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Abstract

While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural
network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron
(MLP), and the radial basis function network (RBF). Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the
Three Gorges Dam) for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the
training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in

RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural
networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero

order forecasting approach.
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Introduction

OVERVIEW

The Three Gorges Project is the world’s largest hydroelectric
project. It is costing the Chinese government approximately
£7.6 billion to construct a dam 2.2km long and 175m high
across the River Yangtze in the Three Gorges Region, China
(Chinese Embassy, 1997a) — see Fig. 1. Construction began
in 1993, and the plant will start producing electricity in 2003,
with full project completion in 2009. The impoundment will
create a reservoir approximately 663km long and submerge
632 square km, 1599 industrial and mining enterprises and
365 townships — displacing an estimated 1.2 million people
in the process (Chinese Embassy, 1997b). However, the dam
will provide one seventh of China’s electrical output
(compared to output in 1992) (ibid) and much needed flood
control for this vast river.

This paper presents results from the development of
experimental neural networks that were trained to model
the flow in this region (the catchment area of which is
56,000km?). Two neural network models were used in this

study: the multilayer perceptron (MLP) and radial basis
function (RBF). In addition to comparing MLP and RBF
networks in this scenario, this paper discusses three other
issues. Firstly, it is shown that neural networks can predict
accurately flow rates exceeding those in the model training
data. Secondly, alternative transfer functions in RBF

Three Gorges Region

River Yangtze

Fig.1. Location of the Three Gorges Region in China
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networks were evaluated. Thirdly, the more general problem
of assigning confidence intervals to ANN model forecasts
has been considered.

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are powerful tools for relating
sets of predictor variables (in this case, for example,
antecedent rainfall and river flows), in non-linear ways, to
specified forecast variables (e.g. future river flows).
Although ANNSs have existed in various forms for over fifty
years (McCulloch and Pitts, 1943) it is only since the
rediscovery and popularisation of the backpropagation
training algorithm that it has been possible to construct
neural networks of any practical size and complexity
(Rumelhart and McClelland, 1986). Since the 1980s,
research in artificial neural networks has accelerated and
today neural networks are utilized in many different
applications using different network types, training
algorithms and structures.

In this study, two of the most popular neural networks are
examined: the widely used MLP and the less favoured RBF
network. Although the MLP can produce accurate flow
forecasts, it does have a number of drawbacks. For example,
training an appropriate network can take a long time and a
number of parameters must be determined by the neural
network developer. On the other hand, although the RBF
has been used in a limited number of studies (Mason et al.,
1996; Jayawardena and Fernando, 1998; Dawson et al.,
2000), it can be trained in a fraction of the time, has fewer
parameters to be determined and, in certain cases, predicts
river flow more accurately than the MLP (Jayawardena et
al., 1997).

A detailed explanation of the plethora of network types
and training algorithms is beyond the scope of this paper.
Interested readers should refer to texts such as Bishop (1995)
and Haykin (1999) for a detailed discussion on neural
networks, or Maier and Dandy (2000) and Dawson and
Wilby (2001) for overviews of ANN applications within
hydrology (neurohydrology). Neurohydrology (a term
coined by Abrahart ef al., 1998) is an emerging field that
draws together the expertise of the computer scientist (neural
network developer) and the hydrologist. It can be described
as the application of artificial neural networks to the problem
of rainfall-runoff modelling and flood forecasting.

Artificial neural networks were chosen as the applied
method for the present investigation for various reasons.
They do not presuppose a detailed understanding of a river’s
physical characteristics, nor do they require extensive data
pre-processing. This is because ANNs can, theoretically,
handle incomplete, noisy and ambiguous data. Furthermore,
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artificial neural networks are often cheaper and simpler to
implement than physically-based hydrological models.
ANNSs are also well suited to dynamic problems and are
parsimonious in terms of information storage within the
trained model.

Experiments

METHODOLOGY

For these experiments, the protocol of Dawson and Wilby
(2001) was applied to rainfall-runoff data for the River
Yangtze. This protocol consists of seven stages that can be
summarised as:

(1) Gather data;

(2) Select predictand - what is the model trying to predict
and what is to be optimised?

(3) Data preprocessing stage 1 (cleansing and identifying
appropriate predictors);

(4) ANN selection - select an appropriate network type and
training algorithm;

(5) Data preprocessing stage 2 (standardise the data and
split into appropriate training, test and validation sets);

(6) Network training - train the network(s) with the
processed data sets;

(7) Evaluation - using appropriate error measures to
interpret the results.

(1) Rainfall-runoff data were obtained at six-hourly
intervals for the River Yangtze, and included five flood
events between early June to mid-August during 1991 to
1993 (yielding approximately 400 data points for ANN
model calibration and testing). The data included discharge
at two sites upstream of the Three Gorges dam site (as well
as the dam site itself) and precipitation in four upstream
sub-basins.

(2) Predictand — the models were trained to predict flow
at six hourly intervals at the Three Gorges dam site.

(3) Due to the size and characteristics of the data set, no
cleansing of the data was required at this stage. The data
were analysed (using correlation and partial correlation
functions) to determine the strongest relationships between
discharge and previous events starting with a minimum 48
hour lead time. A minimum lead time of 48 hours was chosen
as an initial point for the analyses as any shorter period would
limit the effectiveness of a flood forecasting model in
providing adequate warnings.

Following these analyses, the chosen predictors were the
inflows at one of the two upstream sites, the precipitation
in four sub-basins and antecedent flow at the Three Gorges
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Table 1. Correlation between observed flows and selected
predictors (calibration data)

Predictor Lead time Correlation
(hours)

Precipitation A 90 0.239
Precipitation B 90 0.248
Precipitation C 102 0.224
Precipitation D 108 0.248
Inflow Upstream 48 0.975
Flow 48 0.87

dam site (with a lead time of 48 hours). The correlations
between each of these predictors and flow are presented in
Table 1 along with the chosen lead times. Thus, the models
were trained with six inputs and one output.

From an inspection of Table 1, it would appear that
precipitation has little correlation with flow when compared
with the two antecedent flow predictors. However,
experimental models that excluded these parameters
provided less accurate forecasts than models which included
them (for example, the best MLP developed without these
predictors had a RMSE of 2984 cumecs compared with 2068
cumecs when they were included). These results emphasise
the importance of including all appropriate information in
model calibration.

It is important to have an understanding of catchment
characteristics and the hydrological processes involved
before ‘blindly’ applying neural networks to the available
data. The authors hope to provide a protocol for a more
rigorous application of alternative models to the physical
process. In the absence of such a protocol, this paper follows
recognised procedures in developing the neural network
models in this study. Recent work by Abrahart et al. (2001)
has highlighted the ability of neural networks to infer
physical processes within the rainfall-runoff cycle. This
work is still ongoing and aims to provide a hydrological
explanation of neural network rainfall-runoff model
behaviour.

(4) Both MLP and RBF networks were used in this study.

In the majority of hydrological studies with RBF networks
(Dawson and Wilby, 2001), the Gaussian function is used
as the transfer function. However, as the results presented
later indicate, the optimal performance may not necessarily
be obtained with the Gaussian function and it is advisable
to try alternatives. To evaluate the effectiveness of alternative
transfer functions within the RBF network, six transfer
functions (¢(x)) were used in this study; the Gaussian (1),
multiquadratic (MQ) (2), inverse multiquadratic (IMQ) (3)

(Hardy, 1971), cubic (4), linear (5) and thin plate spline
(TPS) (6) (o is the width of the transfer function):

o X)=exp (- 2X22) for 6>0and x eR (1)

O (x)=x + o'for c>0andx eR (2)

o (X):;/}Tf for 6>0andx eR 3)
\ c

o(x)=x° “4)

P(x) =x (5)

¢(x) = x*In(x) (6)

(5) One criticism levelled at neurohydrological models
is their inability to predict values outside the range of their
training data (see Minns and Hall, 1996). These events may
occur because of extreme weather conditions or changing
catchment characteristics. As neural networks behave as
black boxes, it is difficult to incorporate catchment changes
without retraining. To overcome the problem of extreme
events, neural network developers often standardise data in
training sets to the range [0.1, 0.9] (or similar). This attempts
to accommodate test and validation events in excess of data
in the training set in the boundaries [0, 0.1] and [0.9, 1].
This was the procedure adopted in this study. It is also
important to standardise data to this kind of range because
of the asymptotic nature of the transfer (squashing) function
used in a neural network’s nodes. Values beyond these limits
tend to retard training as the gradient of the transfer function
approximates to zero. This leads to minute changes being
made by the backpropagation algorithm to a network’s
interconnecting weights during training.

The data were then split into four flood events for training
(50% of the data), one flood event from 1993 for testing
(10% of'the data), and one flood validation event from 1992
(40% of the data). The peak flow in the training set was
49 200 cumecs while the peak flow in the validation event
was 50 300 cumecs.

(6) The MLP networks were trained using the popular
backpropagation algorithm from 100 to 5000 epochs with a
sigmoid transfer function throughout. After every 100
epochs the models were assessed against the test set. A trial
and error approach was used to select an appropriate number
of nodes in each MLP’s single hidden layer, assessing 5,
10, 20 and 30 hidden nodes. In these experiments, the
backpropagation learning parameter was set to 0.1 and the
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momentum rate to 0.9 (values that have proved favourable
in the past; see Dawson and Wilby, 1998).

The cluster centres for the RBF network were determined
using K-Means clustering which involves sorting all objects
into a defined number of groups by minimising the total
squared Euclidean distance for each object with respect to
its nearest cluster centre. Because of the speed in training
the RBF network, between 2 and 50 clusters were assessed
for each of the transfer functions identified above, and the
most accurate model was chosen based on comparisons with
the test data set.

(7) Evaluation

To compare the models with more conventional techniques
parallel experiments were performed with the same data sets.
These experiments resulted in the development of an ARMA
model, a SWMLR (step-wise linear regression) model and
ZOF (zero order forecast) model. The SWMLR adds
variables to the model depending on their partial F-ratio.
Variables are added into (or removed from) the model until
no significant improvement in the model’s accuracy is
achieved. The ARMA model uses both previous errors
(shocks) of a model’s output and previous outputs from the
model to predict flow. Analyses of autocorrelation, partial
autocorrelation and shocks indicated no moving average
term was required for the ARMA model. Thus, a multivariate
AR(1) model was produced (i.c. a first order AR model with
multiple input parameters). The SWMLR model retained
only two of the predictors listed in Table 1; the discharge
upstream and at the dam site, 48 hours prior to the forecast
flow. The ZOF model used the previous 48 hours observed
flow as the naive forecast of flow.

Error measures

It is important to apply multiple error measures when
assessing hydrological model skill (Dawson and Wilby,
2001). Some measures provide useful insights into a model’s
behaviour at high flows (e.g. root mean squared error;
RMSE), others at low flows (e.g. mean squared relative
error; MSRE), others can provide useful indications of a
model’s overall performance (for example, R-squared),
while others penalise models that have excessive numbers
of parameters (e.g. A information criteria; AIC and B
information criteria; BIC). In addition, it is informative to
present several performance measures to allow comparisons
with other studies (there being no universally accepted
measure of ANN skill).

With these points in mind, the following error measures
were applied (further discussion of which can be found in
Legates and McCabe, 1999; Dawson and Wilby, 2001; Hall,
2001):
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AIC =m In(RMSE) + 2p

(CE is the coefficient of efficiency — a value of one
representing a perfect model; Nash and Sutcliffe,1970)
where Q are the n modelled flows, Q, are the n observed
flows, O is the mean of the observed flows, Q is the mean
of the modelled flows, m is the number of data points (for
calibration), and p is the number of free parameters in the
model).

Results

COMPARISON OF MODELS

Table 2 provides a summary of the results for independent
validation data. In the table the most accurate model has
been underlined for each evaluation statistic and the worst
result has been italicised. The best MLP consisted of five
hidden nodes and was trained for 1700 epochs. The best
RBF network was of similar size consisting of seven ‘hidden
nodes’ using a multiquadratic transfer function. These
networks were identified through a trial and error approach
using comparisons with the test data set — i.e. the ‘best’
configuration was chosen based on the test data before
evaluation was performed with the validation data.

Table 2 shows that the RBF produced the most accurate
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Table 2. Experimental results

MSRE RMSE CE
(cumecs) (%)

AIC R-squared

ARMA 0.0202 4237 75.98 1674 0.91
MLP 0.0073 2068 94.24 1609 0.97
SWMLR 0.0107 2998 87.90 1607 0.97
Z0F 0.0362 6590 41.50 1759 0.49

RBF (MQ) 0.0070 1933 94.97 1611 0.98

forecasts of flow when evaluated with the majority of error
measures. The only time it is surpassed is with AIC which
has penalised the model because of its greater number of
parameters (49 as opposed to 3 in the SWMLR case).
Interestingly, if the BIC were to be calculated, the RBF is
more heavily penalised and comes out worst overall (1773

55000

compared with a ZOF of 1759 and SWMLR of 1617).
Although the RBF has more parameters than any other
model, it can still determine these parameters very quickly,
in an equivalent time to the ARMA and SWMLR models
and far quicker than the time required to train the MLP.
While the MLP does not perform as well as the RBF it comes
a close second in all cases. Not surprisingly, the naive ZOF
model proves to be the worst predictor in all cases.
Figures 2 and 3 present hydrographs of the RBF and MLP
performance respectively. Although there appears to be little
difference between the models, the statistics indicate that
the RBF is generally more skilful. Close examination of
these figures shows that the RBF is indeed closer to
modelling the lower flows than the best MLP network. In
both cases the models forecast the flood peak accurately
(the respective errors in the peak flow forecasts are 1.5%
and -0.6%) although both models overpredict the secondary
peaks to some extent. This may occur firstly because the
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networks were trained on flood events and have had little
exposure to low flow events. Secondly, the models selected
for validation were based on comparisons with a flood peak
in the test set (so models were chosen that predicted flood
events most accurately). Thirdly, the optimisation criteria
of the ANN aims to minimise the MSE. This is more
sensitive to large deviations and may explain why the models
have evolved to model larger flows at the expense of low
flow events. An alternative would be to optimise networks
with respect to, say, MSRE which would penalise models
for over- or under-predicting low flow events. Further work
is needed in this area.

An additional experiment was performed with the MLP
to assess the effectiveness of an alternative transfer function.
To this end a hyperbolic tangent function was used (this has
been used in a number of previous studies; see Dawson and
Wilby, 2001). However, results of this experiment provided
rather disappointing results. Although the networks could
be trained to model the calibration data accurately, networks
utilising this transfer function were very poor at generalising
and provided somewhat inaccurate forecasts when assessed
with the test and validation data. In these experiments the
best model that could be produced (following the same
process as before) had a RMSE of 4676 cumecs for the
validation data — much worse than all but the naive ZOF
model results presented in Table 2.

Table 3 presents the comparative performance of the RBF
network using alternative transfer functions (with respect
to the validation data set). The multiquadratic is the most
accurate function according to all the error measures used.
The results of the more ‘popular’ Gaussian function are poor
by comparison and are even worse than using a simple linear
function. These results emphasise the importance of using
alternative transfer functions in RBF networks. Although
the multiquadratic provided the most accurate model in this
study, this may not be the case in all situations and all other
possibilities should be explored. Further research is being

Table 3. Experimental results for different RBF transfer
functions

MSRE RMSE CE

(cumecs) (%)

AIC  R-squared

Cubic 0.0261 5398  60.76 2096 0.93
Gaussian 0.0148 3647 82.14 1976 0.94
IMQ 0.0140 3240 8591 2079 0.95
Linear 0.0119 2606 90.86 2049 0.96
MQ 0.0070 1934 94.97 1611 0.98
TPS 0.0322 4545 72.18 1720 0.85
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conducted by the authors into the use of alternative transfer
functions and additional work is needed to explore the
reasons behind their different performances.

CONFIDENCE

A criticism often levelled at neural network models is their
inability to explain their reasoning and, therefore, in real
time, how confident can one be in a flood forecast they have
made? The authors are investigating the internal
configuration of ANNs used to emulate water balance
models (Abrahart et al. 2001; Wilby et al., 2002) in an
attempt to explain a network’s behaviour in physical ways.
An alternative technique is to provide confidence limits on
the model’s behaviour calculated statistically from past
performance. One possible technique is to use the standard
error of the least squares regression line of observed flow
on predicted flow. While this does not provide a direct
measure of confidence when comparing modelled and
observed data, it does provide an indirect measure that may
be useful. The regression line provides a standard error
measure and hence confidence intervals for the intercept
and gradient of the linear regression between observed and
modelled flow (Fig. 4). This can be used to investigate biases
in a model’s performance. For example, in the RBF (MQ)
model, the standard error of flow is 1270 cumecs. Thus, for
an RBF predicted flow of 35,000 cumecs (say), one is 95%
confident (1.96 standard errors about the regression line)
that the actual flow that will be observed in the river in 48
hours time will be between 31,630 and 36,608 cumecs
(calculating the expected flow as 34,119 cumecs from the
regression line). However, for this estimate to be valid, a
linear relationship must exist between the model and the
observed flows and the results must be homoscedastic.
While homoscedasticity can be difficult to prove, a visual
inspection of these data does indicate that it is preserved in
this particular case. Further work is needed to explore the
validity of using this relationship in determining confidence
limits.

Another way of improving confidence in a model is to
combine the output from several models into a single flow
estimate. This can involve coupling both conceptual and
neurohydrological models. Figure 5 shows the variation in
output of the RBF models with different transfer functions,
along with the ensemble mean for the validation period.
The figure clearly illustrates the level of uncertainty that
arises from using just alternative transfer functions within
the same type of neural network. This demonstrates that no
single model is necessarily perfect for all conditions and
shows that uncertainty surrounds any estimate. To improve
estimates and confidence in predictions, it is useful,
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therefore, to integrate the output from several models. This
can be achieved by either selecting the output from one
model, based on current conditions (for example, choose
model A’s output during low flow events, and model B’s
output during flood events), or integrating the predictions
from the models in some way — such as averaging or
weighted averaging. Various approaches have been
suggested along these lines. For example, Shamseldin and
O’Connor (1999) suggest using a linear transfer function
model to combine model outputs; Furundzic (1998) uses a
self organising map to distribute input data to alternative
neural networks (each network performing ‘better’ in
different conditions); and See and Abrahart (1999) propose

13 August 1992

(6 hour intervals)

Comparison of ensemble mean and different RBF performance

the use of a neural network to ‘fuse’ such outputs together.
What has yet to be fully explored is the determination of
confidence probabilities for combined flow forecasts. This
could involve evaluating ensemble means and variance from
a range of models.

What is clear is that when predictions are made by models
(be they individual or integrated models), it is important to
provide some indication of the model(s)’ accuracy. By
providing confidence limits on a given flow prediction, one
is going some way to achieving this aim. Further work in
assigning probabilities to ANN flow forecasts is currently
the subject of ongoing research.
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Conclusions

This paper has evaluated the use of two different artificial
neural network models to forecast flow in the River Yangtze,
China. While the data set was somewhat limited, it was still
possible to explore a number of hypotheses. Firstly, the
results have shown that the popular MLP is not always the
most accurate model to use and alternative network types,
for example, the RBF, can prove ‘better’ in some cases.
Secondly, when developing RBF networks one should not
presuppose a Gaussian transfer function within the
architecture. By exploring a number of alternative transfer
functions the Gaussian function has been shown to under
perform and, in this particular case, the multiquadratic was
a significant improvement. Thirdly, the results have shown
that ANNs can predict events outside their training range
simply by using a limiting scaling on the data (in this case
[0.1,0.9]). Imrie et al. (2000) have explored this idea further
and proposed the use of a guidance system to develop
networks towards more general solutions. Finally, the
importance of assigning confidence probabilities to a
model’s performance has been discussed. This can be
achieved in a number of ways; by evaluating a model’s past
performance statistically, by exploring the internal structure
of the network to provide a physical interpretation of its
behaviour or by combining model outputs and computing
the ensemble mean and variance of forecasts.
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