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Abstract

In contrast to the classical critical load (CL) concept, based on long-term steady state conditions, a dynamic deposition threshold (DDT) is
introduced. This DDT takes into account all relevant dynamic aspects of vegetation development/forest growth, mineralisation, immobilisation
and denitrification, depending on the successional stage of the forest. DDT values for nitrogen were determined for a Douglas fir rotation by
two process-based nitrogen models SMART2 and MERLIN using three different criteria for critical nitrogen leaching. During most of the
rotation time, the predicted DDT values were higher than the corresponding traditional CL. SMART2 and MERLIN predicted a maximum
DDT of 4.9 and 4.6 kmol N ha! yr! (69 and 64 kg N ha'! yr'), respectively, when accepting a critical N leaching level of 1.73 kmol N
ha! yr'related to impacts on ground water quality. This is due mainly to relatively high tree uptake during the first 50 years of a forest
rotation, compared to a long-term estimate, i.e. the average tree uptake during a rotation period, used in the traditional CL calculation. At the
lowest critical N leaching level of 0.10 kmol N ha'! yr'!, corresponding to a level that might be critical for vegetation changes, the calculated
DDT value and related N availability was such that it influenced tree growth, indicated by an increased CN ratio in foliage and organic
matter. The two models SMART2 and MERLIN predicted comparable absolute levels of DDT but with a completely different temporal
pattern. This was caused by differences in timing of mineralisation in the soil. Both models showed the importance of the soil for supplying
N for tree growth in young and productive forests, but the timing of this mobilisation of N from the soil was different. This difference
between the two models reflects the lack of knowledge of the mechanisms of the role of soil organic matter in satisfying tree N demand.
Nevertheless, this method has a high potential for increasing more detailed insight into the dynamic behaviour of CL, which will make it

possible to focus management options on a smaller spatial and temporal scale.

Keywords: critical load, dynamic deposition threshold, nitrogen, forest, SMART2, MERLIN

Introduction

The critical load (CL) concept was developed in an attempt
to determine thresholds of pollutant inputs from atmospheric
sources. A CL is defined as a quantitative estimate of an
exposure to one or more pollutants below which no
significant harmful effects on specified sensitive elements
of the environment occur (Grennfelt and Thornelof, 1992).
A widely accepted method to quantify a CL is the steady-
state mass balance approach (e.g. Posch et al., 1995).
Different CL values are defined using different criteria for
environmental effects. The CL for nitrogen (N) as a nutrient
(CL(N)) for instance, aims at preventing eutrophication of

the terrestrial ecosystem and linked freshwater ecosystems.
It is calculated as the total amount of N that, given a certain
critical N leaching level, can be absorbed by major long-
term N sinks (net vegetation uptake, long-term acceptable
soil N immobilisation and denitrification) without long-term
adverse ecological effects.

One of the crucial aspects of the critical load concept is
that it considers only an ecosystem at steady state. That
means that all dynamic aspects in the nitrogen cycle are
ignored. This assumption is made to gain insight into long-
term acceptable loads, thus focusing the policy makers’ view
on the ultimate emission reductions that are needed (De
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Vries, 1993; Sverdrup et al., 1990). This implies that critical
loads are relevant to assess the ultimate emission reductions,
but an excess of those loads does not necessarily imply that
the forest ecosystem is at risk yet. To gain insight into the
relationship between ecosystem risk and atmospheric
deposition, the threshold at the time under consideration
must be known. Such thresholds are denoted as present
deposition thresholds (De Vries et al., 2002), being the
deposition levels that lead to concentrations of nitrogen (or
acidity) in soil solution that are equal to critical limits at
present (not in a steady-state situation).

To gain insight into the dynamics of impacts of emission
reductions up to critical loads, dynamic models are needed
since the dynamics in ecosystem behaviour lead to situations
where the presently acceptable N input is higher or lower
than the CL(N) (Pardo and Driscoll, 1996). For instance, if
pH increases due to deposition reduction, mineralisation will
accelerate, which in turn will result in higher nitrate leaching
fluxes. Consequently, during such (temporary) circum-
stances a nitrogen input at critical load will still cause
violation of the critical N leaching level. Conversely, in the
case of a newly planted forest, net N accumulation in the
trees will be rather large, which in turn may tolerate a higher
N deposition level without violating the critical leaching
level. It might even be possible that N inputs equal or less
than CL(N) result in an unfavourable situation in respect of
forest growth.

In this paper, a procedure for a dynamic critical load
calculation is proposed that takes into account relevant site
specific dynamic aspects of the N cycle. In accordance with
the present deposition threshold, this is called the Dynamic
Deposition Threshold (DDT).

Contrary to the classical CL that can be assessed by using
a steady state model, the DDT can be assessed only by
dynamic models. SMART?2 (Kros et al., 1995) and MERLIN
(Cosby et al., 1997) are two process-based dynamic N
models, which are suitable for the calculation of such a DDT.
Both models are developed to simulate N cycling at scales
varying from the ecosystem scale up to a regional scale. In
addition, both models have been applied to the Douglas fir
experimental forest near Speuld (Tiktak et al., 1995; Tietema
et al., 1998). These two models have been used to evaluate
the DDT during stand development in this Douglas fir forest.

Material and Methods

SITE DESCRIPTION

The Speulderbos (52°13'N, 5°39°E) is located a few
kilometres south of the town of Speuld, in “de Veluwe”, in
the central part of The Netherlands. At the study site, an
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oak coppice, planted in 1909, was felled in 1960. The soil
was neither ploughed nor fertilised before planting Douglas
fir seedlings (Pseudotsuga menziesii (Mirb.) Franco.) in
1962.

At the time of the experiments, tree density was about
800 ha! and average tree height around 22 metres. There
was no undergrowth present. The forest soil has a 4-7 cm
thick organic layer. The humusform was classified as a
mormoder (Green et al., 1993), the soil as a Haplic Podzol
(Koopmans et al., 1995) or as a Cambic Podzol (Tiktak et
al., 1995). The soil is well-drained, consisting of fluviatile
deposits with textures ranging from fine sand to sandy loam.
Soil pH,,,, ranges from 3.7 in the organic layer to 5.1 in the
mineral soil. Base saturation in the mineral soil is almost
zero. The groundwater table is always below 40 m.

Total N deposition in The Netherlands increased in the
early 1950s, coinciding with the start of the massive
development of agricultural activity after the second world
war. The current level of deposition was reached in 1980
(Erisman and Bleeker, 1997). Atmospheric nitrogen input
measured as throughfall in this forest in the period from
1985 to 1995 ranged from 40 to 50 kg N ha™' yr!, about
75% as ammonium.

MODEL DESCRIPTION

SMART?2

SMART?2 is a simple soil acidification and nutrient cycling
model that includes the major hydrological and
biogeochemical processes in the vegetation, litter and
mineral soil (Kros ef al., 1995; Mol-Dijkstra et al., 1998).
The soil consists of two compartments, a litter layer and a
mineral soil layer. Apart from pH, the model predicts
changes in aluminium (A1**), base cation (BC), ammonium
(NH,"), nitrate (NO,") and sulphate (SO,>) concentrations
in the soil solution and solid phase characteristics depicting
the acidification status, i.e. carbonate content, base
saturation, readily available Al content and N content in
organic matter. The SMART?2 model consists of a set of
mass balance equations, describing the soil input-output
relationships, and a set of equations describing the rate-
limited and equilibrium soil processes. The soil solution
chemistry in SMART?2 depends on net element input from
the atmosphere and groundwater, canopy interactions,
geochemical interactions in the soil and a complete nutrient
cycle (root uptake, litterfall, mineralisation, nitrification and
denitrification) for basic cations, sulphur and nitrogen. The
model is based on the assumption that the amount of organic
matter (C) is in a steady state. N mineralisation is described
in SMART?2 by a first order reaction. Growth and litterfall
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of the vegetation are modelled by a logistic growth function,
which acts as a forcing function for nutrient uptake. Nutrient
uptake is limited only when there is a shortage in the soil
solution. Microbial N immobilisation is described in
SMART?2 by an increase in N content in soil organic matter.

MERLIN

MERLIN (Cosby et al., 1997) is an aggregated, ecosystem-
scale mass balance model of linked carbon and nitrogen
cycling, simulating nitrogen cycling and leaching in forested
ecosystems. The structure of MERLIN includes a tree
compartment and two organic soil compartments. The plant
compartment is an aggregated pool of carbon and nitrogen
representing the “active” portion of the vegetation. In forests,
this pool conceptually includes foliage and fine roots. Wood
production can be thought of as long-term storage losses
from that pool. Soil organic material is divided into labile
organic matter (LOM) and refractory organic matter (ROM).
The LOM pool may be identified as the forest floor,
providing a soil organic compartment that can respond rather
quickly to changing external conditions. The ROM pool
represents the bulk of slowly decomposing organic matter
in the soil profile down through the A, B and C horizons.
Fluxes in and out of the ecosystem and between
compartments included in MERLIN are atmospheric
deposition, hydrological discharge, plant uptake, litterfall,
wood production, microbial immobilisation and
mineralisation and nitrification. Nitrogen fluxes between
compartments are controlled by carbon productivity, by the
C/N ratios of organic compartments and by inorganic
nitrogen availability in soil solution. MERLIN requires the
input of historical sequences of carbon pools and fluxes, of
hydrological discharge, and of external sources of inorganic
nitrogen, as well as current amounts of nitrogen in the
compartments. In addition, it needs parameters specifying
plant uptake and microbial immobilisation and soil
characteristics such as depth, porosity and bulk density. The
output generated by MERLIN includes fluxes of inorganic
nitrogen in drainage, total nitrogen contents and C/N ratios
of the compartments and rates of nitrogen immobilisation
(uptake) and mineralisation. A detailed description of
MERLIN is given by Cosby et al. (1997).

DYNAMIC DEPOSITION THRESHOLD

Calculation method of the Critical Load

A critical load for nitrogen (CL(N)) is defined as the
maximum total N input to an ecosystem, which consists of
the sum of permanent plant uptake, long term accumulation
of N in the soil, denitrification, and the acceptable leaching

of nitrogen from the perspective of eutrophication (Nilsson
and Grennfelt, 1988) according to (cf. De Vries, 1993):

CL, = Ngu +Niypm TNy + N/e(crit) M

where:

N, = Net growth uptake of N (mol_ ha'yr')
N, =~ =Net microbial N immobilisation (mol_ha' yr")
N de, =N denitrification (mol_ha' yr')

N,y = Critical N leaching (mol_ha™! yr)

In Eqn. (1) all terms at the right hand side are in fact

influenced by atmospheric deposition. For the calculation

of critical loads these terms must be derived at a deposition

level that equals the critical load (De Vries, 1993).

Furthermore, the critical load concept considers only an

ecosystem at steady state. That means that all dynamic

aspects in the nitrogen cycle are ignored.

Calculation method of the Dynamic Deposition Threshold
The calculation of the DDT is comparable to the steady-
state CL (see Eqn. (1)), but it differs in having time-
dependent terms for N uptake through vegetation
development/forest growth (V. ‘p), N (im)mobilisation in the
soil (N, ) and denitrification (N, ). Similar to the steady-
state CL, these terms are dependent on deposition. The DDT
(mol ha' yr') at a particular time (¢) is calculated as:

DDT(U = Nup (t) + Nim (t) + Nde (t) + ]vle(crit) (2)
where:

NMP (f) = net change of N in the vegetation at time ¢

N, () = net change of N in the soil at time ¢

N () =N denitrification at time ¢

N,y = critical N leaching (mol ha™ yr)
The net change in the vegetation N, (¢)) consists of the
total N uptake by the vegetation, to be divided in
maintenance uptake (N, ) and growth uptake (Ngu) minus
the loss through litterfall (N[f :

N,({)=N,(O+N,, ()= N, () 3)
where:
Ngu(t) = growth uptake N at time = ¢

N, (t) = maintenance uptake N at time = ¢
N”(t) = litterfall N at time = ¢
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In a steady state situation, assumed in the CL(N)
calculation, litterfall equals maintenance uptake and N,
calculated with Eqn. (3) equals N, calculated with Eqn.
(1).

The net change in the soil nitrogen pools (N, (£)) consists
of the total N input through litterfall (sz) and the microbial
N immobilisation (N, ) minus the loss through
mineralisation (N ): '

L.

N,,(t)=N,({t)=N,, ()+N,,,.(t) @)

where:
N () =N mineralisation flux at time = ¢
N. _(t)=microbial N immobilisation at time = ¢

In a steady state situation, litterfall equals mineralisation
and N, calculated with Eqn. (4) equals the net microbial N
immobilisation N, calculated with Eqn. (1).

Combining Eqns. (2), (3) and (4) results in:

DDT()=N, (1)~ N,

mi

)+ Ny ©)

e(crit)

O+ N, () +N,,
where N, (¢) stands for the total (or gross) uptake by the
vegetation, i.e. the sum of the maintenance and growth
uptake. In this study, the time and deposition dependent
terms (i.e. N , N ~and N, ) were calculated using the two
dynamic N cycling models MERLIN and SMART2. Since
these terms are dependent on the deposition, used as model
input, the calculation of DDT makes sense only when it is
calculated at a deposition level that equals the DDT. So,
Eqn. (5) has to be solved with the deposition equal to DDT.

In this study, however, the DDT was approximated by
updating its value, used as model input, at each timestep ()
by using the difference between the critical N leaching flux
(N, (Cm)) and the modelled N leaching flux (N, ). This yields
the maximum allowable deposition that meets the N leaching
limit. The DDT at time = ¢ is thus calculated as:

DDT(t)=DDT(t-)~(N,,,()~Nyiy)  ©

where:

DDT(t-1) =the DDT from the previous time step, i.e.

the N deposition used for the calculation of

N, () (mol_ha™'yr™)
N, ® = N leaching flux at time = ¢ and deposition

= DDT{(¢-1) (mol_ha'yr")
Neriy = critical N leaching (mol_ha'yr )
At ¢ =1, the value of DDT{(t-1) was set equal to the present
deposition. When DDT(t—1) became negative, it was set to
zero. This method assumes that the difference between
N, (0, that follows from the calculation with DDT (t-1)
being the N deposition used for the calculation, and NV, (erig?
that should be the outcome when calculating a DD7T, can be
compensated directly by either increasing or decreasing the
DDT value. This is, however, a simplification because all
relevant processes depend on the N deposition and will thus
change accordingly. Ideally, the value of DDT should have
been calculated iteratively within an optimisation procedure.
However, neglecting iteration affects the outcome only in
the first years. Within a short time the difference N, (7) —
N, (e 1 small thus reducing the error to a negligible value.
Criteria
DDT values were evaluated with three criteria on N, (eri)
(Table 1).The EU standard of 50 mg I'' (0.8 mol_m™*) was
used as drinking water standard (N, . (dw)). For the
application of the models MERLIN and SMART2, a
constant precipitation excess of 216 mm yr ' was used. This
implies that N . (dw) = 0.8 mol m~ x 2160 m’ ha' =
1730 mol_ha' yr—"'. The criterion based on preventing
vegetation changes (Nle(mt) (vc)) was set to 100 mol_
ha! yr! (De Vries, 1996). The critical N leaching related to
a critical N content in needles (N, (nc)) was based on a

e(crit)

Table 1. Overview of the critical N leaching, NO, concentration and CL(N) values used for the dynamic deposition

threshold (DDT) calculations.

Criteria Description N leaching flux” NO, concentration CL(N)
(kmol_ha™' yr') (mol m>) (kmol N ha' yr™)

N iAW) Drinking water standard 1.73 0.80 2.68

N ei(1€) Critical N content in foliage 0.91 0.42 1.76

N e (V) Vegetation changes 0.10 0.05 0.87

* Based on the precipitation excess at Speuld (216 mm yr).
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content of 1.8%, which is a value from pine forests (Erisman
et al., 1998). To link this foliage N concentration to a soil
solution concentration, data from 150 extensively monitored
forest sites were evaluated (De Vries and Leeters, 2001;
Leeters et al., 1994). From this set, 25 spruce and Douglas
fir sites were used to identify the following regression model:

ctNﬂ =1.967+0.443-log(cN) (7)
with R?, g =51 and N = 25, where ctN, = N content in
foliage (%) and ¢cN= N concentration in the soil solution of
the 0-30 cm layer (mol_m™). Using a critical ctN, 4 of 1.8%
and a precipitation excess of 216 mm yr!, Eqn. (9) yields a
N,yoiy(nc) of 0.42 mol, m” x 2160 m’ ha' = 907 mol_
ha'yr'. The soil solution concentration thus derived is close
to the target value for drinking water in the Netherlands,
i.e. 0.40 mol m> (25 mg1").

For the three criteria used, the classical site specific CL(N)
values were calculated with Eqn. (1). Site specific values
for growth uptake (N, ) and immobilisation (N, ) were
derived from Tiktak et al. (1995). For N, 425 mol
ha! yr! was used, based on a average growth rate of 10.7
m’ ha! yr' during the rotation period. For N, a value of
329 mol_ha™' yr' was used, based on a litter layer of 3 cm
to be formed over the past 100 years. Denitrification (V)
was calculated as a fraction of the critical N leaching flux
according to (cf. De Vries, 1993):

Sre 8
N, :1 > Nle(crit) ®
_frde

where fir, is the denitrification fraction, which was set to a
generic value for dry sandy soils of 0.1 (De Vries, 1996).

Depending on the criterion used, CL(N) resulted in a range
from 0.87 to 2.68 kmol ha™' yr' (see Table 1). The spread in
range is determined fully by the critical N leaching.

The present calculation method, assuming a critical N
leaching of 0.4 kmol ha™ yr', yielded a CL of 1.20 kmol
ha™! yr' This value is above the maximum of the range of
calculated CL(N) values for the Speuld site by Reynolds et
al. (1998) who reported a minimum of 0.47 and a maximum
of 1.04 kmol ha! yr!, with the same value of 0.4 kmol ha
U yr! as critical N leaching. This range was caused by
uncertainties in tree uptake due to a wide range of possible
values based on the use of the nutrient limitation method of
calculating this term.

MODEL ADAPTATIONS AND APPLICATION

To make an objective comparison between the SMART2
and MERLIN applications, a few adaptations to both models

were made. A response function between N concentration
in foliage and in soil water according to Eqn. (9) was
included in SMART?2 to get a more direct coupling between
the two characteristics. To calculate two entire growth cycles,
whole tree harvesting was included in SMART?2 by adding
an amount of N and base cations in debris to the amount of
N and base cations in litter. Foliar uptake of nitrogen was
included in MERLIN as a fraction (10%) of total deposition.

For this analysis of dynamic critical loads, existing
applications of both models on the Speuld site were used
(Tiktak et al., 1995; Tietema et al., 1998). To minimise the
effects of differences in data used by both models, the input
data for both models were tuned. The hydrology was
constant during the whole period. In both models, a
precipitation surplus of 216 mm yr ' was used as input, based
on measurements of precipitation and modelled evapo-
transpiration (Belmans ef al., 1983; Van der Salm et al.,
1998). For both models the N deposition was calculated as
DDT according to Eqn. (6). Litterfall was included as an
input sequence corresponding to the MERLIN application
at Speuld (Tietema ef al., 1998). The N content in litterfall
was estimated at 1.8% in the MERLIN application and
1-2.5% in the SMART2 application depending on N
deposition.

The litter mineralisation rate constant in SMART2 was
calibrated to simulate the same litter amounts in 1980 and
1990 as simulated by MERLIN. In SMART?2, a logistic
growth function for woody biomass was used, based on the
fit to a growth curve for Douglas fir given by Jansen ef al.
(1996). This curve fitted the increase of biomass between
1990 and 1995 at Speuld (Fig. 1). These stem biomass data
were derived by regression from yearly diameter and tree
height measurements (Steingrover and Jans, 1995; Dik,

1200
& 1000 1 —— MERLIN input
g O plotl
O 800 4 plot2
g — logistic curve
= 600 © yield table
g
S 400
g
O

200 A

0 10 20 30 40 50 60
Tree age (y)

Fig. 1. Net accumulation of carbon in the trees: yield table results
(Jansen et al. 1996), the logistic growth curve used in SMART?2 and
the carbon sequence used in MERLIN. In addition, stem biomass
data from the Speuld forest between 1990 and 1994 on two different
experimental plots are given.
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1984). The growth curve refers to the gross increase of
biomass, which means that the result of thinning was added
to the net increase of biomass. In MERLIN the same curve
was used as an input sequence for wood biomass (Fig. 1).

Results and discussion

The DDT, calculated by SMART2 and MERLIN differed
considerably during the simulation period (Fig. 2). In
general, at all three critical leaching levels, MERLIN
predicted the highest DDT values (up to 4.6 kmol ha! yr!
or 64 kg N ha™' yr! with 1.73 as criterion for critical leaching
level) during the first 15 years of the rotation. Conversely,
SMART?2 predicted the highest DDT values (up to 4.9 kmol

— SMART2 Nle(crit) = 0.10 kmol ha™' yr!

— MERLIN
s — CL(N)

-~

=7

i)

g

<

*

ZE 1

z

O A

Nle(crit) = 0.91 kmol ha™! yr!

w2
|

N flux (kmol ha™! yr'l)
= e

(=)

Nle(crit) = 1.73 kmol ha™! yr!

w
1

£
f

NS}
h

N flux (kmol ha™! yr'])
s

L

(=)

1 9|70 1 9'90 20|] 0
Year

Fig. 2. Dynamic Deposition Threshold (DDT) values predicted by
SMART?2 and MERLIN, in relation to the CL(N). The three graphs
correspond with different critical N leaching criteria. All graphs
with a time sequence start in 1966 to avoid the large fluctuations
occurring as a result of clear-cutting and planting the young
Douglas firs in the period 1960 — 1965.
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ha yr! or 69 kg N ha! yr') in the mature 50-year old
Douglas fir forest. During most of the rotation time, the
predicted DDT values were higher than the corresponding
traditional CL(N) (Fig. 2).

The dynamics of the DDT during the rotation depended
on the model. The differences between both models could
be attributed largely to differences in the timing of N
immobilisation in the soil (Fig. 3). In the MERLIN
application, net N immobilisation decreased from
approximately +1.8 to —1.9 kmol ha™ yr'. This decrease in
N immobilisation was caused primarily by an increased gross
mineralisation rate in the refractory organic matter (ROM)
pool that contributed to supplying N for tree growth. During
the second half of the rotation, gross mineralisation of ROM
decreases again, causing a positive net N immobilisation in
the soil (Fig. 3). In general, N dynamics are highly
constrained by C dynamics and optimal CN ratios in the
vegetation and soil compartments in MERLIN. Both
characteristics are input to the model. In the Speuld
application they were based on data characteristic of the
oak coppice in 1960 and the data collected around 1990 in
the Douglas fir forest. The input sequences of C pools
between 1960 and 1990 and the optimal CN ratios in 1960

4 MERLIN
= A
- 1
_': 5 .II’ |'r-\“ll\/\\~/\ . \/\_/\
% / «"V ’\/—\/‘\"___‘_\_
g ! Mse
< ;Y )
5 Of— e 1
= Il — DT
Z === Nupt
Nimm
24 Nlea
—CL(N)
4 SMART2
5,
‘s
=
°
g
<
®
=
Z
2
1970 1990 2010
Year

Fig. 3. Dynamic Deposition Threshold (DDT), net N accumulation in
the trees (Nupt), net N immobilisation in the soil (Nimm),

N leaching (Nlea) and corresponding CL (N) at a critical N
leaching level of 0.91 kmol ha' yr! calculated by MERLIN (above)
and SMART?2 (below).The N flux by denitrification (Nde) is
calculated by both models as being negligible in this dry sandy soil.
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and 1990 were obtained by interpolation, based on the results
of the NITREX experiments (Tietema et al., 1998). These
experiments showed a very fast reaction of nitrate leaching
to a sudden decrease in N deposition. This fast reaction
implied a decreased role of N mineralisation from ROM in
1990 and as such it constrained the interpolation of the ROM
C sequence. This input sequence was kept constant in this
application. In SMART?2, net immobilisation in the soil
increased steadily from —2.3 to —0.7 kmol ha™ yr' during
the rotation (Fig. 3). This increase in net immobilisation is
caused solely by a decreased gross mineralisation in litter.
In SMART?2, it is the mineralisation of N in fresh litter that
contributes to the N supply for tree growth. This
mineralisation is an autonomous first-order process
governed by litterfall, the amount of litter and a
mineralisation rate constant. This rate constant was obtained
by calibrating to 1980 and 1990 C pool values simulated by
MERLIN. However, the temporal pattern of N
mineralisation rate between these years is determined purely
by litterfall. As with the terms of the CL calculation, the
immobilisation term in the soil is the great unknown relative
to the other terms. The dynamics of this process is of the
utmost importance for analysing DDT values. This generates
a relatively weak basis for this DDT calculation, as little is
known about the role of the soil in supplying N to fast
growing young trees.

With the lowest critical value of 0.1 kmol ha™' yr',
corresponding to the objective to avoid the occurrence of
nitrophilous plant species, the ecosystem is kept at a very
low level of nitrogen nutrition which means that all nitrogen
deposition is retained. The effect of the lack of nitrogen in a
growing forest with such a strict leaching criterion can be
seen in the dynamics of the CN ratio in all organic N
compartments calculated by SMART2 (Fig. 4). The CN
ratios in foliage and in litter are higher during most of the
simulation period using the 0.10 kmol N ha! yr! leaching
criterion compared to the other criteria. Similar increased
CN ratios in the ecosystem compartments — plants, LOM
and ROM — are predicted by MERLIN at the lowest critical
leaching criterion of 0.10 kmol ha™ yr! (Fig 5).

The results indicate that the DDT can fluctuate a great
deal during a forest rotation. This is not surprising as steady
state conditions in semi-natural ecosystems in a rapidly
changing global environment are an illusion. The
assumption of steady state facilitated the definition of the
traditional CL as a relatively easy-to-use, standardised
measure of critical loads of pollutants in the long term. On
a short time scale, the steady state approach may not be
appropriate, especially when focussing on (i) set
intermediate goals (target loads) and (ii) performing
conservation management.
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Fig. 4. CN ratios of the ecosystem compartments foliage and litter,
calculated by SMART?2 at three different levels of critical N leaching
(0.10, 0.91 and 1.73 kmol ha'' yr).
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During most of the time, the DDT is higher than the
traditional CL calculated with the mass balance approach.
Despite its uncertainties, the presented method of analysing
temporal patterns in CL load may be of great importance in
evaluating the effects of management on the CL. In this study
deposition was optimised with a criterion of nitrate leaching.
With the same approach, it is possible to optimise, for
instance, plant uptake within an actual deposition scenario.
Plant uptake can be influenced by various forest
management options such as fertilisation and thinning.
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