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Abstract
A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model
results from two components, the neural network (NN) deterministic component and a random component which is assumed to be normally
distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with
hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the
corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to
two reservoir sites located in the Tagus River basin (Spain), while validation is performed through estimation of a set of statistics that is
relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for
both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2)
model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context
of water resources systems management and optimisation.

Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series.

Introduction
It has been almost four decades since the initial contributions
of time series analysis in hydrology and water resources
were made. Since then the field has been nurtured by
continuous theoretical improvements and applications to
practical water resources problems, particularly for
hydrological simulation and forecasting. Simulation and
forecasting techniques of streamflow time-series allow
practitioners and planners to explore possible realistic future
scenarios of a given water resources system, thus helping
in the decision-making process. Such techniques have been
applied widely for determining the dimensions of hydraulic
works  for risk asessment in urban water supply systems
and irrigation, optimal operation of reservoir systems,
planning of new works and actions to optimise hydroelectric
production, and others (Salas et al., 1985; Koutsoyiannis,
2000). Time-series prediction has been used in real-time
operation, systems operation during drought periods, short
term operation strategies in reservoirs and also for flood
warning purposes (Salas et al., 2000).

It is well known that water resources systems simulation
using only historical records of precipitation, discharge or
both, introduces severe restrictions. For example, Loucks
et al. (1981) remark the limited range of designs or
alternative strategies that result when applying only
historical data to simulate the future behaviour of a water
resources system, while better operation rules and designs
are obtained when they are tested with a variety of generated
hydrological scenarios. Bras and Rodríguez-Iturbe (1985)
emphasise the random nature of hydrological inputs, with a
large degree of variability and uncertainty and state that,
using only historical data as inputs to a water resources
system, results in a scarcely documented response. Different
designs, operational rules and strategies can be tested
adequately in a more efficient and realistic way through the
diversity of conditions resulting from synthetic series, as
the past experience in operational and synthetic hydrology
has extensively documented.

The research presented here fits into a broader project, in
which a decision support system (DSS) (Andreu et al., 1996)
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has been used to estimate the  risks of drought in the Tagus
river basin. This is the longest river in the Iberian Peninsula.
In the methodology applied, an essential phase is the
generation of multiple future hydrological scenarios
spanning several months in the future (between 24 and 60,
depending on the basin); these are conditioned to the
hydrological situation at the moment of the inquiry to the
DSS. These multiple future scenarios are used to simulate
the management of the water resource in the basin; the results
are used in turn to estimate the statistics of future deficits
(i.e. means, probabilities and distribution functions) and
statistics of state variables (e.g. reservoir storage). Most of
the rivers in the Iberian Peninsula experience droughts that
last for several months. Hence, it is crucial that the
synthetically generated future scenarios reproduce closely
the statistics related to drought and storage. Presently, the
DSS allows for synthetic data generation by means of
classical stochastic models, such as autoregressive moving
average (ARMA) models. The present work explores the
possibilities of using neural networks (NN) as generators
of future scenarios, with emphasis on the ability to reproduce
the statistics related to drought and storage. This application
relates to a study on a sub-basin of the Tagus river basin
involving two reservoirs, the Entrepeñas with a capacity of
1639 hm³ that regulates the river Guadiela, a tributary of
the Tagus, and the Buendía, in the main course, with a
capacity of 803 hm³. The location of the reservoirs is
indicated in Fig. 1. Both reservoirs are used for irrigation,
production of hydroelectricity,  and urban water supply
(CHT, 1999). If the results of this study show that NN are
useful, the work can be extended to the other sub-basins,
where multivariate modelling with more than two sites will
be necessary.

The present study uses an artificial NN approach for
nonlinear modelling of multivariate streamflow time-series.
This technique is used for synthetic generation of monthly
inflows to the two reservoirs. The research follows the lines
initiated by several authors in the past, some of whom
compared, in practical case studies, linear stochastic models
with NN models, while others used mixed models, i.e. NN
plus a random noise. Lachtermacher and Fuller (1994)
modelled annual streamflow series using multi-layer feed-
forward error-backpropagation NN, with iterated multi-step
prediction, where the single output of the model was used
for subsequent forecasting. Then, a Box-Jenkins modelling
approach was used to determine the appropriate number of
inputs (previous values of past streamflows) in the NN.
Raman and Sunilkumar (1995) built twelve different NNs,
one for each month of the year, which were then used for
streamflow generation for two reservoir sites. They
compared the technique with results derived from a bivariate

AR(2) model. The authors report a better performance of
the NNs approach. Boogard et al. (1998) proposed a hybrid
model that included an NN and an ARMAX model and
applied it to  predict the depth of a lake. Zealand et al. (1999)
used a one-hidden-layer NN for short-term streamflow
prediction; the model performed better than a stochastic-
deterministic catchment model. Anmala et al. (2000) used
recurrent NNs to predict streamflows in three different basins
and the results were an improvement on empirical
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Fig. 1. Location of Entrepeñas and Buendía reservoirs in the Tagus
River basin (Spain)
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approaches. Salas et al. (2000) forecast streamflows with
horizonts from one to four months using several NNs, all
trained with the error-backpropagation learning algorithm,
with successful results overall. Deo and Thirumalaiah (2000)
tested different learning algorithms to train multi-layer feed-
forward networks for time-series modelling of hourly
discharges

The most extended techniques for synthetic streamflow
generation and streamflow forecasting include simple and
multiple linear regression, autoregressive moving average
(ARMA) models, ARMA with exogenous variables
(ARMAX) and ARMA and ARMAX models with periodic
parameters. In all cases, a linear relationship between the
relevant hydrological variables is assumed; this does not
always yield the best results, and sometimes is even
inadequate (Chakraborty et al., 1992; Lachtermacher and
Fuller, 1994; Raman and Sunilkumar, 1995; Lehtokangas
et al., 1996). Classical nonlinear approaches typically
require large amounts of exogenous information, which is
not always available (Deo and Thirumalaiah, 2000). Some
nonlinear and non-Gaussian techniques do not need
exogenous information and behave better than linear models,
as in the case of periodic gamma autoregressive processes
PGAR (Fernandez and Salas, 1986), but they are univariate
models. Different authors (Lapedes and Farber, 1988; Tang
et al., 1991; Zealand et al., 1999; Imrie et al., 2000; and
Salas et al., 2000) have tested the capability of certain NN
topologies to incorporate  complex and non-linear
hydrological relationships; they remark on their potentials
and abilities as tools for hydrological forecasting.

The NN approach used here, the most widely referred to
in the literature, is based on the well known one-hidden-
layer fee-forward architecture trained with the error-
backpropagation learning algorithm. The model developed
has a deterministic component (NN), in addition to a
normally distributed random noise, which takes into account
the uncertainty typically affecting hydrological processes.
The model is applied to generate monthly streamflow series
which in turn are applied to real-time operation of the water
resources system as mentioned above.

Data preprocessing
The data used in this research comprised two series of
monthly inflows to the Buendía and Entrepeñas reservoirs
for the period October 1940 to September 1993 (i.e. 53
years). The modelling technique applied is essentially data-
driven, i.e. there is no preconceived notion about the existing
relationships between the variables. For efficient operation
of such models, previous work on data-conditioning,
normalising, and scaling of the variables must be undertaken.

As a first step, skewness was removed from the original
records by the transformation given by

)log( ττντντ QcQX += (1)

with

2/ ττ gac = (2)

where Qντ is the monthly inflow (hm³ month–1) for month τ
(τ=1,...,12) and year v (v =1,...,Na); Na is the number of years
of record of the series; τQ is the monthly average inflow
for month τ; a is a dimensionless parameter of value 0.35
resulting from a regression analysis between gt and cτ ; gτ is
the skewness coefficient for the set Q1τ, Q2τ, ....., QΝaτ; and
Xντ is the normalised inflow, for year v and month τ.

Equation (1) is the modified log-transformation suggested
by Raman and Sunilkumar (1995), who used a single cτ

value, i.e. the same value for every month. But, in the present
study, the optimal reduction in skewness was achieved using
a different value for each month, as Eqn. (2) indicates. This
equation was obtained by regression analysis of the monthly
skewness coefficients, gτ and their corresponding values of
cτ.

To account for periodicity, the resulting series after
transformation of Eqn. (1) were standardised to improve
learning efficiency and overall operation of the NN (Salas
et al., 2000). The standardisation was applied on a monthly
basis, through equation

τ

τντ
ντ s

XXY −= (3)

where τX , τs  are the sample mean and standard deviation
of the normalised inflows for month τ; and ντY  is the
standardised value for month τ and year v.

Finally, an additional transformation was performed on
the Y series for a convenient scale of the data to be processed
by the NN. The range of variation was reduced to the interval
[0,1].

mM

mt
t YY

YYZ
−
−= (4)

being Yτ = Yvτ with t = 12(v-1)+τ ; YM, the maximum value
of the Y series; Ym, the minimum value of the Y series; and
Zt, the scaled value to be presented to the NN. This procedure
helps to avoid internal numerical instabilities of the NN
learning process and operation (Lapedes and Farber, 1988;
ASCE-TCAANNH,  2000).
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Artificial neural network modelling
TOPOLOGY

The scheme employed is the one-hidden-layer feed-forward
NN, trained with the popular error-backpropagation learning
algorithm (Rumelhart et al., 1986). This NN configuration
has been used successfully in many water resources systems
applications and shows generally good abilities to model
hydrological time series (Chakraborty et al., 1992; Gupta
et al., 2000; ASCE-TCAANNH,  2000).

For the Buendía and Entrepeñas reservoirs monthly inflow
time series, the input and output nodes of the network are
set so that the target values to be predicted are the immediate
next-month inflows, given the two past values of the
series.This number of past values derives from a previous
exploratory phase, in which several numbers of past values
(lag-intervals) were tested. When the number of lag-intervals
were higher than two lags, no significant improvement of
the model performance was achieved. Note that each new
lag-interval introduces twice the number of hidden nodes
as the number of parameters in the NN. In this way, if the
relation improvement of the model performance/number of
additional parameters is considered for each number of lag-
intervals tested, two lags are found to be the most appropriate
number  in this case study.

The inference is done simultaneously for the two sites,
and therefore, a single network topology is used, as
illustrated in Fig. 2. This approach implies a unique
underlying non linear multivariate function involving two
dependent variables, i.e., the one-step monthly inflow
forecast for each of the reservoirs. An alternative to this
procedure would be to design and train two independent
networks, one for each of the sites. The former strategy has
been adopted in this research, in favour of a simpler and
more compact structure, being also the natural candidate
for the interconnected hydrological system under
consideration. On the other hand, the use of one single

network in this case facilitates the overall formulation of
the proposed hybrid model, providing an adequate
framework for comparison to the traditional tools as the
multivariate autoregressive models. Consequently, each
training exemplar, or pattern, presented to the network
consists of a predictor section with the input values
[ )0(

4
)0(

3
)0(

2
)0(

1 ,,, xxxx ], and a criterion section with the target
values [ )2(

2
)2(

1 , yy ]. As indicated in Fig. 1, a small number
of nodes in the hidden layer was adopted as a result of
optimal dimensioning of the NN after some numerical
experiments. Optimal network geometry is a highly
dependent problem and no general procedures or theories
have been established (Maier and Dandy., 2000). In this
study, only one-hidden-layer achitectures were tested, since
sufficient degrees of freedom can always be provided by
changing the number of nodes in the hidden layer (Hornik
et al., 1989). The approach followed here to determine the
optimal network dimension was to begin with the simplest
possible architecture containing a single hidden unit, and
train the network. Then, the number of hidden nodes was
increased and the network retrained, repeating this stagewise
process until no significant improvement in network
performance, in terms of its predictive capabilities, was
obtained. After this trial-and-error procedure, the best results
were obtained with the network indicated in Fig. 1 and this
was finally adopted.

FORMULATION

As usual, the segments in Fig. 1 connecting nodes between
consecutive layers are associated with weights: )()( nw l

ij  will
indicate the weight for the connection between node i of
the layer l-1 and and node j of the layer l. For the one-hidden-
layer topology, l=1, 2. The net incoming value to a node,
also known as the post synaptic potential (PSP), is calculated
as

∑
−

=

− ==
1

0

)1()()( 2,1;
lm

i

l
i

l
ij

l
j lywv (5)

where )1( −l
iy  is the output from node i in layer l-1; and ml-1

is the number of nodes in layer l-1.
In this linear combination, the values )(

0
ly  are taken equal

to 1, that is to say, the upper node or node 0 (Fig. 1) of the
input layer and hidden layer are fictitious nodes producing
unity as output, introducing a bias term. This makes weights

)(
0
l
jw  act as independent terms in the linear combination of

Eqn. (5). They are usually referred to as threshold
parameters for the node j in layer l.

The activation function in each node is a non-linear
function transforming the PSP into an output or activation
value,Fig. 2.  Artificial neural network topology
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)( )()( l
j

l
j vfy = (6)

where )(l
jy  is the output from node j (j=1, 2, ..., ml) in layer

l (l=1, 2), and f( ) is the non-linear operation performed in
the node using a certain activation function.

In this study, sigmoid functions were used as activation
functions, with output ranges [0,1] and [–1,1], given
respectively by

vvf −+
=

e1
1)( (7)

and
1

e1
2)( −

+
= −vvf (8)

These sigmoids or activation functions are very attractive
since they are easily handled in the training process of the
NN (ASCE-TCAANNH, 2000). The final results were
obtained with the bipolar sigmoid of Eqn. (8), which gave
the fastest training and lower prediction errors. Other recent
applications (e.g. Zealand et al., 1999; Salas et al., 2000)
also used Eqn. (8) successfully for the activation function
of these NN architectures.

The nodes in the input layer, or layer 0, do not perform
any operation. They are passive nodes, just allowing
presentation of the inputs (x’s values) to the network.
Therefore, )4,...,1()0()0( == jxy jj , while )0(

0y  is as stated
previously.

The normalised, standardised and scaled values of
monthly inflows (Z series) are taken as inputs and target
outputs of the NN:

)()(

)()(

)()(

)2(
2

)2(
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)0(
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)0(
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tt
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tt

==

==

==

−−

−−

(9)

where (b) stands for Buendía reservoir and (e) is for
Entrepeñas reservoir.

The overall operation of the NN is a non-linear black box
that transforms )0(

4
)0(

3
)0(

2
)0(

1 ,,, xxxx  into )2(
2

)2(
1 , yy , through

a non-linear function which results from the successive
application of the single activation functions of the nodes
in consecutive layers. It may be described analytically as
shown below.

The final outputs of the NN are the activation values of
nodes or artificial neurons in the output layer, given by

2,1,1

exp1

2
2

0

)1()2(

)2( =−



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=
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y

q
qqr

r (10)

in which, )2(
qrw  are the weights associated with segments

between the hidden and output layer; and )1(
qy  are the

activation values of hidden nodes, given by
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exp1

2
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0
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∑
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where

4,...,1for,and1 )0()0()0(
0 === pxyy pp

The resulting non-linear function transforming
)0(

4
)0(

3
)0(

2
)0(

1 ,,, xxxx  into )2(
2

)2(
1 , yy  can be obtained by

combining Eqns. (10) and (11):
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Therefore, the proposed NN can be interpreted as a non-
linear regression (Stern, 1996), with the weights )(l

ijw
playing the role of parameters to be estimated.

From this perspective, the problem of estimating )(l
ijw

parameters can be regarded as a non-linear optimisation
problem without restrictions. A convenient objective
function can be the mean squared error function (MSE),
which is given by

∑∑
= =

−=
pN

n j
jj

p
nynd

N
MSE

1

2

1

2)2( )]()([
2

1 (13)

in which Np is the number of patterns or training exemplars
shown to the network. In this study, Np=634, extracted from
the 53 years of monthly records; )()2( ny j  are the output
values produced by the NN (Eqn. 12), when the predictors

)0(
4

)0(
3

)0(
2

)0(
1 ,,, xxxx  of exemplar n are processed; dj(n), with

j=1, 2, are the target values specified in the criterion section
of the exemplars, that is, the values observed subsequently.
In the present study, those target values are those observed
subsequently  in the Z series for the Buendía and Entrepeñas
reservoirs.

TRAINING

The popular error-backpropagation algorithm was used to
train the proposed NN. The method is not as fast as other
techniques, and sometimes requires slow training sessions
to achieve convergence (Cheng and Titterington, 1994;
Stern, 1996). This is not a serious limitation when the NN
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architecture is not too complex, as in this case, while there
are other benefits such as the robustness of the method.

The training process must aim to find optimal values of
synaptic weights )(l

ijw , producing minimum differences
between target values and predicted or calculated ones, as
indicated by

p

jjj

Nn

jnyndne

.,..,2,1

;2,1),()()( )2(

=

=−= (14)

where ej(n) for j=1, 2 are the errors for exemplar n. Note
that ej(n) is included in Eqn. (13).

The training process was applied in a sequential mode or
exemplar-mode training, so that the set of weights was
modified successively after each exemplar processing as

)()()1( )()()( nwnwnw l
jk

l
jk

l
jk ∆+=+ (15)

where )()( nw l
jk∆  is the corresponding weight change. This

procedure is very simple to implement and provides effective
solutions in most cases (Haykin, 1999). To ensure effective
learning by the network, the training patterns were presented
to the network in a randomised way. Weight changes

)()( nw l
jk∆  are evaluated by a gradient descent method; this,

basically, calculates sensitivity of the current training error
to changes in each of the network weights modifying it
according to

)()()]1([)( )1()()()( nynnwnw l
j

l
k

l
jk

l
jk

−+−∆=∆ ηδα (16)

where α is the momentum constant; η is the learning rate;
and )()( nl

kδ  is the local gradient for node k in layer l. Details
of the procedure can be found in Haykin (1999). In the case
study presented here, best training resulted from values α =
0 and η = 0.03. During each individual training session, α
values (from 0 to 1) were kept constant, while η was
progressively decreased from 0.5 at the beginning of
training, to 0.01, to accelerate convergence during initial
stages of the process and to avoid, in the final steps, damping
of the error function trajectory around the minimum. To
avoid local minima, the training procedure was repeated
from independent initial conditions concerning weight
values. The numerical experiments showed that changing
the value of α affected the total training time only slightly
but, in this case, resulted in no significant differences in the
final weights of the calibrated network.

NN with random component
In all cases the training was stopped after the error function
showed neglegible decreases, with no restrictions to the

number of epochs needed. The training process of the neural
network was carried out using the generalised software
package SERENA. This latter has been developed by the
authors of this study as a part of a broader project.
Once the network was trained, a statistical analysis of
prediction errors was performed over the Y series, i.e.
normalised and standardised series after Eqn. (3). Figure 3
shows such prediction errors or observed residual series,
εt, for both reservoirs. Table 1 summarises statistics
computed for both residual series.

While the mean value is almost 0, as expected, a certain
positive skewness of residuals is obtained in both cases.
Figure 4 shows the corresponding frequency histograms.

Finally, the autocorrelation functions of the residual series
and month-to-month correlations were computed, (Figs. 5
and 6). While the autocorrelation values and those of month-
to-month correlations were negligible, a value of 0.861 for
cross-correlation is obtained between the two residual series.

To build a model for synthetic generation of monthly
inflows in the Buendía and Entrepeñas reservoirs, a white
noise generator, ξt, was considered. ξt is a normally
distributed and uncorrelated random signal with zero mean
and standard deviation equal to 1. Then, the random
component for both reservoir sites, ε’t, is defined by

{ } { }tt ξε B=' (17)

with

Σ=TBB (18)

where Σ is the matrix of variances ( 22 , eb σσ ) and covariances
( ebbe σσ , ) of the observed residual series, as indicated in
expression (19). As Σ is the Gramian matrix of B, this last
one is unknown and has to be found by solving the matrix
Eqn. (18).












=Σ 2

2

eeb

beb

σσ
σσ (19)

Table 1. Computed statistics for residual series

Statistics  Buendía Entrepeñas
   NN    AR(2)    NN          AR(2)

Mean   0.006 –0.004   0.005 –0.005
Std. Dv.   0.574   0.575   0.545   0.546
Skewness Coef.   0.654   0.654   0.594   0.582
Maximum   2.039   2.023   2.183   2.243
Minimum –1.526 –1.642 –1.644 –1.878
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Fig. 3. Residual series. (a) Buendía (b) Entrepeñas

Fig.3. Frequency histograms of residual series. (a) Buendía (b) Entrepeñas

Fig. 4. Autocorrelation functions of residual series. (a) Buendía (b) Entrepeñas
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Equations (17) and (18) result from the assumption of
residuals distributed as a bivariate normal distribution.

Taking B as a lower triangular matrix, and forcing Σ to be
a positive semi-definite matrix, Eqn. (18) has a unique
solution. This technique is documented in detail in Bras and
Rodríguez-Iturbe (1985).

Equation (17) defines the two stochastic components to
be added to the previously formulated NN-deterministic
approach, and can be re-written as
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The two components are to be assembled over the
normalised and standardised series (Y series). Consequently,
the NN component, as given in a compiled form by Eqn.
(12), needs to be de-scaled first. The final form of the model
is the sum of both components, as given by
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where b
tQ '  and e

tQ '  are the synthetic values produced by the
model (hm³ month-1), b

tY '  and e
tY '  are the values produced

by the NN scheme (including de-scaling after Eqn. (12)),
and b

t
'ε  and e

t
'ε  are the corresponding stochastic

components for the Buendía and Entrepeñas reservoirs,
given by Eqn. (20). Function F represents the inverse of the
preprocessing operations defined by Eqns. (3) and (1)
respectively, that is,

ττντντντ ε XsYX ++= )( ''' (22)

Fig. 6. Month-to-month correlations of residual series. (a) Buendía (b) Entrepeñas

Table 2. Estimated values of AR(2) model parameters

Component Matrix Φ1 Matrix Φ2 Matrix Θ0

1,1 0.664   0.163 0.587
1,2 0.093 –0.097 0.000
2,1 0.030 –0.038 0.483
2,2 0.667   0.193 0.278

ττντ
ντ QcQ X −=
'

10' (23)

with τ = t–12(v–1).
The proposed scheme is a hybrid stochastic-deterministic

model for hydrological scenario synthetic generation, in
terms of monthly series of reservoir inflows.

Multivariate statistical model
For comparison purposes, an autoregressive model of order
2, AR(2), was applied to the data series of Buendía and
Entrepeñas. Model AR(2) represents the time dependence
of a value Yt of a period t as a function of the two previous
values Yt-1 and Yt-2 corresponding to periods t-1 and t-2. Its
formulation is given by

{ } { } { } { }tttt YYY ξ02211 Θ+Φ+Φ= −−
(24)

being Yt stationary time series normally distributed. In this
study, those series were taken from the set of values stated
in Eqn. (3), i.e. normalised and standardised inflows to the
Buendía and Entrepeñas reservoirs. ξt is a random signal,
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which is also normally distributed with mean zero and
variance one. ΦΦΦΦΦ1, ΦΦΦΦΦ2 and ΘΘΘΘΘ0 are parameter matrices, which
were estimated by the method of moments (Salas et al.,
1980}. Since the month-to-month correlations of the
standardised inflow series are not significant statistically,
as Fig. 7 indicates, parameter matrices were assumed to be
constant.

The AR(2) modelling process consisted of two steps:
firstly, the model was calibrated and, then, it was used for
generating synthetic streamflow series in both reservoirs.
Table 2 presents estimated values of AR(2) model
parameters, and Table 1 shows the statistics of the residual
series, which are very similar to those of the NN modelling.
In particular, it can be seen that skewness coefficients of
the residual series from both models are practically the same,
showing that non-linear processing of the NN model does
not induce any skew.

Evaluation of  models’ performance
The two multivariate models, after calibration, were used
for synthetic generation of a total of 200 synthetic series of
monthly inflows at both geographical sites, each series 53
years in length. All the series, synthetic and historical, were
also aggregated using a time level of aggregation of one
year.

For evaluation of the models’ performance, certain
relevant statistics were computed from both historical and
synthetic series and then compared. This comparison is the
right way to validate a model if it is intended for water
resources systems planning and management management
and planning (Jackson, 1975; Salas et al., 1980; Stedinger
and Taylor, 1982; Fernandez and Salas, 1986; Kendal and

Dracup, 1991; Basson and van Rooyen, 2001). Therefore,
considering that the proposed model is not a forecasting
approach, the performance of the NN-based model must
not be evaluated by using the classical procedure of splitting
all available data into training and validation (and/or) test
sets. The statistics were calculated over the monthly and
annual series, and then verification and validation processes
were done. As Stedinger and Taylor (1982) report, these
are two important stages of the development and use of a
stochastic streamflow model. Verification consists of
demonstrating that the statistics explicitly involved in the
model formulation are statistically the same for both
generated and historical flows; validation of a streamflow
model is the demonstration that such a model is capable of
reproducing statistics which are not explicitly included in
its formulation. In this study, verification statistics (means,
standard deviations, lag-1 correlations and lag-2
correlations) were included in addition to some relevant
validation statistics related to droughts and storage of the
series. The computed statistics were grouped into four
different categories:

Basic statistics. Mean, standard deviation and skewness
coefficient, all computed over the series in their original
scale (hm³ month –1).

Series persistence statistics. These statistics are related
to autocorrelation and cross-correlation functions. Both
were computed over the normalised and standardised
series.

Drought statistics. A given percentage of the mean
discharge (QM) is taken as a threshold, so that each group

Fig. 7. Month-to-month correlations of standardised inflow series. (a) Buendía (b) Entrepeñas
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Table 3. Relative root-mean-squared differences (RRMSD) of the synthetic statistics

Statistics        Buendía       Entrepeñas
NN AR(2) NN AR(2)

BASIC STATISTICS OF MONTHLY SERIES

Mean 0.028 0.020 0.012 0.016
Standard deviation 0.129 0.077 0.113 0.042
Skewness coefficient 0.535 0.441 0.376 0.212

SERIES PERSISTENCE STATISTICS OF MONTHLY SERIES

Buendía 0.276 0.329 0.283 0.303
Entrepeñas 0.247 0.282 0.317 0.355

MAXIMUM MONTHLY DROUGHT STATISTICS

Frequency 0.166 0.211 0.144 0.226
Length 0.150 0.176 0.217 0.333
Intensity 0.116 0.119 0.132 0.112
Magnitude 0.144 0.250 0.119 0.331

MAXIMUM ANNUAL DROUGHT STATISTICS

Frequency 0.191 0.265 0.201 0.285
Lenght 0.210 0.225 0.165 0.236
Intensity 0.112 0.025 0.040 0.166
Magnitude 0.052 0.114 0.195 0.189

MONTHLY STORAGE STATISTICS

Reservoir capacity 0.267 0.283 0.468 0.504
Hurst coefficient 0.039 0.053 0.085 0.098

ANNUAL STORAGE STATISTICS

Reservoir capacity 0.320 0.345 0.501 0.540
Hurst coefficient 0.068 0.096 0.146 0.171

of consecutive values below it defines a single drought,
with its duration, intensity (threshold minus minimum
value) and magnitude (total volume below threshold).
The frequency of droughts, together with the basic
descriptors, have been computed for all series in both
reservoirs, including annual and monthly series. Special
attention is given to statistics of maximum droughts.

The first three categories of statistics were calculated
according to Salas et al. (1980).

Storage statistics. The hypothetical reservoir storage
capacity to guarantee a given percentage of QM has been
calculated for all the series during the period of 53 years.
Again, statistics are computed from the monthly and
annual series. Also, Hurst coefficients were computed
and compared in all cases.

This group of statistics was computed according to Loucks
et al. (1981) and Salas et al. (1980).

All the statistics in the four groups were computed for
each of the 200 synthetic series and then averaged over the
ensemble. Also, the statistical descriptors were computed
from the historical records at Buendía and Entrepeñas
reservoirs. These were compared, systematically,  with
averages computed for the synthetic series. All the results
were plotted to give a general qualitative idea of each
model’s performance, and for each single graphic, the
relative root-mean-squared difference (RRMSD) was
obtained for both the AR(2) and NN-based model. Table 3
comprises all computed values of the RRMSD, while
graphical results corresponding to the most relevant tests
have been selected and presented (Figs. 8 to 11).

Results show that the AR(2) model reproduces the
empirical standard deviations better than the NN-based
model although the differences are not large. The correlation
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Fig. 8. Basics statistics and series persistence statistics. Historical values v. synthetic values
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Fig. 9. Lenghts of maximum droughts. Historical values v. Synthetic values

Fig. 10. Magnitudes of maximum droughts. Historical values v. Synthetic values

Fig. 11. Monthly storage capacity. Historical values v. Synthetic values
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persistence shown by the historical series is not reproduced
adequately by any of the models, as Fig. 8 shows, and a
similar conclusion stands for cross-correlations.
Nevertheless, this underestimation of correlations is more
evident in the AR(2) case, while the NN-based generator
tends to keep better significant correlation values for larger
lags, behaviour which is more acceptable than that of the
AR(2) model. On the other hand, the same figure shows
that month-to-month cross-correlations are equally well
reproduced by both models.

The results concerning basic statistics show the NN model
as favourite, particularly when the most relevant descriptors
are considered, i.e. the duration and magnitude of droughts.
Figures. 9 and 10 show results for maximum droughts.
AR(2) underestimates the magnitude of droughts
significantly, while the NN approach reproduces the
historical drought statistics much better. When the droughts
are identified from the annual series, similar conclusions
can be reached. Maximum droughts resulting from different
discharge thresholds, are reproduced better by the NN
model. Figs. 9 and 10, for both reservoir sites, show
empirical and synthetic statistics of duration and magnitude
of droughts derived from monthly and annual series.

Storage statistics are well reproduced by both models for
thresholds of 70% of QM or lower; results for both models
are almost equivalent (Fig. 11). Concerning Hurst
coefficients, Table 4 shows that in all cases the models
underestimate empirical values, although the NN model
gives lower differences.

Conclusions
A hybrid model is proposed as a practical tool for
multivariate generation of monthly streamflow series at two
geographical sites located in the Tagus River basin in Spain.
The model consists of a deterministic core defined in terms
of a one-hidden-layer feed-forward neural network with two
hidden nodes, plus a stochastic part built with a multivariate

white noise component. Historical discharge records were
used to train and test the potentials of the model for
generation of practical hydrological scenarios. The
validation process of the developed model was carried out
as usual with this kind of model: the comparison between
historical and synthetic statistics which are relevant in the
framework of water resources systems managment and
planning. For comparative purposes, the well-known
multivariate AR(2) model was also applied on an identical
basis.

The combined stochastic-NN approach outperforms the
purely stochastic AR(2) model, particularly for drought
related statistics. It can be concluded that the proposed
hybrid model is a viable alternative for future applications,
in competition with linear purely stochastic autoregressive
models. The present results demonstrate, qualitatively, its
value for synthetic generation of monthly streamflow series
in water resources system analysis. Its full potential should
be explored in other similar studies that incorporate a larger
number of related series at different locations. Other network
architectures should be also explored, while different
training techniques might be required for an efficient
operation, as the number of locations is increased and the
network becomes more complex. The authors are now
working on new case studies, which include a larger number
of stations. Preliminary results indicate that the hybrid
technique proposed herein performs well when applied to
synthetic generation of monthly streamflows at three sites.
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