper Reno river basin
falling under the Emilia Romagna Regional Authority.

Soils

The Upper Reno river basin comprises primarily clayey and
marly soil, as well as alluvial deposits in its lower section
(see Fig. 4c and Table 1).

Table 1.  Soil types in the Upper Reno river basin(Fig. 3c)

Class Soil Types

a Arenaceous turbidites, calcarenites
b Arenaceous turbidites, marly limestone turbidites
c Marly arenaceous turbidites
d Arenaceous turbidites
e Marly limestone and calcarenite turbidites, clays

and marly limestones
f Clays, sands and conglomerates
g Alluvial deposits

   

a)   

b)   c)   c)   b)   

Casalecchio   

Vergato   

Calcara   
Castenaso 

Mordano   

Bastia   

Sesto Imolese   

Fig. 4.   Reno river basin: a) Reno river system, sub-basins and water level stations, b) DEM map for the Upper Reno catchment
(legend: elevation above sea level in meter), c) Soil type map for the Upper Reno catchment
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Vegetation and land use

Vegetation on the highest parts of the Apennines is made
up of herbaceous formations and blueberry derived from
cultivation and grazing which were once particularly
intensive. The most widespread land use in the strip of
territory along the Reno, both for the lowland area as well
as for the mountain area, is agriculture, except for the
impracticable areas at high levels and those areas subject to
periodical flooding.

MODEL CALIBRATION OF THE DISTRIBUTED
TOPKAPI MODEL

Hydrometerological data availability

The hydrological dataset in the year 1990 is selected for
calibration in the Upper Reno river basin, since in this year,
from 24 to 26 November, 1990, a relatively large flood event
with a peak discharge of 1317 m3 s–1 occurred. Hourly
measurements from 24 raingauges and 10 thermometers
were available while discharges were computed from hourly
levels by means of a well-verified rating curve available
for Casalecchio.  The areal rainfall distribution was estimated
by the Thiessen Polygon method.

Model calibration

The model calibration was performed at a 1-hour time-step
using the hydrological dataset of 1990.  An initial estimate
for the model parameter set was derived using the available
broad descriptions of soil types given in Table 1 and Strahler
channel order, together with values taken from the literature.
Adjustment of parameters was performed manually and, at
the end, the values given in Table 2 were retained. The model
results are shown in Fig. 3, and the model efficiencies are:
0.850 (R2: the proportion of the variance in the observations

accounted for by the model), 0.843 (r2: the coefficient of
determination) and 0.918 (r: the correlation coefficient),
respectively.

DERIVATION OF THE LUMPED TOPKAPI MODEL
PARAMETERS AND MODEL APPLICATION

As explained previously, the lumped TOPKAPI model can
be derived directly from the distributed results of the
distributed TOPKAPI model. Given the availability of the
distributed TOPKAPI version, at each step in time the
number of saturated cells is compared with the total volume
of water stored in the soil over the entire catchment.  The
relationship between the extent of saturated areas and the
volume stored in the catchment  can be approximated by a
Beta-distribution function curve which is shown in Fig. 5.

In addition, the distributed TOPKAPI model showed that
the overland flow comprises two parts, one from direct
runoff in the saturated area and the other from return flow
which is the ex-filtration of soil water into the surface. In
the Upper Reno river basin, the maximum discharge value
of the return flow was 43 m3 s–1.  Hence, the generation of
return flow is very significant in the catchment, and therefore
should be simulated in the lumped TOPKAPI model. Figure
6 shows the relationship between the return flow discharge
and the soil water storage in the catchment, and its
approximation by the limiting parabolic curve adopted in
the lumped TOPKAPI model.

The parameters of the lumped TOPKAPI model are listed
in Table 3 and simulation results are shown in Figs. 7 and 8.
Figure 7 compares the runoff calculated by the distributed
TOPKAPI model with that obtained using the lumped
model, while Fig. 8 shows the comparison of the observed
discharges at Casalecchio and those computed using the
distributed and lumped TOPKAPI model. The lumped
TOPKAPI model performance measures are as high as the
distributed ones, namely R2 = 0.887, r2 = 0.867 and r = 0.931.

Table 2. Calibration parameters for the different soil classes, land uses and channel orders

Soil rs ϑϑ − α sk L  (m) Soil use on Strahler cn
Class (m s-1) class (m-1/3 s-1) channel (m-1/3 s-1)

order

a 0.36 2.5 2.50E-04 1.65 a 0.085 I 0.045
b 0.36 2.5 2.20E-04 1.60 b 0.085 II 0.040
c 0.36 2.5 1.50E-04 0.30 c 0.090 III 0.035
d 0.36 2.5 2.30E-04 1.50 d 0.085 IV 0.035
e 0.30 2.5 9.00E-04 1.75 e 0.080
f 0.60 2.5 1.20E-03 2.75 f 0.080
g 0.64 2.5 1.40E-03 3.50 g 0.080
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Fig. 6. A limiting parabolic curve used for calculating the return flow from the soil water storage in the catchment

(
32

2

1 a
V
V

a
V
V

aQ
ss

sT

ss

sT
return ++





=

 with a1=441, a2=-330, a3=66.)

Table 3. Lumped TOPKAPI model parameters used in the Upper Reno river basin

Three non-linear reservoirs Beta-distribution function Parabolic curve function
(used for calculating direct runoff)  (used for calculating  return flow)

Soil bs Surface bo Channel bc     r s      a1 a2 a3
7.98E-022 6.10E-010 7.35E-010     0.11 0.16      441. -330. 66.0
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Fig. 7. Comparison of calculated runoff using the distributed and lumped TOPKAPI models for the Upper Reno catchment. Thick solid line:
distributed model, thin solid line: lumped model. Major flood events.
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Fig. 8. Comparison of observed and modelled discharges for the Reno at Casalecchio. Thick solid line: observed; thin solid line: distributed
model; dash line: lumped model. Major flood events.

Discussion of results

Figure 6 shows only marginal differences between the
simulated runoff (i.e. the total drainage into the channel)
for the whole river basin and for the discharge at
Casavecchio, generated by the distributed TOPKAPI model
and the lumped model, are practically identical with only
marginal differences. This is despite the first one being
computed by integrating a cascade of 6325 non-linear
reservoirs representing the soil, the overland flow and non-
linear reservoirs representing the channel flow, whilst the
second one is computed using the Beta-distribution function
curve given by Eqn. (17) and a return-flow estimation curve

given by Eqn. (19), plus one soil reservoir simulating the
interflow (see Fig. 2), one surface reservoir simulating the
overland flow and one channel reservoir simulating the
channel flow, with an enormous reduction in computer time.

This case study demonstrates that the lumped version of
the TOPKAPI model is already suitable for reproducing the
overall runoff that reaches the river network generated by
the distributed model. As far as the drainage network
component is concerned, the lumped model produces a flood
wave generally anticipated with respect to the distributed
one (see Fig. 8), especially for the low flow period, which
is consistent with the non-linear behaviour of unsteady flow
with travel times reducing with the dimension of the event.
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The TOPKAPI approach is attractive in that it is a
comprehensive distributed/lumped approach in which the
lumped model parameters are estimated directly from the
distributed model without calibration.

In this study, it was recognised that the phenomenon of
return flow identified in the distributed model must also be
considered in the lumped model. Figures 9 and 10 show the
comparison of the simulation results obtained by the lumped
TOPKAPI model with and without consideration of return
flow.  If the return flow was not considered in the lumped
model, the dynamics of the soil water storage and the
calculated discharges would be significantly different from
those generated by the distributed model.

The Arno river basin case study
RIVER BASIN CHARACTERISTICS

The Arno river basin (Fig. 11a) drains an area of 8228 km2,
rising in the mountain Falterona (1654 m a.s.l) situated in
the northern border of  Casentino. The river flows in a south-
west to north-east direction to the confluence with the Sieve
river (836 km2) where it flows east to west to the river mouth.
Over its course, the Arno river is joined by major tributaries
including the Greve river, Pesa stream, Elsa river and Era
river on the left side, and the Bisenzio river and Omrone
river on the right side. The watercourse of the river has a
total length of approximately 245 km. Local climatic
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Fig. 10. Comparison of modelled soil water storage in the Upper Reno catchment. Solid line: distributed model; thin solid line: lumped model
with return flow; dash line: lumped model without consideration of return flow.
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Fig. 11.   Arno river basin: (a) river system, sub-basins and water level stations, (b) DEM map (legend: elevation above sea level in meter),
(c) Soil type map, and (d) Land use map

tendencies produce the highest flooding risk in the period
from September to January when winds from the south-west
dominate.

Topography

The highest areas are found in the montains of Falterona
and Pratomagno in the Casentino (Fig. 11b).  The mean
elevation of the whole river basin is 292 m a.s. l.. A DEM

data file with a grid scale of 200 m is available for the Arno
river basin.  In this study, the DEM is used with a grid size
of 1km (see Fig. 11b).

Soils

Based on the SCS classification (Soil Conservation Service,
1972), a soil property map (see Fig. 11c and Table 4) is
available giving hydrological soil types.  For the whole

Table 4. Legend for pedological data (soil hydrological types)

No. Hydrological DESCRIPTION
type of soil
(S.C.S/C.N.)

1 A With limited runoff potentiality. Contains deep sands with a very little lime and clay, and deep gravel of high
permeability.

2  B With moderately low runoff potentiality. Contains the major part of the sandy soil that is less deep than the one
in the group A, but the group as a whole has a high infiltration capacity even when saturated.

3  C With moderately high runoff potentiality. Contains thin soils having a considerable quantity of clay and colloidal
material, while less than group D. The group has limited infiltration capacity when saturated.

4  D With middle high runoff potentiality. Contains the major part of the clay soil with a high capacity for expanding,
but also the thin soils almost impermeable near the surface.
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basin, the major soil type is C, which comprises 57.9 % of
the total area. This implies that more than half of the soils
possess the hydrological characteristics of a thin soil layer
with moderately-high runoff potential, containing a
considerable quantity of clay and colloidal material, with
limited infiltration capacity when saturated. Also, the soils
are thin and of lower permeability in the mountain areas,
while the soils in low-lying areas are thick and of moderately
high permeability.

Vegetation and land use

The primary land uses in this catchment (see Table 5) are
the classes of B (38.6%) and S (34.7%). In the mountain
areas, most land use comprises shrub, undergrowth and
overgrowth bush, while in the low-lying areas most land is
suitable for arable farming.

di Rosano (Valdarno Superiore) and Firenze (Arno River)
— are computed from hourly river levels by means of well-
verified rating curves. The areal rainfall distribution was
estimated using the Thiessen Polygon method.

Calibration of the TOPKAPI model

The model calibration was performed at a 1-hour time-step
using the hydrological dataset of 1 July to 31 December
1992. The initial parameter values of the three basic
components in the TOPKAPI model, the soil water, surface
water and channel water components, were estimated from
the literature (e.g. using the USDA parameter tables for the
Green-Ampt infiltration model). The final parameter values
were obtained by ‘trial and error’ on the basis of curve
fitting.

Figures 12 to 16 show the comparison of the observed
discharges and those computed at Firenze, Nave di Rosano,
Fornacina, Subbiano and Ponte della Ferrovia, respectively,
using the distributed TOPKAPI model.  The model
calibration performance statistics and the parameter values
are listed in Table 6 and Table 7, respectively.

Validation of the TOPKAPI model

Using the parameter values of Table 7, simulations were
carried out using the dataset for the period from 1 July to 31
December 2000. Comparison of observed and simulated
hydrographs for the five stations is shown in Figs. 17 to 21.
The model simulation performance statistics are shown in
Table 8.

Discussion of results

Figures 12 to 21 demonstrate that the distributed TOPKAPI
model (based on a DEM with a large grid size of 1000 m)
performed well in simulating the floods in the Arno river
basin. It did not simulate well the low flows mainly due to
the absence of groundwater and lake/reservoir components
in the present model. The oscillations at low flows shown
in Figs. 12, 13, 17 and 18 for Firenze and Nave di Rosano
reflect the effect of a reservoir located at Laterina (see Fig.
11).

Tables 6 and 8 show that the model performance in terms
of the coefficient of determination (r2) in the validation
period is lower than that in the calibration period, especially
for Fornacina and Subbiano. This is very probably due to
the poor quality of the measured water levels at the stations
of Fornacina and Subbiano. For event 2 (11 July 2000) the
measurements for Fornacina are significantly in error,
because its peak is higher than the corresponding peaks at

Table 5. Legend for land use data

No. Class Description

1 U Urban areas with continuous tissue
2 U1 Discontinuous urban areas
3 CA Forest and arboreal vegetation
4 B Vegetation of shrub, undergrowth and

overgrowth bush
5 C Herbaceous vegetation, meadow-pasture
6 CS Special cultivated areas, olive, vineyard
7 S Suitable for sowing
8 NV Areas without vegetation
9 P Humid areas

APPLICATION OF THE DISTRIBUTED TOPKAPI
MODEL

Data availablity

Floods have been experienced in 1992, 1993 and 2000.  It
was decided to choose 1992 as a flood year for model
calibration, and use the dataset for 2000 for model
verification. Since most raingauges were concentrated in
the Upper Firenze in 1992, it was decided to calibrate the
TOPKAPI model only in the catchment to Firenze with an
area of about 4325 km2.

Hourly measurements from 59 raingauges and 7
temperature stations are available for 1992 and 2000, while
the discharges of 5 stations — namely Fornacina (Sieve),
Subbiano (Casentino), Ponte della Ferrovia (Chiana), Nave
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Fig. 12. Model calibration results compared with observed discharges at Firenze. Solid line: observed;
Dash line: calculated. Major flood events.
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Fig. 13.  Model calibration results compared with observed discharges at Nave di Rosano.

Fig. 14.  Model calibration results compared with observed discharges at Fornacina.
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Fig. 15. Model calibration results compard with observed discharges at Subbiano.

Fig. 17. Model validation results compared with observed discharges at Firenze. Solid line: observed; Dash line: calculated.
Major flood events.
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 Fig. 16.  Model calibration results compared with observed discharges at Ponte di Ferrovia.
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Fig. 18.  Model validation results compared with observed discharges at Nave di Rosano.

Fig. 19.  Model validation results compared with observed discharges at Fornacina.
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Fig. 20.  Model validation results compared with observed discharges at Subbiano.
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Fig. 21.  Model validation results compared with observed discharges at Ponte di Ferrovia.

Table 6. TOPKAPI model calibration statistics in the Upper Firenze catchment in 1992

      Station Fornacina Subbiano Ponte delle Nave di Firenze
Performance Ferrovia Rosano
statistics

    R2 0.875 0.845 0.855 0.915 0.916
    r2 0.873 0.837 0.847 0.912 0.910
    r 0.934 0.915 0.920 0.955 0.954

Table 7. Calibration parameters for the different soil classes, land uses and channel orders

Soil rs ϑϑ − α sk L Land use on Strahler cn
class (m s-1) (m) class (m-1/3 s-1) channel order (m-1/3 s-1)

A 0.500 2.5 6.54E-04 1.20 U 0.060 I 0.045
B 0.535 2.5 6.06E-05 0.90 U1 0.100 II 0.040
C 0.425 2.5 1.89E-05 0.60 CA 0.200 III 0.035
D 0.417 2.5 1.67E-06 0.30 B 0.150 IV 0.030

C 0.100 V 0.025
CS 0.090
S 0.150
NV 0.100
P 0.010

Table 8. TOPKAPI model validation performance statistics for the Upper Firenze catchment in 2000

        Station Fornacina Subbiano Ponte delle Nave di Firenze
Performance statistics Ferrovia Rosano

R2 0.739 0.626 0.820 0.891 0.878
r2 0.732 0.608 0.811 0.889 0.858
r 0.856 0.780 0.901 0.943 0.926
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Nave di Rosano and Firenze (see Figs. 19, 17 and 18), which
is generally impossible. Based on the measurements from 1
July to 31 December 2000, the runoff coefficient for
Subbiano is calculated to be 0.36 which is lower than its
general value (greater than 0.50).

Conclusions and suggestions
A correct integration of the differential equations from the
point to the finite dimension of a pixel, and from the pixel
to larger scales, can actually generate relatively scale
independent models, which preserve, as averages, the
physical meaning of the model parameters.  This
consideration is reflected in the TOPKAPI approach.  The
TOPKAPI model couples the kinematic approach with the
topography of the catchment and transfers the rainfall-runoff
processes into three ‘structurally-similar’ non-linear
reservoir equations describing different hydrological and
hydraulic processes. The parameter values of the TOPKAPI
model are shown to be scale independent and obtainable
from digital elevation maps (e.g. DTM, DEM), soil maps
and vegetation or land-use maps in terms of slope, soil
permeability, roughness and topology.

The TOPKAPI approach is a comprehensive distributed-
lumped one. The distributed TOPKAPI is used to identify
the mechanism governing the dynamics of the saturated area
contributing to the surface runoff as a function of the total
water storage. Theoretically it proves the lumped version
of the TOPKAPI model can be derived directly from the
distributed version and does not require additional
calibration.

With the advantage of being a physically-based model
with a simple and parsimonious parameterisation, the
TOPKAPI model can have numerous applications ranging
from flood forecasting, extreme flood analysis and
predicting hydrological response under the changed
landscape conditions caused by human activities. Finally,
there exists an attractive possibility of deriving model
representations from world 1 × 1 km2 cartography (such as
for instance GOTOPO30 produced by the USGS) to be
lumped at the 50 × 50 or 20 × 20 km2 meshes of the
Mesoscale or Limited Area Meteorological (LAM) Models
the better to reproduce the soil atmosphere exchanges.

The distributed version of the TOPKAPI model allows
for its calibration on the basis of physical considerations
and, in particular, its extension to ungauged catchments.
The lumped version of the TOPKAPI model allows for the
extensive simulations needed when used in combination
with a stochastic rainfall generator for deriving, through
continuous simulation, extreme discharges and flood wave
volumes.

The two applications of the TOPKAPI model to the Upper
Reno catchment and the Arno River basin demonstrate that
the model performs well in simulating floods, although low
flows are not as well simulated. The model runs efficiently
in terms of calibrating and running time. For the Arno River
basin with 8315 cells, only 9 minutes are needed to run a 1-
year period with input data sampled at 1 hour. The two
applications also show that the model structure is simple
and reasonable in simulating the hydrological and hydraulic
processes in a basin by using the non-linear reservoir
approximation.

Percolation to deeper soil layers has still to be introduced;
this was ignored in the initial stage since it was not important
in the basins to which the model was originally applied.
This objective may be pursued through the introduction of
a second soil layer with different characteristics from the
upper layer, and involving water movement in a vertical
direction feeding into the aquifer. In addition, an approach
for incorporating lakes and reservoirs should be included
in further developments of the TOPKAPI model.
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Appendix
ANALYTICAL SOLUTION TECHNIQUE FOR THE
NON-LINEAR RESERVOIR EQUATION

A general form of the non-linear reservoir equations in the
TOPKAPI model can be written as:

cbya
dt
dy −=                                                                                 (A.1)

where y is a state variable (e.g. the average soil moisture
content, soil water volume in the reservoir, or water depth
over the slopes, or in the channel); a, b and c are constants
(a may be equal zero) in each time-step.

According to the following three different cases:
(a) a = 0; (b) 0≠a , 21 ≤≤ c ; and (c) 0≠a , 2>c , different
techniques are used for solving the non-linear reservoir
equation.

(a) a = 0.  In this case, Eqn. (A.1) can be simplified to:

cby
dt
dy −= (A.2)

The solution to the above equation can be obtained directly
by:

[ ] cc
t ttcbyy −− −−+= 1

1

0
1
0 ))(1( (A.3)

where yt is the y at time t, y0 and t0 are the initial values of y
and t at each time step.

(b) 0≠a , 21 ≤≤ c (e.g. 3/5=c  for the overland
flow and channel flow equations of the TOPKAPI model).
By taking the approximation of )( yyy c βα += , in which α
and β can be estimated by using a least square method, Eqn.
(A.1) is rewritten as:

      )( ybya
dt
dy βα +−= (A.4)

  
))(( 2yy

b
ab

dt
dy ++−−=

β
α

β
β

(A.5)

Assuming βbA −= , 
β
α=B  and 

A
a

b
aC =−=
β

, integrating
Eqn. (A.5) gives
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If 1p and 2p  are the two roots of the equation
02 =++ CByy , then
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1 ≥−+−= CBBp
(A.7)

0
2

42

2 ≤−−−= CBBp
(A.8)

When 10 py ≥  (i.e. for the flow recession period), the
left side of Eqn. (A.6) is rewritten as:

                                                              (A.9)

    The analytical solution to Eqn. (A.6) is therefore obtained
by:

                                                    (A.10)
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When  10 py <  (i.e. for the flow rising period), similarly
the analytical solution to Eqn. (A.6) is obtained by:

                                                                      (A.11)

(c) 0≠a , 2>c  (e.g.  c = 2.0 ~ 4.0 for the subsurface flow
equation in TOPKAPI). By taking the substitution of

)1( −−= cyu , Eqn. (A.1) is rewritten as:

                                                                                                 (A.12)

Since the term of 
1−c

c  in Eqn. (A.12) falls in the range
1~2 now, it solution can be obtained analytically based on
the approximation described above.
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