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Abstract

The need for the development of a method for generating an ensemble of rainfall scenarios, which are conditioned on the observed
rainfall, and its place in the HYREX programme is discussed. A review of stochastic models for rainfall, and rainfall forecasting
techniques, is followed by a justification for the choice of the Modified Turning Bands (MTB) model in this context. This is a
stochastic model of rainfall which is continuous over space and time, and which reproduces features of real rainfall fields at four
distinct scales: raincells, cluster potential regions, rainbands and the overall outline of a storm at the synoptic scale. The model can be
used to produce synthetic data sets, in the same format as data from a radar. An inversion procedure for inferring a construction of
the MTB model which generates a given sequence of radar images is described. This procedure is used to generate an ensemble of
future rainfall scenarios which are consistent with a currently observed storm. The combination of deterministic modelling at the
large scales and stochastic modelling at smaller scales, within the MTB model, makes the system particularly suitable for short-term
forecasts. As the lead time increases, so too does the variability across the set of generated scenarios.

Keywords: MTB model, space-time rainfall field model, rainfall radar, HYREX, real-time flow forecasting

Introduction

BACKGROUND

The need for real-time flow forecasting systems which can
provide forecasts of discharge and river level with sufficient
accuracy and lead time has long been recognised, both by
the research community and agencies responsible for flood
warning and flood prediction. To achieve a lead time which
can enable timely flood warnings to be issued and acted
upon, quantitative rainfall forecasts with a spatial resolution
which is compatible with that of the flow forecasting model
are frequently required. Numerical weather forecasting
" models cannot yet provide forecasts with the required
spatial resolution and accuracy (Todini, 1997), so alternative
approaches must be explored. Spatial forecasts of rainfall are
often obtained by making simplifying assumptions about the
way rainfall fields evolve in time, e.g. Diskin (1987), Einfalt
et al. (1990) and Bremaud and Pointin (1993). An
operational system in the UK, known as FRONTIERS
(Forecasting Rain Optimised using New Techniques of
Interactively Enhanced Radar and Satellite data), has
implemented a rainfield centroid interactive tracking tech-
nique for short-term rainfall forecasting (Interagency

Research Committee on the Hydrological Use of Weather
Radar, 1993). However, the forecasts produced by such
systems have a large degree of uncertainty, which cannot be
quantified easily but which cannot be ignored when used as
the basis of flood forecasts and warnings.

A new approach to rainfall forecasting has been
developed in which the Modified Turning Bands (MTB)
rainfall field model (Mellor, 1996) is fitted to and
conditioned upon the latest observed radar images, and
then used to generate, using Monte-Carlo simulation, an
ensemble of space-time rainfall forecasts which encapsulate
the uncertainty about the future evolution of rainfall, given
the available data and the model. This ensemble of rainfall
forecasts is then converted into ensembles of flow forecasts,
using the physically based SHETRAN (Parkin ez al., 1996)
and simpler ARNO modelling systems, and the ensembles
compared to assess the effects of lumping in the simpler
model. This aspect of the work includes an investigation of
the effects of spatial averaging of rainfall inputs to rainfall-
runoff models.

All rainfall forecasting schemes provide forecasts which
are uncertain, and this will contribute to uncertainty in peak
flow predictions. The aims were to keep this uncertainty as
low as possible and to quantify it. The method for
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generating the rainfall forecasts is described in this paper.
The data requirements are radar echoes as the storm
approaches. Radar images have been processed to remove
spurious features such as bright bands and anomalous
propagation, and calibrated to give the rainfall intensity
observed at points on the ground. It is assumed that the
storm has been tracked for long enough to determine its
overall velocity, size and statistical characteristics, and that
these features do not change as the storm develops. The
development, and use, of the catchment modelling systems
is described in a companion paper (Mellor et al., 2000).

MOTIVATION FOR A NEW FORECASTING APPROACH

The past decade has seen a major upsurge in research on
rainfall estimation, modelling and forecasting on space-time
scales of interest to hydrologists engaged in real-time flood
forecasting. In the UK, a spatial resolution of typically 2 km
by 2km is required for application to mid-size and small
catchments. Forecasts of rainfall will be made hourly during
storms that present a potential flood risk, and a resolution
down to 1 minute may be required for input to rainfall-
runoff models. In the UK, currently, six weather radar
stations provide data at 2km spatial resolution every 5
minutes. The spectrum of research activity has been broad,
and ranges from developments in the dynamic modelling of
rainfall using mesoscale atmospheric models to advances in
the stochastic modelling of rainfall in space and time. No
attempt is made here to review the extensive literature
describing this research; for this, the reader is referred to
excellent reviews by Foufoula-Georgiou and Georgakakos
(1991), Georgakakos and Foufoula-Georgiou (1991) and
Foufoula-Georgiou and Krajewski (1995). However, some
comments on contemporary research activity relevant to
HYREX research in this field are included to place the latter
work in context.

The classical deterministic approach to weather/rainfall
forecasting is through a dynamic numerical model based on
a set of partial differential equations describing the
conservation of mass, momentum and energy in the
atmosphere. Applied on a global scale, such models do not
have anything like the required spatial resolution for
hydrological (and other) applications, and so much recent
effort has been devoted to the development, testing and
comparison of limited area models (LAMs). Typically,
these models are applied to mesoscale areas and derive their
time-dependent boundary conditions from a previously
integrated global atmospheric model. Examples of such
models are the Colorado State University — Regional
Atmospheric Modelling System (CSU-RAMS), the Na-
tional Centre for Atmospheric Research — Mesoscale Model
Version 5 (NCR-NMD5) model, and the University of
Bologna limited area model (LAMBO) which is based on
the University of Belgrade/NOAA-National Meteorologi-
cal Centre of Washington model. Typically such models
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need convective parameterisation schemes which are the
subject of continuous research efforts (see Molinari and
Dudek, 1992 for a review), since they exercise a major
influence on the predicted timing, location and amount of
precipitation.

Although the ability of such models to produce accurate
simulations of rainfall on the scales of interest is limited,
several applications of such models to a variety of hydro-
meteorological problems have been reported in the
literature (Foufoula-Georgiou and Krajewski, 1995). More-
over, major advances in workstation technology and
communication systems enhance the prospects for real-
time application to quantitative precipitation forecasting
(Cotton et al., 1984). However, as observed by Foufoula-
Georgiou and Krajewski (1995), the performance of such
models in this role remains largely unknown.

In the absence of a well proven, operationally feasible,
LAM modelling approach at the present time, alternatives
are needed to meet the current call to extend the lead time of
flood and flash-flood forecasts. One interesting approach in
this regard is to couple dynamic hydrological and meteoro-
logical model components at the catchment scale within a
state estimation framework (Georgakakos, 1986a, b, 1987).
Such models may be classified as stochastic dynamic models
where the conservation of mass couples the two model
components through both the dynamic model equations and
state estimator feedback. The importance of coupling and
the worth of various types of hydrometeorological data in
flood forecasting have been demonstrated as a function of
the ratio of forecast lead time to basin response time
(Georgakakos and Foufoula-Georgiou, 1991). Improve-
ments in short term quantitative precipitation forecasting
using an enhanced stochastic dynamic model are discussed
by Lee and Georgakakos (1992).

The stochastic modelling of rainfall in space and time has
also seen important developments within the past decade.
Early work on the use of point process models to describe
the temporal structure of rainfall at a point (e.g. Rodriguez-
Iturbe er al., 1987) has given way to scaling approaches
which seek to describe the spatial statistical structure of
rainfall over a wide variety of scales with relatively few
parameters. Scale invariance implies that small and large
scale statistical properties are related to each other by a scale
changing operator involving only the scale ratio. Develop-
ments in this field are reviewed by Foufoula-Georgiou and
Krajewski (1995) who note that the current state-of-the-art
scale invariant rainfall models revolve around multiplicative
cascades which have their origin in the statistical theory of
turbulence e.g. Tessier et al. (1994). Based on this approach
various methods of parameter estimation and multifractal
field analysis and simulation have been developed (e.g.
Gupta and Waymire, 1993; Over and Gupta, 1994; Kumar
and Foufoula-Georgiou, 1993a, b). However, such models
are still in the realm of theoretical development and their
practical application would appear to be some way off.

Given the current state-of-the-art of stochastic model-
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ling, one of the questions which this HYREX project sought
to explore is whether or not an ensemble of scenario
forecasts from such a model might prove useful in extending
the lead time of flood forecasts from a rainfall runoff model.
Existing empirical rainfall forecasting procedures are often
very crude (e.g. assuming that future rainfall will replicate
that observed in recent time periods). They may also involve
the selection of “analogue” rainfall sequences from observed
past events, but it is never clear which part of the past event
should be used as an acceptable ‘forecast’ of the current
event (Todini, 1996). They are sometimes based on
statistics extracted from past data (e.g. Schultz, 1994) but,
in this case, the quantile curves do not display anything like
the temporal variability of the actual rainfall.

The most straightforward and well developed area of
stochastic rainfall modelling is for temporal rainfall at a
point (e.g. Cowpertwait, 1994): this univariate modelling
approach should also be applicable to rainfall averaged over
an area. Rainfall runoff models with spatially averaged
rainfall inputs perform well in many real-time flood
forecasting systems, providing some justification for a
univariate approach. As catchment area increases, the
assumption of spatial averaging of rainfall becomes more
questionable, and so it may be necessary to employ a
multivariate approach in which rainfall is modelled at
several points (or for several sub-catchments), which would
involve reproducing the cross-correlation as well as the
temporal structure of point rainfall (e.g. Sansé and Guenni,
1999). Alternatively, a multi-dimensional rainfall field
model could be employed to characterize rainfall at all
points in the catchment domain, not just those where
measurements exist. However, such models are not easy to
parameterise, and the necessary data are frequently not
available. The availability of radar data within HYREX has
enabled a rainfall field model to be employed for ensemble
forecasting.

OPERATIONAL RADAR RAINFALL FORECASTING

The ability of radar to portray the spatial and temporal
variation in rainfall estimates is significant for real-time
flood forecasting. Radar measurements are relevant to both
the qualitative and quantitative aspects of operational
rainfall forecasting. In qualitative terms, the advantages of
" radar measurements are particularly apparent in detecting
the convective storms which may be undetected by a
conventional raingauge network and for frontal storms
whose movement can be readily depicted by replaying radar
pictures at successive time frames (Haggett ez al., 1991).
Both are useful in an operational flood warning system. In
quantitative terms, the radar measurements are relevant
mainly for two reasons: (a) for estimating rainfall inputs to a
catchment within an operational forecasting system; and (b)
for extending the lead time of the forecasts through rainfall
forecasting. Flood forecasting with a catchment model

forms an integral feature of an operational flood-warning
system. This is particularly important for a flash flood
generated from an urban or mountainous catchment.

Spatial forecasts of rainfall are often obtained by making
simplifying assumptions about the way rainfall fields evolve
in time, for example, by assuming that the field appears
stationary to a moving observer e.g. Diskin (1987), Einfalt e
al. (1990), Bremaud and Pointin (1993) and Abdullah
(1996). A forecaster may attempt to enhance these
assumptions by identifying features of the rainfall field
which evolve more predictably, and allowing for these
changes e.g. Seo and Smith (1992). One of the principal
uses of the FRONTIERS system (Browning, 1979, 1981) is
for hydrological forecasting. The FRONTIERS forecast is
produced using a three stage process, where the forecaster
checks the radar data for quality control, uses the Meteosat
satellite data to derive likely areas of precipitation beyond
the radar coverage, and produces a forecast for up to six
hours ahead (although forecasts for six hours ahead are not
necessarily reliable, Einfalt and Semke, 1997). These stages
are performed during a half-hourly cycle. During the first
stage of the process, the forecaster interactively assembles a
composite picture of the radar images from a radar network.
This permits the possibility of filling missing data with data
from an adjacent radar. The satellite image, where the
rainfall areas are defined as “wet” or “dry”, is merged with
the composite radar image for the rainfall extrapolation in
the forecasting step. The velocities of radar features (i.e.
clusters of echoes, representing raincells) are determined
semi-automatically, on two radar images separated by one or
two hours, and the forecast is performed by linearly
extrapolating the features using their estimated velocities.
However, it is difficult for the forecaster to track several
clusters simultaneously because of human limitations.
Another development is the Complex Method (e.g. Duda
and Blackmer, 1972; Elvander, 1976; Einfalt ez al., 1990).
This utilizes an advanced pattern recognition technique to
process the radar echo images and track the motions of
individual echoes. For instance, the description of echo
geometry using a Fourier analysis technique provides the
locations of the edges, which may be matched at separate
times to give the displacement of the echo. Similar analyses
using statistical echo distribution (e.g. intensity distribution
of an echo) may also be used for echo matching (Collier,
1991).

Research and Development to automate FRONTIERS
forecasts and to develop improved procedures using
artificial intelligence techniques continues. This work
includes investigation of improvements to radar measure-
ments of precipitation, including the use of estimates of the
vertical reflectivity profile, bright-band correction proce-
dures and rain gauge representativity, and improvements to
the estimation of rainfall from visible and infrared satellite
data (Interagency Research Committee on the Hydrological
Use of Weather Radar, 1993). NIMROD (Nowcasting and
Initialization for Modeling using Regional Observation
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Data) is a fully automated system which has now replaced
FRONTIERS at the Met Office. Cranston (2000), for
example, has compared NIMROD rainfall radar observa-
tions with recordings at raingauges for an upland site in
Southwest Perthshire, Scotland. NIMROD works better
with frontal systems than during convective events.
GANDOLF (Generating Automated Nowcasts for Deploy-
ment in Operational Land-based Flood forecasts), based
around an object-oriented model of the life cycle of a
convective cell (Hand, 1996), has been developed at the Met
Office as a means of improving forecasts of heavy convective
precipitation.

Operational radar rainfall forecasting within flood-warn-
ing systems is not widespread and is confined mainly to
urban drainage flow forecasting (Huff er al., 1981; Bellon
and Austin, 1978; Einfalt e al., 1990). The main problem is
that the lead time for reliable forecasting is typically very
short (of the order of one hour). The World Meterological
Organization (WMO) has instigated forecast demonstration
projects (FDP) wunder its World Weather Research
Programme. The first of these is the Sydney 2000 Olympics
FDP (e.g. WMO, 2000).

In this paper, a different approach to forecasting rainfall is
described. It involves the fitting of a sophisticated stochastic
model of the rainfall process, in such a way that the model
will produce scenarios of rainfall fields which are consistent
with current observations, i.e. it will produce possible future
scenarios conditioned on the observations. The model
chosen for this purpose, the Modified Turning Bands
(MTB) model (Mellor, 1993, 1996), has both deterministic
and stochastic features, making it ideal for this application as
the range of future scenarios generated can be constrained
by an experienced operator through the deterministic
aspects of the model. Natural variability in the rainfall
process, and uncertainty in the future evolution, is
represented by the stochastic details. This model operates
at four distinct scales of space and time, permitting different
advection velocities and rates of evolution at each scale.
Hence, forecasts can be produced with lead times from a few
minutes to several hours. The range of variability across the
scenarios is expected to increase with the lead time.

The M'TB model is conditioned on the most recent radar
image available, which is reproduced at the beginning of
each generated scenario. However, the preceding image is
also taken into consideration to determine how the fitted
raincells should be distributed in time in order that the
evolution of the rainfall field between the two images can be
carried forward into future scenarios. This allows for an
accurate reproduction of the current rainfall field which
respects the ageing process of raincells, i.e. which places
raincells in the growing or decaying parts of their life cycles
to account for the most recent changes in the radar images.
As the scenarios develop, the structure of the MTB model is
used to generate new raincells as existing raincells die away.
Thus, the raincells fitted to the observed rainfall field are
replaced, gradually, with stochastically generated ones.
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The MTB model

DEFINITION OF THE MTB RAINFALL FIELD MODEL

The Modified Turning Bands (MTB) stochastic rainfall
field model was developed originally to simulate the spatial
and temporal distribution of rainfall in frontal storms
(Mellor, 1996). The main structural features of frontal
rainfall (raincells, cluster potential regions and rainbands)
are represented by the M'TB system. The construction of
the rainfall field is begun by placing two sets of parallel
parabolic prisms, in the ¥ — y domain (Fig. 1, level 1). The
two sets are at different angles, e.g. +30° to the storm
velocity vector, and the areas of intersection will correspond
to higher cluster potential regions. The prisms are
distributed randomly and independently according to a
Poisson process. Once this initial distribution, correspond-
ing to time zero, is established, the prisms are moved along
the lines. The velocities are approximately opposite, so that
when the prisms are added the high zones tend to move in a
direction which is parallel to the y-axis. The speeds at which
the prisms move along the two lines are independent.

A modulating function, which travels in the direction of
the storm, is then applied to the aggregated parabolic prisms
to give a potential field function for raincells. The
modulating function is the sum of two sinusoids of slightly
different frequencies, which produce a ‘beating’ effect, and a

Fig. 1. Construction of the MTB model, showing from bottom to top,
the placing of two sets of parallel parabolic prisms, the storm/rainband
modulating function, the resulting potential function of ramcells, a
distribution of raincells, and the final rainfall field obtained on
sunuming the contributions of all the raincells.
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constant to make it non-negative. The modulating function
is set at zero outside a fixed number of beats, which
represent the width of the storm, and slides along a line in
the direction of the storm with some constant velocity (Fig.
1, level 2). The sinusoids that make up the beat have a
different velocity to that of the modulating function and this
produces a rainband effect inside the storm.

The field obtained by adding the parabolic prisms and
multiplying the sum by the modulating function represents
the potential function for raincells in the plane, as shown in
the third level of Fig. 1. That is, an inhomogeneous Poisson
process is realised, over time, in the two spatial dimensions
of the catchment, with the non-stationary rate function
given by the raincell potential field. Raincells are born at the
point occurrences of this process.

The raincells themselves are described as inverted
parabolas of revolution, with a peak that grows and decays
quadratically in time. This function is truncated to zero
where it would otherwise be negative, giving raincells with a
finite lifetime and spatial extension, as depicted in Fig. 2. If g
is the rainfall contributed by a raincell born at the origin to a
point (x, ¥) on the ground at time ¢, then g takes the form

g(x,3,1) = h(x — cut,y — ¢yt,1) (1)

where

AM
h(x,y,1) = W(zpz — 447 — 4y2) t(d—1)
o
4

and 0 otherwise.

when #% + 3% < and 0 <t <d, @)

M i3 the maximum rainfall intensity that can occur inside a
raincell (at the centre, half-way through the lifetime), 4 is
the lifetime (duration), » is the width (diameter), and (c,, ¢,)
is the velocity. The MTB model assumes that all raincells in
any storm have the same set of parameters.

Once the raincells are distributed on the field of points of
the inhomogeneous Poisson process as indicated in the

Temporal evolution

Point of birth

Rainfall Intensity

X \

y Rainfall velocity

Fig. 2. Schematic showing the position of a raincell at three stages of its
lifetime.

fourth layer of Fig. 1, they are summed in the plane to
produce the final rainfall intensity field as indicated in the
top layer of the figure. The final model exhibits features in
the synthetic rainfall fields resembling raincells, cluster

. potential regions and rainbands, all of which are observed to

a greater or lesser extent in real radar data.

The final rainfall field displayed in the top layer of Fig. 1
can be sampled at a set of points on a square grid, and at
regular time intervals. For example, if the overall dimen-
sions of the area are 420 by 420 kilometres, and the rainfall
field is sampled on a 5 kilometre grid at five minute time
intervals, then data in the same format as MO radar can be
synthesised. For greater realism, the field can be sampled at
a higher resolution in space and then averaged over each
radar grid square. Also, the data could be sampled in a radial
pattern in time to simulate the action of the radar.

TECHNIQUES FOR PARAMETER ESTIMATION

The MTB model parameters are estimated by focusing on
structural features of the rainfall field at different scales.
Raincell parameters are estimated using the (non-stationary)
covariance structure of the MTB model (Mellor, 1993,
1996), and the technique of Full Correlation Analysis.
Extensive Monte-Carlo simulations have been used to
verify these and to determine confidence intervals (Mellor
and O’Connell, 1996). Methods have also been developed
for the estimation of the parameters of the modulating
function under the assumption that storms are without
curvature (Mellor and Metcalfe, 1996).

Production of a forecast from radar
data

OVERVIEW OF THE FORECASTING PROCEDURE

The primary data requirement for the forecasting process is
enough radar echoes for the overall velocity and size of the
incoming storm to be estimated. The model described
earlier synthesizes storms which move strictly from west to
east and are oriented in a straight north-south direction.
Therefore, the next stage is to transform the real storm to
such an idealized structure. This is achieved using a
graphical user interface to the MTB system, developed for
the HYREX project; this allows the user to fit frames by eye
and thereby identify the curvature, angular rotation and
translational velocity of the storm, as well as the number of
rainbands inside and their position relative to the overall
storm profile. The storm signal is passed through a non-
linear coordinate transformation, so that the rainbands are
constrained by parallel lines, perpendicular to the direction
of the storm and the angular rotation is removed. It is then
possible to estimate the parameters of the MTB model,
including those of the distribution of raincells so that the
small-scale statistics and structure of the rainfall field are
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Fig. 3. Computer screenshot showing the graphical softmare used by the
operator to fit a set of frames to an observed radar image.

reproduced in simulations. An outline of the forecasting
strategy follows.

The data are first transformed to remove the identified
curvature and angular rotation, and the parameters of the
model are then estimated. The next step is to determine a
distribution of raincells, with the property that, when their
contributions are added, the currently observed rainfall field
is reproduced. Once such an arrangement of raincells has
been established, a distribution of cluster potential regions
and rainbands is inferred such that, when the underlying
raincell birth-rate function is reconstructed, the distribution
of the fitted raincells is explained.

Since the underlying birth-rate function of raincells is
treated as a deterministic process, it can be calculated for the
future rainfall field based on the fitted function at time zero.
Using this as a probability distribution function for future
raincell births, a random number generator is used to
produce a field of future raincells and, hence, generate a
stochastic future rainfall field. Finally, the transformation
which was applied to straighten the original data is applied
in reverse to the generated data, so that the original
curvature, angular and translational velocity of the storm are
carried through the future scenarios.

DETERMINING THE CURVATIVE, ANGULAR
ROTATION AND TRANSLATIONAL VELOCITY OF
RAINSTORMS

Figure 3 is a screenshot of the workstation at which the user
sits, showing a radar image superimposed by a frame of
equi-distant curves which the operator has fitted to rain-
bands by eye. The frame may exhibit arbitrary orientation
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and curvature, and these attributes and the location of the
centre of the storm can change in time, i.e. they can vary
from one frame of the radar image to another. The system
uses this information to determine the translational and
rotational velocities of the storm, and the rate of change of
curvature if any; this derived information is subsequently
used to ‘straighten’ the storm out so that the MTB model
can be fitted, and to compute a set of extrapolated frames on
the basis that the shape of the storm will continue to evolve
with the currently observed rates of change of the
parameters (orientation, curvature, location). However, this
assumption could be relaxed if there is reason to suppose
some alternative trend in these parameters is more realistic.
Subsequently generated future rainfall fields are inserted
into these extrapolated frames to produce the final
forecasted rainfall field. The effect of straightening the
images in the frames, so that the storm moves in the west to
east (positive y-direction) is shown in Fig. 4. The data are
now in a form for estimation of the M'T'B model parameters.

ESTIMATION OF MODEL PARAMETERS

The parameters of the MTB model fall into three groups
according to the space-time scale at which they apply. Each
group has its own methods for parameter estimation.

At the smallest scales, the parameters of the raincells are
estimated using the methods given in Mellor and O’Connell
(1996). The raincell lifetime, width and velocity are
estimated through the use of a technique known as full
correlation analysis, which identifies features in the
correlation structure related directly to these aspects of
the raincells. Internal covariance analysis is used to
determine the density of raincells and their maximum
intensity, by equating the theoretical covariance structure
with the empirical covariance of observed rainfall.

The medium scale variation is modelled by the cluster
potential regions. The associated parameters are: the angles
between the lines and the x-axis; the width of the parabolic
prisms; the velocities of the prisms; and the rate of
occurrence of prism sections along the lines. The line
processes do not correspond to physical features; they are
just a device to make cluster potential regions move in an
approximately orthogonal direction to the leading edge of
the storm. The associated parameters have little effect on
the statistical features of storms, and it is not practical to
estimate specific values for each storm from rainfall data
(Mellor and Metcalfe, 1996). The following fixed values
have been found to be consistent with meteorological
observation and lead to visually realistic synthetic storms.
The angles between the x-axis and the two lines along which
the prisms slide are plus 30° (A-line) and minus 30° (B-
line). The angle between the two lines governs the
eccentricity of the elliptical cluster potential regions. The
velocities of the prisms along the A and B lines are 20 km
h™"and —28 km h ™' respectively. The rate of occurrence of
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Fig. 4. Real radar image, diameter 420 km, (lefi) at five km spatial resolution and the same data after being straightened out (right).

prisms and their width are 0.03 km ' and 20 km respec-
tively.

The modulating function (second level of Fig. 1) governs
the large scale aspects of the model. The parameters of these
features are determined at the same time as the operator
identifies the curvature and angular motion of the storm.
The operator first places curves that delimit the edges of the
storm in the original observed radar data. Then curves are
placed to enclose the rainbands within the storm. The gap
between any pair of curves in each frame is constant and the
computer software adjusts for this automatically. However,
the position of the lines within the frame relies on the
operator’s judgement. Once the data have been straigh-
tened, the sizes and velocities of the components of the
modulating function can be estimated.

PRODUCTION OF A FIELD OF FITTED RAINCELLS

The fitting of stochastic models to data usually entails the
determination of model parameters so that important
statistical properties of the data (for example, the mean,
variance, correlation structure, proportion of dry days) are
matched by the model. However, in this case the
conditioning is much stronger because the model matches
not only the statistical aspects of the rainfall fields, and thus
implicitly the geometrical and dynamic structure as well,
but also duplicates the observed parts of the rainfall field.
Hence, the term ‘strong conditioning’ is used here.

The strong conditioning of the MTB model starts with
the determination of a field of raincells which reproduces
the observed data. The lifetime, widths and velocity of
raincells have already been estimated, as described earlier.

Each raincell has three degrees of freedom, its location and
time when it reaches its peak intensity which occurs at mid-
life. The strategy adopted is to fit a raincell so that the peak
intensity, in both space and time, coincides with the largest
observation in the data, as indicated schematically in Fig. 5.
This may cause the raincell to deliver more rainfall than is
actually observed at this point, or other observation points
in its domain of influence. If this happens, the raincell is
moved backwards in time, that is, the time of birth of the
raincell is decreased, (see Fig. 6) until it no longer exceeds
any of the observed data. In practice, the raincell is shuffled
about with decreasing increments, until a fit is found for
which the raincell contributes as much as possible to the
observed peak without exceeding the rainfall at any other
observation point. Actually, the line of the raincell’s
evolution in space-time makes an angle to the plane of the
radar image because of the raincell’s velocity, but the

Time

Raincell

N\

Position of observed peak

Radar image

Fig. 5. Schematic showing a raincell intersecting a radar snapshot,
indicating the initial placement of the raincell.
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Alternative position

Raincell shifted backwards

Fig. 6. Schematic showing a raincell displaced backwards in time to
make a diminished contribution to the radar image, and an alternative
Dlacing of the raincell which makes the same contribution.

principle of the method can still be applied. Once a
satisfactory fit of the raincell is made in this way, its
contribution to the straightened radar image is subtracted
from the data, and the process is repeated with the new
peak, until all the rainfall data are explained by a collection
of raincells. The algorithm has been coded in C++, as a
subroutine for the main computer program which imple-
ments this work.

At this stage, the most recent straightened radar image
will be explained completely by a set of raincells. However,
since these have all been displaced backwards in time, they
will all be in the decaying phase of their lifetime when they
make their contribution to the radar data. A consequence of
the structure of the MTB model, is that, at any time, half of
the raincells are expected to be in the decaying phase of their
life, and the other half in the growing phase. Furthermore,
the raincells in the MTB model, described earlier, are
symmetrical about ‘the point in space and time where they
attain their highest intensity. It follows that a raincell fitted
to the most recent radar image can be ‘flipped’ about its
intersection with the radar plane, so that it makes exactly the
same contribution to the radar image but is now in the

growing phase (Flg 6).

To decide which of the fitted raincells should be flipped
in this way, the radar image immediately before the current
one is considered. The set of fitted raincells is scanned to
find those that make the biggest unwanted contribution to
~ the previous radar echo, and these are flipped forwards so
that their contribution to the previous echo is decreased.

DETERMINATION OF THE UNDERLYING RAINCELL
BIRTH-RATE FUNCTION AND PRODUCTION OF A
SINGLE STOCHASTIC FORECAST (FUTURE
SCENARIO)

Having determined a distribution of raincells which gives
rise to a synthetic rainfall field identical to the one observed,
a distribution of cluster functions is determined along the
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inclined lines which, when used to build the underlying
raincell distribution function, explains the distribution of
raincells which has been obtained. This is accomplished by
projecting the positions of the birth points of the raincells
onto the two inclined lines; the density of these points along
the lines is then determined using a kernel density estimat-
ing function. The function used for this purpose is the
cluster parabola itself, for which the width parameter is
assumed to be known from general meteorologlcal observa-
tions.

It follows that the best estimate of the distribution
function of the projected raincell birth points along the line
is just the observed density function of these points, as
computed above. It is therefore necessary to determine a
distribution of cluster parabolas along the line which, when
summed, will reproduce this observed density function.
This is accomplished in the same way that the distribution
of raincells was determined to reproduce the originally
observed rainfall field, except that the raincells had to be
shuffled about in three dimensions whereas the cluster
functions only need to be fitted in one dimension.

At this stage, all the details of the MTB model explain all
the observed features of the rainfall field. However, these
observed aspects of the model will not specify completely
the model at points away from the observations, i.e. at future
times, where the fitted features will be either too sparse or
non-existent, and will not therefore reproduce the structure
of the MTB model properly. Thus, it is conjectured that
extra details of the model must be added to those fitted
above, and this is achieved using the stochastic generation
mode of the model. Specifically, cluster parabolas are
distributed randomly on the parts of the inclined lines
which currently project outside of the observed data field
(since the cluster parabolas slide along the lines with some
velocity, to produce a rainfall field at future times it is
necessary to construct details along the inclined lines which
will enter the field of observations only at later times).

Once a complete distribution of cluster parabolas has
been obtained, the details on the inclined lines can be
projected back into the field of fitted raincells and hence a
complete raincell birth-rate function can be reconstituted in
two-dimensional space and time. This is then used to scatter
raincells randomly in the unobserved parts of the raincell
field (i.e. at future times) to augment the raincells which
have been fitted to the observed parts; this completes a
realisation of the MTB model which is a combination of the
deterministically fitted and the stochastically generated
components. None of these extra raincells is allowed to
contribute to parts of the space that have been observed, so
the fitted raincells at these points continue to reproduce the
observations exactly, but the extra details extrapolate the
field into the future in a consistent way.

The final forecasted rainfall field is obtained by summing
the complete set of raincells, which will reproduce all the
original observations implicitly, as well as producing an
extrapolated rainfall scenario. ‘
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PRODUCTION OF AN ENSEMBLE OF STOCHASTIC
FORECAST

Once the model has been used to produce a future scenario
of the straightened storm, the transformation is reversed so
that the curvature and orientation, apparent in the original
data, are preserved. Furthermore, the process of generating
future raincells can be repeated as often as required without
having to refit the raincells which explain the observed data.
Thus, it is an easy matter to produce an ensemble of future
rainfall scenarios, once the outline of the original storm has
been identified and the MTB model has been conditioned.

In Fig. 7, the top left panel shows radar frames, taken at
five minute intervals during the storm of 3rd February
1994, following the field of observations shown in Fig. 3,
which also appears at the top left of the panel. The other
three panels show radar frames taken from MTB forecast
scenarios following the same initial field of observations. All
three of the scenarios start out by reproducing the last
observed radar frame (after low-intensity (<0.1 mm hr™ ")
background rainfall has been removed), and the simulations
become increasingly different as the lead time increases.
This is the result of the original field of fitted raincells dying
out gradually and being replaced by different fields of

stochastically generated raincells in each scenario. It should
be noted, though, that many properties of the original field
are preserved in all the scenarios: the overall shape and
movement of the storm, the number and relative positions
of the rainbands, and the fitted attributes of the M'TB model
are maintained throughout each scenario (raincell velocity,
width and intensity; mean, variance and lag-one internal
spatial covariance structure; important peaks in the spatial
correlation structure implied by explicitly modelled fea-
tures, e.g. raincells, cluster potential regions). As scenarios
can be generated quickly an ensemble of at least ten
scenarios would usually be presented, as shown in Fig. 9.

Case study

STORM DESCRIPTION

The River Brue catchment, relative to the range of the
Cobbacombe radar, is shown in Fig. 8. Detailed radar
images are available throughout a frontal storm on 3rd
February 1994, and rainfall in the Brue catchment was
monitored by the network of gauges. This storm was used as
a test case. Forecasts of total rainfall in the Brue catchment

Fig. 7. Original real radar sequence from storm of 3rd February 1994, frames at 5 minute intervals, (top left panel) and three scenarios generated by
the MTB model from the same initial frame (top left frame in all four panels).
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- Brue catchment

— 210km Cobbacombe radar

Fig. 8. Location of the Brue test catchment shown relative to the extent of the Cobbacombe radar range.

are deduced from the MTB scenarios by summing over the
catchment. These forecasts are compared with ground
observations, averaged over the catchment, in Fig. 9(a)—(c).
In Fig. 9(a) the forecast, for the complete duration of the
storm over the Brue, was made two hours before the storm
front first hit the edge of the catchment, while the forecasts
in Figs. 9(b) and 9(c) were made at the time it hit the
catchment and two hours later, respectively. Ten MTB
scenarios and their envelope are shown, together with the
observed rainfall rate. The envelope is rather wider for the
forecasts made two hours after the storm hits the catchment.
This was due at least partly to the rain band structure, which
had been defined clearly in the radar images at the earlier
times, becoming less pronounced. There is generally good
agreement, since the total rainfall is well within the
ensemble envelope — although this is also true for the
individual scenarios. Also, one storm is inadequate to check
the reliability and value of the scenarios. A model which
produces very wide envelopes will contain almost all real
storms. Useful envelopes will usually turn out to contain the
actual storm events, whilst being sufficiently narrow to help
with flood warning decisions.

ASSESSMENT OF ENSEMBLE FORECASTS

The probability that a storm profile, generated by a known
stochastic mechanism, will be outside an envelope of »
storms generated by the same mechanism in at least one
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place, could be found to any required accuracy by
simulation. However, this probability is unlikely to have
much practical significance. A more useful criterion would
be whether some crucial feature such as total rainfall, or
perhaps peak rainfall, is consistent with the bands set by the
scenarios. A method for assessing the performance of the
overall flood forecasting system, in respect of peak run-off,
is discussed in Mellor er al. (2000).

Summary and conclusions

A system has been developed which strongly conditions a
stochastic space-time rainfall model on real radar data. The
model can create synthetic data sets which reproduce
exactly the original observations and, when extrapolated, an
ensemble of future space-time rainfall scenarios. It is, thus,
possible to use these to drive a spatially distributed
catchment model to produce scenarios of future runoff.
Furthermore, since the rainfall model is continuous over
space and time, the future fields can be sampled at whatever
space-time resolution suits the catchment model, regardless
of the resolution of the observing system.

The paper has described how real radar data are
manipulated interactively so that any curvature or angular
velocity inherent in a real rainstorm can be identified and,
through a simple transformation of the data set, eliminated.
The parameters of the M'TB model are estimated from these
straightened data, and a distribution of model raincells is
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b
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Fig. 9. Storm of 3rd February 1994. Envelope of ranfall forecast
. scenarios generated by the MTB model conditioned on the observed
rainfall: (a) 2 hours before the storm hits the catchment (—2 hours);
(b) at the time the storm hits the catchment (0 hours); (c) 2 hours after
the storm hits the catchment (+2 hours).

determined which reproduces the most recent radar image.
The underlying distribution function of these raincells is
" then determined, and this defines the probability distribu-
tion of raincells at future times. Based on this information,
the model is used to generate randomly future raincells.
When the curvature and angular rotation of the original
storm is transformed back into the generated scenario, a
possible future rainfall field is produced. The generation of
the stochastic parts of the model may be repeated easily and
quickly with a random number generator starting in a
different state, so that ensembles of future scenarios can be
generated. On a Hewlett-Packard 9000/715-50 desktop
workstation, the production of the rainfall scenarios takes

-

about two minutes for the examples displayed in this paper,
plus an extra allowance of about two minutes for the manual
fitting of the overall storm profile (the curvature and angular
rotation). Thus, the overall production of future scenarios
takes place sufficiently quickly for real-time forecasting of
the rainfall field to be feasible.

The above paragraphs have summarised the develop-
ments of the MTB model, and a demonstration of the
potential utility, that could be achieved in the time available
for the HYREX project. The work has concentrated on a
single storm event that took place in the Brue catchment.
Despite the strong conditioning, the variability across the
ensemble of forecasts appears to be high. From a forecasting
standpoint this is inconvenient, but it may be an intrinsic
characteristic of the rainfall process rather than a practical
limitation of the proposed rainfall model.

The performance of the forecasting system in the Brue
case study shows that it is capable of producing envelopes of
rainfall intensity which take account of the observed rain
band structure before, at the time when, and after a storm
first hits the catchment. For this case at least, all sets of 10
envelopes include not only the peak intensity and the total
rainfall, but also most of the storm profile. An ongoing
appraisal of the system would include storms with a less well
defined structure such as convective events. Further work is
desirable to evaluate the varied nature of inputs from
different operators of the system, and thus to determine
how much scope the system has to utilize the operator’s own
skill and judgement. The programme of work described in
this paper has been designed to investigate the ability of the
MTB rainfall forecasting system to encapsulate the
uncertainty in the future rainfall field, in isolation from
variability induced by measurement errors and imprecise
model parameters. The effect of errors, uncertainties and
variability in these methods, after being compounded with
the inherent variation of the MTB system, should be
assessed. The techniques developed also have potential as a
stochastic interpolator of rainfall fields (in both space and
time), and this area also warrants further exploration.

Arising out of interaction with radar hydrologists and
mesoscale atmospheric modellers within HYREX, a number
of interesting avenues of research could be explored in the
future, as outlined below.

Coupling of MTB forecasting methodology to radar

The work reported here has used data which have been
processed and formatted by the Meteorological Office, but
radar has potentially much greater flexibility than this,
leading one to contemplate a situation in which the radar is
controlled directly by a computer in real-time running the
MTB system, thus allowing the MTB model to dictate
dynamically its own inputs as the prevailing atmospheric
conditions change. This would be a long-term research aim,
but one which potentially could provide an avenue of
ground-breaking advances in radar operation and proces-
sing and theoretical stochastic model development.

613



D. Mellor, J. Sheffield, P.E. O’Connell and A.V. Metcaife

Extension to decision-making for flood warning

Ultimately, the results of this research may be used in a real-
time decision-making environment, as it is necessary to
devise methods which take advantage of the dynamic
uncertainty in the forecasts to allow probabilistically optimal
decisions to be made. Such decision-making would of
necessity be based on ensembles of flow forecasts, as
generated in Mellor ez al. (2000).

Nesting of MTB model within larger scale dynamic forecasting
models

The MTB model is an event-based model working on scales
up to the synoptic level. Wider applicability could be gained
by nesting the MTB model inside Mesoscale Forecasting
Models, thus providing a means of downscaling numerical
model forecasts to the spatial scales of interest in hydrology.
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