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Abstract
Spatial multifractals are statistically homogeneous random fields. While being useful to model geophysical fields exhibiting a high degree of
variability and discontinuity and including rainfall, they ignore the spatial trends embedded in the variability that are evident from large
temporal aggregation of spatial fields. The modelling of rain fields using multifractals causes the information related to spatial heterogeneity,
immensely important at some spatial scales, to be lost in the modelling process. A simple method to avoid this loss of the heterogeneity
information is proposed. Instead of modelling rain fields directly as multifractals, a derived field M is modelled; this is the product of
filtering observed rainfall snapshots with spatial heterogeneity as indicated by long term accumulations of rain fields. The validity of considering
the field M as multifractal is investigated empirically. The applicability of the proposed method is demonstrated using a discrete cascade
model on gauge-calibrated radar rainfall of central Japan at a daily scale. Important parameters of spatial rainfall, like the distribution of wet
areas, spatial autocorrelation and rainfall intensity distributions at different geographic locations with different amounts of average rainfall,
were faithfully reproduced by the proposed method.
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Introduction
Investigations of weather and climatic systems at a global
scale have become a prime area of research for a number of
reasons among which the concern about global climatic
change is a main one. In addition to an increased scientific
understanding of atmospheric processes, many useful
forecasting products have become available. These include
regional and global climatic models, which predict short-
term weather patterns and longer term trends in climate at a
coarser scale. Hydrologists are often involved in solving
problems that concern much smaller scales than those of
global or regional models. Many attempts have been made
in the past to bridge the gap between the regional and the
catchment scale.
    Deterministic resolving of spatial rainfall at sub-grid scale
cannot be achieved with only the information provided by
large-scale forcing. The simplest scheme to distribute rainfall
at sub-grid scale would be to distribute it uniformly. In spite
of being unrealistic, this can work in preserving the overall
conservation of water, if the ‘receiving medium’ (i.e.

physical governing equations related to surface hydrology)
for a particular problem is approximately  linear. However,
for most of the problems related to the operational use of
spatial rainfall at catchment level, this is hardly the case.
Examples are operational flood risk analysis, urban drainage
problems that involve evaluation of infiltration and long-
term water resources studies requiring reliable estimation
of evaporation. A better approach is to distribute rainfall
using a predetermined distribution (like the exponential
distribution explained by Shuttleworth (1988)
acknowledging the work of others,) which can be used to
reduce errors resulting from the nonlinearity of the
governing equations, like those for evaporation and
infiltration, by distributing rainfall in a nonlinear fashion.
    Another approach, that has recently become popular, is
to use multifractal theory to downscale rainfall to sub-grid
levels. Rainfall is assumed to be a multifractal process
characterised by spatial discontinuities and spatial
variability. By adopting this model, rainfall variability in
space can be explained as a random cascade process (Fig. 1).
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Numerous random cascade based models to represent the
variability of rainfall have been reported in the literature.
Some of them involve assumptions of certain mathematical
model behaviour justified by empirical evidence and
physically-based reasoning (Lovejoy and Mandelbrot, 1985;
Tessier et al., 1993; Gupta and Waymire, 1990b) while
others used the cascade process empirically (Olsson, 1998;
Lammering and Dwyer, 2000).
    Spatial rainfall maps of small temporal integration sizes
such as hourly or daily scales seem to be random. As
multiplicative cascades are themselves random models, they
can explain such spatial distributions quite well. However,
when, by averaging a large number of spatial snapshots,
the time integration is increased to a monthly or seasonal
scale,  the observed spatial rainfall becomes less random
and, in most cases, more heterogeneous. This indicates that
even at small temporal aggregations, spatial fields have the
spatial heterogeneity embedded in the variability but this is
masked by (stronger) random variability. Numerous features
of regional rainfall, including orographic enhancement and
slope aspect - wind direction interactions, can be responsible
for this observation. Figure 2 shows the average spatial
rainfall for January, May and July for the central part of
Japan. In January, the rainfall amount is relatively large on
the northwestern slopes due to northern winds in winter,
while summer causes high rainfall in the Kii peninsula (at
the bottom left of the map).
    Multifractal models used to describe spatial rainfall are
spatially homogeneous in a statistical sense. This means that
large accumulations of such snapshots result in spatially
homogeneous fields. Though this type of modelling ignores
any systematic variability of the process at various sub-
domains, it does not prevent the effective use of multifractal
models as diagnostic tools. For example, Olsson and
Niemczynowicz (1996) analysed daily spatial rainfall of
southern Sweden to show that rainfall arising from different
meteorological processes results in distinctly different
scaling properties. In fact this ‘lumping’ of properties is, by
definition, a feature in any type of statistical study.
    However, the application of not only multifractal models,
but also any type of statistical model, requires the assurance
that the model does transfer all the properties of observed
data that are significant for the particular purpose at hand.
From this operational point of view, a drawback of using
just multifractals to model spatial rainfall is that the
information regarding the spatial heterogeneity that is an
important feature of observed rainfall will be lost during
the modelling process. Any approach based only on
(‘lumped’) multifractal characteristics would fail to maintain
the spatial heterogeneity inherently present in rainfall
patterns over many geographical areas.
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Fig. 1. A multiplicative cascade process in two dimensions. Here
each box is subdivided into four boxes at each stage. This
subdivision number is called the branching number, b. For any value
of b (e.g. 4, 9, 16, 25, . . . ), the scale ratio λn

 at the cascade step n,
can be expressed as: λn=bn/d where d is the embedding dimension
(d = 2 for spatial case).
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    In operational problems like flood risk analysis, the
accurate representation of spatial heterogeneity is as
important as the precise modelling of spatial variability. For
example, if an upstream mountainous area in a catchment
receives significantly more rainfall than a low-lying area
downstream, flood magnitude and duration estimates for
such a catchment can be substantially distorted by treating
spatial variability without considering spatial heterogeneity
explicitly.
    Jothityangkoon et al. (2000) incorporated spatial
heterogeneity in multifractal simulation and evaluated the
performance of the model using spatial rainfall data from
Australia. The  explicit random cascade process used to
distribute rainfall at sub-grid level,  incorporated the spatial
heterogeneity. In the present paper, a simpler method is used
to incorporate spatial heterogeneity in downscaled spatial
rainfall and the outcome is compared with that of the
Jothityangkoon et al. (2000) method.
    The proposed modification can be used irrespective of
the specific multifractal theory used to model the random
variability of spatial rainfall. While numerous suitable
models are available  (Tessier et al., 1993; Meneveau and
Sreenivasan, 1987; Gupta and Waymire, 1990b; Deidda et
al., 1999; Menabde et al. 1999; Lammering and Dwyer,
2000), one with minimum complexity and wide application
was selected to demonstrate the proposed modification.

PROPOSED MODEL

Rainfall is considered a combined effect of two processes,
(1) a multifractal process which is highly variable in space
but, at least at regional and smaller scales, statistically
uniform over the area concerned, and (2) a process that
represents the heterogeneity of rainfall in space that is used
to ‘modify’ the above multifractal process. The most general

case is that both these components should be stochastic
(random). However, for simplicity, it is assumed that the
randomness of the rainfall is provided solely by the
multifractal component and the heterogeneity is
deterministic. At this stage, a rigorous physical interpretation
of this separation is not attempted, though it is possible to
visualize it in the following way: The cloud positioning in a
flat area small enough to ignore global circulation patterns,
can be assumed to be random. However, when clouds move
over a land area with significant topographical features, the
generation of rainfall is affected both by the position of the
cloud  and the topographical features such as mountains.
This can be considered as a ‘modification’ of (random) cloud
positioning by a deterministic process that represents the
local topography. (However, this localised effect may not
be caused only by the orography.) Hence, the rainfall over a
small period of time seems to be random because it is a
mixture of random and deterministic components. When
the rainfall is accumulated over a long time period, the
randomness reduces to a uniform field due to the averaging
effect, and hence, the deterministic effect predominates. This
can explain the marked heterogeneity observed in large
accumulations. As the accumulation length is increased, the
random effect becomes dormant and the heterogeneity
becomes more obvious. However, in practice, this is true
only if similar rainfalls (e.g. same season) are accumulated.
For example, if the rainfall of Japan is accumulated over all
the seasons, the winter and summer rainfalls may
compensate each other to a large degree, and produce a more
uniform field than the winter or summer rainfall taken
separately.
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Fig. 2. Spatial heterogeneity shown by the daily average rainfall intensities for the months of January (left) May (middle) and July (right),
based on radar-AMeDAS data from 1995 to 1999. Units: mm day-1
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Mathematical development
The following equation expresses the proposed model in
mathematical notation:
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where Ri,j is the rainfall on the pixel (i,j)  and Gi,j is the
component of that rainfall that is invariant over a long
accumulation. It is assumed that it can be represented
adequately by the long-term seasonal average. Then, by
definition, Mi,j is a component that is randomly distributed
in the space so that M yields a uniform field at large
accumulations. Hence M is a candidate for multifractal
modelling.
    To keep the model simple, the temporal progression of
the rainfall is neglected. Thus, a key assumption of the
present model is that the rainfall of a given snapshot is
independent of the other snapshots. For small time steps
like hourly rainfall, this may not be true, for the movement
of rainfall over an area cannot be neglected at such a small
temporal scale.

Rainfall data
The operational radar rainfall composites (referred to as
Radar-AMeDAS hereafter) published by the Japan
Meteorological Agency (JMA), generally cover the whole
Japanese archipelago. JMA uses 19 conventional weather
radars with 400 km radial coverage (except for the Mt. Fuji
radar which covers 800km) to provide hourly rainfall
estimates at an average of 8 scans per hour. These data,
with a resolution of 2.5 km are converted to 5 km resolution
and then calibrated with the extensive hourly rain gauge
network, popularly known as AMeDAS, to correct for errors
arising from the instability of the sensitivity of the radar
hardware and due to the vertical variation of rainfall
(Makihara, 1996). The final product is hourly-calibrated
spatial rainfall data of land and surrounding sea with a grid
size of approximately 5km (0.06250 in longitude and 0.050

in latitude). An area of 128x128 pixels bounded by 39.65N
134.5W, 33.3S and 142.4375E was selected for the study.
The rainfall precision is 1mm (with an additional value at
0.4mm).
    As the model takes no account of the temporal correlation
of rainfall events that occurs at small accumulation sizes, it
was tested at a daily scale. Daily rainfall snapshots were
created by summing the 24 hourly snapshots of the day.
    The spatial heterogeneity of rainfall varies with the season
(Fig. 2). Hence, rainfall of different seasons must be

modelled separately, to capture the spatial heterogeneity
correctly. In the present research, each month was modelled
as a different season. Since the data for the period of 1995–
1999 were available for analysis, the number of snapshots
available for model fitting for a given month was about 150.

Multifractal model
A multifractal model is needed to represent M (Eqn. 1). The
β-lognormal model proposed by Over and Gupta (1996)
was used because of its simplicity, wide application and the
ability to treat zero rainfall areas explicitly.
    Figure 1 shows an example of a multiplicative cascade
process. The branching number b is given by Ni+1/Ni

 = b
where Ni

 is the total number of segments at cascade step i.
At each cascade step, each segment is divided into b equal
parts and each part is multiplied by a value (cascade weight)
drawn from a specified distribution, which is known as the
generator of the cascade. One of the simplest cascade
models is the β-model, whose generator is specified by:

β−−== bWP 1)0(  , ββ −== bbWP )(         (2)

where W is the cascade weight and b is a model parameter.
This model can represent the presence and absence of values
in a distribution. When a lognormal distribution is used as
generator the resulting cascade is known as a lognormal
cascade. Over and Gupta (1996) combined the above two
cascade models to propose a b-lognormal model given by:

βσσβ −+−
== bbWP

Xb

)( 2
]log[2

β−−== bWP 1)0(                                              (3)

where  β and σ2  are model parameters. X is a standard normal
variable. This is a conserved cascade scheme, for the
formulation maintains the expected value of W,

1)( =wE

PARAMETER EVALUATION FOR LOGNORMAL
MODEL

A multiplicative cascade shows the following scaling
behaviour:

∑ ==
i

qq
iRqM )(
, ][),( τ
λ λλ (4)

where Ri,λ is the value of the field at the ith box at the scale

)1][0)1( 2/)log([ 2
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[()( 2/)log(2

+= +−−− XbbbEWE σσββ



Multifractal modelling and simulation of rain fields exhibiting spatial heterogeneity

699

λ (λ=L/l  where l is scale and L is the largest scale of interest.)
The order of statistical moment is q.
    Over and Gupta (1994, 1996)  proposed the concept of a
Mandelbrot-Kahane-Peyriere (MKP) function to estimate
model parameters for the β-lognormal model. MKP
function, χ(q), of a multiplicative cascade process, is defined
as the slope of the statistical moment M(λ,q)  (Eqn. 4) to the
cascade step n (Fig. 1).
    Given that the cascade follows the scaling law
M(λ,q)=λτ(q), the MKP function for the cascade is (by
definition of  the MKP function) τ(q)/d. Over and Gupta
(1996) derived the following expression for the MKP
function for the β-lognormal model:

     )/()2/)ln(()1)(1()( 22 qqbqq −+−−= σβχ        (5)

By considering the first and second derivatives of  qχ   with
respect to q,  σ2 and β can be derived as follows:

)ln(
)()2(

2

bd
qτσ = ;

2
)12)(ln()(1

2)1( −++= qb
d

q στβ (6)

where b is the branching number (Fig. 1), and d is the
embedding dimension ( d=2, for spatial rainfall). The values
of  σ2 and β can be evaluated numerically by computing the
value of derivatives of τ(q) at some value of q. It is customary
to use  q=1 .

One of the main advantages of using the β-lognormal
model to represent rainfall is its ability to incorporate non-
rainy pixels explicitly. This avoids the problems related to
applying arbitrary cut-off intensities to introduce zero values
to model generated fields. The use of the lognormal
generator which has an analytical expression and the
transparent cascade scheme makes this an easy model to
implement. The use of lognormal cascades (which,
mathematically is a special case of a broad class known as
Lévy-stable distributions.) to model rain fields, has been
questioned in the literature (e.g. Tessier et al., 1993).
However, this issue is still undecided and is outside the scope
of the present research.

Methodology for model construction
As expressed in Eqn.1, the most important step in model
construction is to ‘filter’ the observed rain fields to obtain
M fields, which are spatially homogeneous in a statistical
sense. To compute the field G for a given month, all the
snapshots for that month were averaged at pixel level as:

∑
=

=
'

1
,,, '

1 N

k
kjiji R

N
A (7)

∑=
ji jijiji AATG

, ,,, / (8)

where N’ is the number of snapshots with the value (i, j)
present and T is the total number of pixels in a snapshot. In
other words, Gi,j

 is the field of normalized long-term averages
used to represent the spatial heterogeneity.
    For each snapshot, R, a field of M is obtained by applying
the relationship in Eqn.1. After obtaining the M fields, the
next step was to test whether it is possible to model M as a
multifractal model. Although rainfall distributions in two-
dimensions have been verified as multifractal on numerous
occasions in the past, this is essential since M is only a field
derived from observed rainfall, newly introduced in the
present work.

SCALING OF M

It is customary to normalise each snapshot to have unit mean
before performing multifractal analysis. The statistical
moment M(λ, q) (Eqn. 4) is calculated for different values
of q and scale, λ. Since the data space for a single snapshot
is 128 × 128 pixels, the largest scale was selected as L =
128. The range of scales available for analysis was from
log2λ = 7 (boxsize, l = 1pixel) to log2λ = 2 (l = 32). The
latter limit is due to the small number of ‘boxes’ to compute
the moment at larger box sizes. Figure 3 shows sample
results of these moment calculations. The power-law
behaviour of M(λ, q) (i.e. linearity of the plot of log[M(λ,
q] against the log [λ]) indicates that M field shows excellent
scaling properties. This justifies the use of a cascade model
to represent M. Using the above estimations, the scaling
exponent, τ(q)   can be evaluated as the slope of  log[M(λ,q)]
v. log[λ]  curves for various values of q. The shape of the
τ(q) curve is sensitive to the scaling properties of the rain
field. For example, a linear curve indicates simple (as
opposed to multiple) scaling properties. Figure 4 shows
some examples of  τ(q)  functions estimated from M as well
as R fields. All curves show some degree of curvature, while
that for the month of April is the highest. Further, it shows
that, in general, the scaling properties of R and M are not
identical.

MODEL SETUP

Once the scaling properties of M are established, Eqn. 6
can be used to evaluate cascading model parameters. This
essentially involves the estimation of the first and second
derivatives of τ(q)|q=1. Two potential methods were tested
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for this task. Firstly, a finite difference scheme was used to
evaluate first and second derivatives around q=1. This
requires the estimation of  values of  τ(q) for three different
values around q=1. Secondly, a simple polynomial curve
of order two or three was fitted to a number of estimations
around q=1. The second method is less sensitive to local
fluctuations due to small estimation errors. However, for
the present problem both the techniques provided very close
values.
    It is a well-established fact that rainfall distribution
properties are related to the average rainfall amount (also
known as large-scale forcing). Values estimated for model
parameters β and σ2 were tested for dependency on large
scale forcing (Fig. 5). The empirical functions (

bRa=β and
]log)(logexp[ 22 nRmRk ++=σ ) were used after

Jothityangkoon et al. (2000). The sensitivity of  σ2 to the
average rainfall is very much less than that of β, as reported
previously by Over and Gupta, (1996). It was decided that
a constant value of  (0.1) is adequate for simulation purposes.
It should be noted that the graphs in Fig. 5 are for the
parameter values for all the months put together.
Examination of individual months showed that employing
a separate regression relationship (or a single value in the
case of  σ2) for each month does not improve the
relationships.

Simulation
Typical use of the proposed model is the distribution of a
given rainfall amount at sub-grid scales, preserving the
degree of spatial variability (randomness) and spatial
heterogeneity as indicated by historical data. The first step
in simulation of a rainfall field is the selection of cascade
model parameters based on the average rainfall amount (or
the large-scale forcing), for which the regression
relationships established earlier can be used. Then, the

appropriate number of cascade steps are performed on a
initial distribution of uniform unit intensity. To arrive at the
nth cascade step from the (n-1)th step (cascade step notation
according to Fig.1), 22n values for the cascade weight W are
needed. To derive a value of W, firstly, the β-model is used
to decide whether the particular value is zero or non-zero.
Then, only for non-zero results, a value for W is drawn from
the following distribution:

Xb

bW
σσβ +−

= 2
)log(2

(9)

where X is a standard normal variable.
The multifractal field M is obtained after seven cascade

steps in the present case. This field is statistically
homogeneous in space. The following equation (based on
Eqn. 1) is used to modify M to obtain the synthetic
distribution of rainfall R, which shows the spatial
heterogeneity as observed rain fields:

∑=
ji

jijijijiji GMGMAR
,

,,,,, )(/ (10)

where A is the large-scale forcing.

Model validation
The objective of the model validation was to evaluate the
proposed model’s ability to distribute a single amount of
rainfall (large-scale forcing) into the constituent spatial grids.
While it is possible to use a series of large-scale forcing
values forecast by a regional scale atmospheric model for
this purpose (which is one of the potential uses of the
proposal), such an approach will incorporate in the
validation process all the discrepancies between small-scale
observations and the large-scale forecast. Thus, the spatially
integrated values of the observed spatial rainfall fields were
used as large-scale forcing values. To facilitate the most
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objective evaluation of the model’s working, each snapshot
of the series of daily spatial rainfall maps used for the model
setup (for years 1995–1999), was spatially integrated to
provide a series of large scale forcing values for model input.
A synthetic rainfall field was generated for each day by
inputting in the model the corresponding value of large-
scale forcing. The resulting set of about 1800 synthetic fields
(about 150 for a single month) was compared, statistically,
with the daily rainfall snapshots originally observed.
    Firstly, the fraction of dry areas was compared in modelled
and observed distributions. For all the months, the
distribution of dry fraction with average rainfall amount for
modelled rainfall showed close agreement with
observations. Figure 6 shows the dry-fraction of both
synthetic and observed rain fields as functions of average
rainfall amounts for the months of January, May and July.
Figure 7 shows the average spatial rainfall for the months
of January, May and July. Comparison of these with the

observed average rainfall fields in Fig. 2 shows that the
spatial heterogeneity present in observed rainfall is
reproduced in the modelled fields.
   The following method was used to test  quantitatively, the
ability of the model to represent spatial heterogeneity. A
number of locations for sampling rainfall was selected in
the study area and around each point a 3 × 3 pixel window
was sampled. Thus, for a single month, about
150 × 9 = 1350 values were available to estimate the
exceedance probability curve of the rainfall intensity at the
selected point. Figure 7 shows some selected points each
for the months of January, May and July for the above
analysis. The intensity distributions obtained for the months
of May and July are shown in Figs. 8 and 9 respectively. It
should be considered that the three points for each month
comprise a point each from an area with highest, medium
and lowest average rainfall for that month. These figures
show that the intensity distributions at locations, whose
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average rainfall amounts differ markedly from each other,
are maintained in the proposed model with reasonable
accuracy.
    Although the model reproduces the intensity distributions
which match observations in the rainy summer months, it
performed less well in (less-rainy) winter months. (Fig. 10.).
    In addition to the intensity distribution at different
locations, another important feature related to the intensity
of spatial rainfall is the spatial correlation of rain quantities.
For example, in the case of flood mitigation, an event with
a high spatial autocorrelation and moderate peak intensities,
can cause a more severe response than one with a higher
peak intensity but a very low correlation. There are several
methods to quantify the spatial autocorrelation. A measure

of spatial autocorrelation to study stochastic phenomena,
distributed in space in two or more dimensions, is Moran’s
I statistic, (Moran, 1950), which is used to quantify the
correlation of the adjacent data in a matrix of n members.
Moran’s I can be extended to incorporate variable lag-
distance L (Sawada, 1999). In the present validation, the
Moran’s statistic with a variable distance L was used. Figure
11 shows the I(L) functions for selected observed and
modelled rain fields. For comparison, those for a ‘rainfall
distribution’ based on a random field are also shown. Figure
11 indicates that the proposed multifractal-based approach
can maintain the spatial structure of rainfall as well as the
intensities.

Discussion
The objective of the proposed model is to preserve the spatial
heterogeneity of spatial rainfall, in the multifractal modelling
process. If a multifractal model (β-lognormal model or any
other spatial multifractal process) is used without any
modification similar to that proposed in this paper, the
statistical distribution of the ensemble of rainfall intensities
at any location would be identical, so that information on
the spatial heterogeneity would be lost. For example, in July,
the exceedance probability curves for the points (20, 120),
(35, 83) and (60, 68) would be identical, if an unmodified
multifractal model were used. In reality, the intensities seen
at those points are quite different. The proposed modified
multifractal approach could capture that heterogeneity. The
exceedance probability curves calculated from observed
rainfall (R), of a number of locations are given in Fig. 12.
Figure 13 shows the same for the modified field (M). The
modification Mi,j

 = Ri,j/Gi,j
 makes the exceedance probabilities

of all the locations in the area, the same — a situation that
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can be analysed as well as simulated successfully, using
multifractals. In simulating the inverse operation,  Ri,j

 =
Mi,jGi,j

 is applied to the fields generated by multifractal
simulation, so that they produce the intensity lineup similar
to that given in Fig. 12.
    The agreement of the intensity distributions, however,
does not need a spatial structure similar to the rainfall
snapshots. For example, even with a random distribution
for M, the intensity distributions for R fields might be
achieved. But, as indicated by the non-existent spatial
autocorrelations in Fig. 11, a rainfall field R (= MG), based
on a random M cannot maintain an adequate correlation
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structure. This justifies the need for the multifractal
component of the model.

INTENSITY DISTRIBUTIONS FOR WINTER MONTHS

The proposed method produced an acceptable representation
of heterogeneity, as indicated by the long-term
accumulations, for all the months of the year. However, the
intensity distributions at locations with different
heterogeneity were accurate only for the summer months.
To explain the apparent reason for the mismatch of the
distributions for the winter months, the relevant exceedance
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probability curves must be presented. Figure 14(a) shows
the exceedance probability curves for a number of locations
for January. The striking difference between this curve and
those in Fig. 12 is that while the low intensity (high
probability) end of the May and July curves almost coincide,
those of the January curves are far apart; the spatial
heterogeneity in summer rainfalls is caused mainly by the
differences in (high) rainfall intensity while in winter it is
caused largely by the difference in rainy periods (wet and
dry periods). The intensity modification M/G takes care only
of the rainfall quantity — an entity governed mainly by the
occurrences of high intensities. On the other hand, the
multifractal model parameter β controls the wet fraction in
simulated rainfall snapshots. This is the parameter which
determines the number of zero values in an integration of
intensities at a point, over time. In the proposed model, β is
not varied from place to place and hence the model cannot
capture heterogeneity caused by differences in rainy fraction.

PREVIOUS WORK

Jothityangkoon et al. (2000) incorporated spatial
heterogeneity in cascade modelling by introducing a
heterogeneity term into the cascading process itself. They
modified the cascade weight, W as W=L*G, where L is the
cascade weight obtained from the multifractal generator,  and
G is the heterogeneity term obtained by degenerating the
long-term average rainfall (on a monthly basis) to the
appropriate cascade level. The authors have mentioned that
there is a theoretical problem associated with the model.
Though the introduction of the heterogeneity term (G) into
the cascading process resulted in heterogeneous spatial fields

in the simulation, there was no way to use the reverse of
this technique in data analysis. Jothityangkoon et al. (2000)
used the parameter evaluation method proposed by Over
and Gupta (1996) directly for data analysis. This led to a
theoretical contradiction in the analysis and simulation
phases, assuming rainfall to be a ‘pure’ cascade process in
the analysis and a cascade process modified by a
heterogeneity term in the simulation. This issue is  important
because the scaling properties of observed rainfall before
and after the removal of heterogeneity are generally
different. In addition to being simpler, the method proposed
in the present study eliminates this inconsistency by treating
the spatial heterogeneity separately from the multifractally
represented random variability.
    Another advantage of the present proposal is that it
separates the multifractal modelling from the technique for
handling heterogeneity, which simplifies the whole model.
Further, such a separation makes it possible to use any
multifractal scheme, including those which, in contrast to
the present β-log normal model, do not use an explicit
cascading process to represent the variability (M) in the
model (e.g. ‘continuous’ multifractals introduced by Wilson
et al. (1991)).

Conclusions
A simple scheme to prevent the loss of spatial heterogeneity
information during the process of multifractal modelling of
spatial rainfall is proposed. The model involves filtering
the observed rain fields to obtain data sets that are spatially
homogeneous in a statistical sense. The spatial variability
of these statistically homogeneous fields was used to fit a
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multifractal model. The simulation process was the exact
opposite of the above; using the multifractal model, spatially
homogeneous fields were simulated and later these were
‘modified’ to add the spatial heterogeneity. It was assumed
that the spatial heterogeneity can be represented accurately
by the normalised long-term average rainfall.
    The model disaggregated the rainfall of Japan accurately
and maintained at the simulation stage the large
heterogeneity shown by the observations. However, the
model did not produce the intensity distributions at different
places accurately for the winter months because the
heterogeneity of summer rainfall is caused mainly by
differences in intensity while that of winter rainfall is due
to the differences in rainy periods at different spatial
locations. The present model can handle only the
heterogeneity caused by the former situation.
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