N

N

Spatial-temporal rainfall fields: modelling and statistical
aspects
H. S. Wheater, V. S. Isham, D. R. Cox, R. E. Chandler, A. Kakou, P. J.
Northrop, L. Oh, C. Onof, I. Rodriguez-Iturbe

» To cite this version:

H. S. Wheater, V. S. Isham, D. R. Cox, R. E. Chandler, A. Kakou, et al.. Spatial-temporal rainfall
fields: modelling and statistical aspects. Hydrology and Earth System Sciences Discussions, 2000, 4
(4), pp.581-601. hal-00304688

HAL Id: hal-00304688
https://hal.science/hal-00304688
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00304688
https://hal.archives-ouvertes.fr

Hydrology and Earth System Sciences, 4(4), 58/-601 (2000) © EGS

Hydrology & Earth
G System Sciences

Spatial-temporal rainfall fields: modelling and statistical

aspects

H.S. Wheater', V.S. Isham’, D.R, Cox’, R.E. Chandler?, A. Kakou?, P.J. Northrop?, I.. Oh!,

C. Onof! and I. Rodriguez-Iturbe*

'Department of Civil Engineering, Imperial College, Imperial College Road, London SW7 2BU, UK
Department of Statistical Science, University College London, Gower Street, London WCIE 6BT, UK

*Nuffield College, Oxford OX1 INF, UK

epartment of Civil and Environmental Engineering, Princeton University, Princeton, N.J. 08544, USA

e-mail for corresponding author: h.wheater@jc.ac.uk

Abstract

The HYREX experiment has provided a data set unique in the UK, with a dense network of raingauges available for studying the
rainfall at a fine local scale and a network of radar stations allowing detailed examination of the spatial and temporal structure of
rainfall at larger scales. In this paper, the properties and characteristics of the rainfall process, as measured by the HYREX recording
network of rainguages and radars, are studied from a statistical perspective. The results of these analyses are used to develop various
models of the rainfall process, for use in hydrological applications. Some typical results of these various modelling exercises are

presented.
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Introduction

For most hydrological systems, rainfall is the primary input,
and hydrologists have long recognised the problems of
interpolation of “point” raingauge data to estimate spatial
rainfall fields. Indeed, the dramatic spatial heterogeneity of
convective rainfall in some arid areas has led to the situation
where, even with a relatively dense raingauge network
(~10 km inter-gauge spacing), flood flows can arise with no
rainfall observed (Wheater ez 4/, 1991a, b). Ambiguity in
definition of spatial rainfall in such areas has been shown to
be a major factor in failure of conventional rainfall-runoff
analyses (Wheater and Brown, 1989). Localised convective
rainfall is relatively rare in the UK, but quantitative insight
into the internal structure of rainfall fields generated by the
more typical frontal and convective systems is nevertheless
lacking.

Since the implementation of the Dee Weather Radar
Project in the 1970s (CWPU, 1977), recognition of the
power of radar as a tool for measurement of spatial rainfall
fields has led to the progressive implementation of a national
network of weather radars in the UK. However, while the
importance of these data for weather forecasting and real-
time flood estimation has long been apparent, the wider
implications for spatial rainfall analysis have received
relatively little attention. The HYREX experiment has
provided the opportunity, via both a dense network of

raingauges and associated radar data, to explore a range of
issues related to the characterisation of spatial rainfall and
the implications for various aspects of hydrological practice.

Firstly the basic spatial properties of the raingauge data
are studied. The HYREX raingauge network, of 49 0.2 mm
tipping bucket raingauges, located in a grid of 28 2 x 2 km?
squares in the catchment of the river Brue in South West
England, is more fully described elsewhere in this volume
(Moore et al., 2000); maps showing the location of the Brue,
and the raingauge network, are shown in Fig. 1. Although
designed primarily to provide the basis for a detailed
evaluation of 2 km resolution radar data, it provides a data set
unique in the UK. Two earlier dense experimental networks,
established at Cardington and at Winchcombe between 1957
and 1967, received limited analysis (Holland, 1967;
Marshall, 1980) and have long since been discontinued;
the data are believed to be no longer available. The HYREX
network encompasses a modest elevation range, from 35 m to
190 m above sea level, and can provide insight into small-
scale topographic controls on rainfall fields, as well as the
internal structure of rainfall at the network scale.

Secondly, the development of models of spatial rainfall,
with respect to both full spatial-temporal modelling and the
multi-site problem of modelling correlated raingauge data
are considered. Spatial-temporal models can provide a
succinct summary of the data, and are a primary means of
generalisation for hydrological applications. Here they are
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Fig. 1. Map of the HYREX expersment. Top: location of Brue valley (outlined in centre of map, near Lovington) within South-West England,
with locations and ranges of HYREX radar stations. Bottom: detasl of Brue catchment, showing positions of HYREX raingauges.

developed using individual radars which provide 2 x 2 km?
pixel resolution within a circle of radius 76 km and
5 x 5 km? resolution to 210 km. Issues of radar calibration
are discussed elsewhere (Wood ez al., 2000b). It is assumed
for the present stage of model development that possible
calibration errors will not bias seriously the spatial structure
of the observed fields, once obvious errors have been
removed. Multi-site modelling is based mainly on the
raingauge network.

The implications of spatial rainfall distribution for large-
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scale hydrological modelling, focuses on the problems of
disaggregation which arise when relating the large-scale
average rainfall of a grid-square simulation in an Atmo-
spheric General Circulation Model to parameterisations of
the surface hydrology. Observed large-scale rainfall fields
provide a means of testing algorithms and quantifying
parameters for current GCM schemes, and analysis can
point to potential methodological improvements.

Finally, the potential for a new family of design methods
for hydrological application, is considered, in a preliminary



way, recognising the spatial and temporal variability in
rainfall through the application of stochastic simulation
methods.

Data analysis

To understand better the mechanics of the rainfall process,
and to guide the development of statistical models, basic
analyses of the data have been carried out routinely, on a
monthly basis, throughout the HYREX experiment; these
provide an archive of summary statistical information about
the process. In addition, more detailed analyses of particular
time periods or rain events have been used to address
specific issues. The problem of calibrating radar measure-
ments against data from the raingauge network has not been
addressed, as this is being investigated elsewhere in the
HYREX project.

ROUTINE ANALYSES

Most of the routine statistical analysis has been carried out
using raingauge data from the Brue catchment. Primary
quality control of the data has been carried out by the
Institute of Hydrology and is reported elsewhere in this
volume (Wood et al., 2000a); this is supplemented by the
data analysis reported here. For example, bad data may be
identified by inspection of monthly cumulative hyeto-
graphs, although assessment of quality is more difficult in
the summer months when the rainfall pattern is naturally
more variable than in winter. If a gauge were suspect during
a particular month, then it was excluded from any
subsequent analysis for that month.

For each month, summary statistics have been computed
at different levels of temporal aggregation for each of the
reliable gauges, and the results tabulated (examples may be
found in Wheater ez al., 1997). The mechanism of the
gauges limits the temporal resolution of the raingauge
data—the median time between bucket tips varies from
around 5 minutes in the winter to 11-12 minutes in the
summer, which means that for aggregation periods of less
than about 15 minutes the data discretisation due to the
tipping mechanism has a serious effect. This clearly has
important implications for any temporal analysis which is
carried out on these data. Seasonal variation in these
summary statistics is much as expected — for example, the
proportion of wet days is much lower in summer than in
winter. Winter statistics are much more homogeneous
across the network than those for summer months, which
indicates less spatial variability in the winter.

Analysis of radar data has focused on the Wardon Hill
radar station (rather than that at Cobbacombe), as this is
closer to the Brue catchment and preliminary estimates of
radar accuracy indicate that its performance is better (Wood
et al., 20002). However, problems do occur and have been
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screened by visual inspection. Attempts to classify the radar
images into different climate types have relied largely on
subjective visual analysis (although some work on the
development of an objective and statistically-based classi-
fication scheme has been carried out (Imrie, 1996)). An
examination of the data over the period of the HYREX
experiment reveals three distinct rainfall patterns: these
correspond broadly to showers, rainbands and regions of
widespread rain (more detailed examination suggests some
kind of hierarchical organisation is taking place, with banded
structures frequently visible within regions of widespread
rain and ‘rain cells’ within the bands). The ‘showers’
category can be further subdivided into ‘scattered’ and
‘widespread’ showers. Sample images of each type can be
found in Fig. 2. Notice the data error around the edge of the
image for the event of 30/12/93, where nothing is recorded
due to the rain being beneath the radar beam at this distance
from the radar station — a common source of data error in
winter (Collier, 1989).

Routine analysis of the radar data has focused on the
spatial variability of the rainfall. Again, data quality is an
important consideration and these analyses are restricted to
data at 2 x 2 km? spatial resolution lying within the small
circle (radius 76 km) shown in Fig. 2. For each radar image,
spatial summary statistics have been computed, and
displayed as time series plots — see Wheater et al. (1997)
for examples. These plots enable periods of potential
interest to be isolated and have been used, together with a
visual inspection of images, to identify a subset of rainfall
events which is suitable for analysis from the HYREX radar
data catalogue. These events were selected on the basis that
they covered the inner radar circle for a reasonable period of
time, and that there were no serious data quality problems
within this circle.

ANALYSES USING RAINGAUGE DATA

In addition to the routine analyses described above, some
more general properties of the data, relating to the spatial
structure of the rainfall field and the influence of
topography, have been investigated. It is important that
the class of stochastic rainfall models to be considered has
the ability to reproduce such properties of the data, at least
over spatial and temporal scales of interest.

An extensive analysis of the topographic effects of the
Brue area on the behaviour of the rainfall process has been
carried out using raingauge data. Various monthly summary
statistics were plotted against gauge elevation and regression
relationships were sought. The only properties to show
consistently a statistically significant elevation effect are the
mean rainfall intensity and the proportion of wet intervals.
A straight line fit to the data explains about half of the
variation in each statistic at the hourly timescale. Plots of the
two statistics against elevation are given in Fig. 3 for the
months of June and December. The results for June
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Fig. 2. Different rainfall types observed with the Wardon Hill radar station. Clockwise from top left: scattered showers, widespread showers, rain
band, stratiform rain.
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indicate a 70% increase in the mean rainfall at an elevation
of 190 m compared with that at 35 m, with an increase of
20% for the proportion of wet intervals. The December
results indicated a 20% change in both statistics over the
range of elevations in the catchment. These results show
that relatively small changes in elevation can make a
substantial difference to the rainfall. The main difference,
occurring throughout the year, is in the proportion of
intervals which are wet; it is only in summer that elevation
has an effect on rainfall intensities during wet periods, for
the 20% increase in mean rainfall in winter is explained by
the increase in the proportion of wet intervals alone.

In addition to examining the effect of elevation on the
rainfall behaviour, the possible presence of other geogra-
phical effects has been investigated by plotting monthly
summary statistics against the grid co-ordinates of the
gauges. No significant relationship was found — this is
perhaps unsurprising given the small scale of the Brue
raingauge network.

The spatial association of the rainfall process within the
Brue catchment has been examined by looking at the effect
of distance and orientation on the inter-site properties
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(again on a monthly basis). The Brue area was split into
North-South and East-West transects, defined by the
2 x 2 km? grid squares of the Wardon Hill radar station.
For all pairs of raingauges within each transect, the
probability of both sites being wet and the cross correlation
of the rainfall intensity at zero time lag were calculated,
using hourly data. Figure 4 shows the cross-correlations
plotted against grid square separation, again for June and
December 1994. The mean and standard deviation of the
cross-correlation are calculated over all pairs of sites with
the same grid square separation. A decreasing spatial
association with distance is clear; it drops off slightly more
quickly in a North-South direction than in an East-West
direction (this is probably a topographic effect, due to the
East-West orientation of the Brue valley). The seasonal
effect is obvious: intense and localised summer storms result
in a faster decay in the spatial correlation of the process with
distance than do more uniform winter systems. Moreover,
the spatial correlation structure is much less variable in the
winter than in the summer, as indicated by the larger
standard deviations across the network in the latter case.
Similar analyses for data at different levels of temporal
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Fig. 4. Spatial cross-correlations for hourly rainfall amounts from the HYREX rasngauge network, showing effects of distance and direction. Top:
June 1994, bottom: December 1994. Lefi-hand plots show results JSor North-South transects, right-hand plots show results for East-West transects.
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aggregation produce the same conclusions, although
aggregation of the data over larger time periods makes the
process more spatially homogeneous and reduces the effect
of distance.

While some of the statistical calculations reported above
will assist in developing and comparing models for the
rainfall process, perhaps the most striking feature to emerge
from these analyses is the effect of topography on the
rainfall. The Brue catchment encompasses a very small
elevation range, yet the rainfall on the upper slopes can be as
much as 70% more than that on the lower slopes in summer;
moreover, the cross-correlations shown in Fig. 4 indicate
that, at this local scale, the Brue valley influences the rainfall
correlation structure. These findings clearly have implica-
tions for hydrological design at a small catchment scale.

ANALYSIS OF RADAR DATA

While the raingauge network allows the examination of the
effects of topography on the rainfall process and to quantify
its very local behaviour, other issues (particularly relating to
the spatial variability of the rainfall on a larger scale) may be
addressed using radar data.

One area of analysis has been the investigation of Taylor’s
hypothesis (Taylor, 1938), which relates spatial and temporal
autocorrelation structure via the average velocity of the
field. Explicitly, if p(u,7) = Corr[Y(0,0),Y(u,7)]1 for a
spatial-temporal field Y(u,7) viewed as a stationary
stochastic process, then the field is said to satisfy Taylor’s
hypothesis if

p(Vr,0) = p(0,7) (1)

for some velocity vector, ¥ and all time lags, 7. Essentially,
this expresses the notion that an observer moving at the
same velocity as the field would not see any qualitative
changes in its structure over time. While a fixed spatial field
which moves with constant velocity (a ‘frozen field’) implies
Eqn. 1, the converse is not true.

Figure 5 is a plot of p(V1,0) and p(0,7) against 7 for the
storm of 25/12/94 shown in Fig. 2. The velocity of the
storm, ¥, was estimated as (22.8,—23.6) km h~! by tracking
the centroid of the storm. The figure shows the two lines
beginning to separate substantially after around 30-40

_minutes. Before this ‘cutoff” Taylor’s hypothesis appears to
hold. This is in broad agreement with a previous study by
Zawadski (1973). The extent of the validity of Taylor’s
hypothesis for stochastic spatial-temporal models will be
investigated later.

Another informative analysis concentrates on how the
spatial variability of the total accumulated rainfall intensity
or depth deposited by a storm changes over time. The
analysis uses a Lagrangian frame of reference: the storm is
studied over a period of time through a circular ‘data
window’, moving with the storm, and spatial statistics are
computed over this window. For this analysis, attention is
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restricted to fairly slow-moving storms and to the 5 X 5km?
resolution radar data, in order to be able to track the storm
for a reasonable period of time as it evolves. An interesting
feature of the data is that the spatial variance of the depth
stops increasing after 3—4 hours in many of the storms
analysed. Thus, in Fig. 6, where the spatial standard
deviation of the rainfall depth is plotted against the mean on
a log-log scale for a variety of different window sizes, the
curves start to flatten out at the right-hand end of the graph,
beginning with those for the smallest window sizes.
Although the implications of this phenomenon are not yet
understood fully, it may indicate the presence of some
inhibition in the rainfall process — for example, an area of
high rainfall intensity within a storm may inhibit further
high intensity rainfall within that area at a later time. This
conclusion is speculative, however, and the phenomenon
bears further investigation.

Rainfall models

OVERVIEW

In the models described and used in this paper, the main
observable features of precipitation processes, such as the
clustering and movement of rain cells, are represented
explicitly. However, the detailed deterministic behaviour of
the physical processes is replaced by simple stochastic
assumptions, whence a rather small number of physically
interpretable parameters may be used to represent the
rainfall process. Such models fit part way between the
deterministic General Circulation Models (GCMs) of
dynamical meteorology involving complex sets of differ-
ential equations (e.g. Mason, 1986), and the empirical
statistical models based upon ideas such as multiscaling
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processes and fractal cascades (e.g. Lovejoy and Schertzer,
1987, Gupta and Waymire, 1990).

Models for spatial-temporal precipitation based on
stochastic point processes, go back at least as far as the
fundamental work of Le Cam (1961). This approach
developed rapidly in the 1980s through a series of papers
(e.g. Waymire et al., 1984). Such models are based on a
hierarchical structure in which rainfall fields occur in a
temporal Poisson process, ram bands (storms) occur within
each field in a spatial Poisson process (the rate of which may
reflect orography and seasonality), and rain cells occur in
each storm, clustering in space and time. Typically the cells,
storms and fields move: in the simplest models, all
components have a common velocity.

Models for the temporal evolution of rainfall, both over
continuous spatial regions and at discrete sets of locations
are described. The former (referred to as spatial-temporal
models) are appropriate where radar data are available,
whereas the latter (multi-site models) are relevant to data
from a network of raingauges. A crucial feature of the
approach is that all models are constructed, and their
properties determined, in comtinuous time (and, for the
spatial-temporal models, in continuous space). To fit the
models to empirical data, it is then a relatively straightfor-
ward matter to aggregate their properties, as appropriate,
over disjoint spatial and/or temporal regions; for example,
rain gauge data are usually aggregated temporally, while
radar data are averaged spatially. Then, in assessing the
adequacy of the fit of a model, it is important that it

reproduces well the properties of the data at levels of
aggregation other than those used in its fitting.

In the work reported here, for simplicity only one level of
clustering of cells within storms shall be included, although
there are indications that a better fit would be obtained by
allowing a second level of clustering, stochastic stationarity
in both time and space is assumed. Thus, in fitting the
models, each month is treated separately, using data for a
relatively homogeneous spatial region.

The spatial-temporal models that have been developed
are spatial analogues of models that have been used
successfully to represent the temporal process of rainfall at
a single rain gauge (Rodriguez-Iturbe et al., 1987, 1988) and
generalise that investigated in Cox and Isham (1988). The
multi-site models generalise similarly the models of Cox and
Isham (1994). All of these models have the desirable feature
that they preserve the structure of the single-site models in
their marginal properties.

SPATIAL-TEMPORAL MODELS

The focus of the HYREX experiment has been upon the use
of radar data, which is ideally suited to the development of
fully spatial-temporal models: it has been in this area that
the most significant contributions have been made during
the project, and this aspect of the modelling is therefore
discussed first. The basic spatial-temporal model of Cox and
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Isham (1988) does not have any clustering of cells. Its
specification is as follows:

e  Cells arrive in a Poisson process in (two-dimensional)
space and time.

e Each cell is circular in space with a random radius,
duration and velocity.

e Throughout its duration the cell deposits rainfall at a
constant rate (intensity) on all points in space covered
by its defining disc.

e The total rainfall intensity at a point in space-time is the
sum of the contributions from all cells active at that
point.

It is assumed that all cells move with the same velocity, an
assumption which is realistic to make only when studying a
single weather system.

It is relatively simple to derive expressions for the mean
and second order properties of the process. Additionally,
expressions for properties such as the probability that an
arbitrary point in space-time is not covered by a cell (i.e. is
dry) can be derived.

Northrop (1996) introduced a generalisation of this
model in which cells are elliptical rather than circular.
Hereafter referred to as the elliptical cell Poisson process
model (EPPM), this is likely to be more realistic, especially
in the cases where banding is apparent in the radar images.
These cells are also identifiable by the elliptical contours of
their spatial autocorrelation plots. This model requires two
extra parameters, the eccentricity and orientation of the
cells, which are both assumed to be common to all cells.

It is clear that these models are highly idealised, for
inspection of radar images indicates that a model in which
rain cells are clustered within storms in both space and time
is required. Cox and Isham (1988) also investigate a model
in which circular rain cells are clustered within storms. The
temporal clustering has a Bartlett-Lewis type structure:
explicitly, for a storm centre at (u,2), cell origins will arrive at
u in a temporal Poisson process starting from a cell origin at
(#,t), the process terminating after an exponentially
distributed time. All cells within a storm originate at the
same spatial location. Since all cells move with the same
velocity, the result is that a storm consists of a band of cells
moving in the direction of alignment of the band. This is
unrealistic, for empirical observation is that the direction of
.cell movement tends to be orthogonal to any banding which
is present.

To overcome this problem, a modified version of this
model (Northrop, 1997) has been investigated. The
temporal clustering of cells is achieved using a Bartlett-
Lewis structure as above. Additionally, spatial clustering is
incorporated using a Neyman-Scott-type mechanism in
which the displacements of the cell origins from the storm
centre follow a bivariate distribution in space. A range of
storm shapes (e.g. bands and large masses) can be produced
by variation of the parameters of the spatial clustering
distribution. An important modification to the model of Cox
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and Isham (1988) is to have the storm centre moving with
the same velocity as the cells so that cells are born within the
existing structure of the storm. Two spatial clustering
distributions are considered:

1. A bivariate Gaussian (normal) distribution. The resulting
model is referred to as the Gaussian displacements spatial-
temporal model (GDSTM),

2. A uniform distribution over a random ellipse. This gives
rise to the random ellipse spatial-temporal model
(RESTM).

This model can be generalised by taking the cells to be
elliptical in shape — in the simplest case, they are just scaled
versions of the elliptical contours of the bivariate Gaussian
distribution (GDSTM) or storm ellipse (RESTM) within
which they were born.

Expressions for the mean and second order properties of
the model can be derived (Northrop, 1996) although the
second order properties require the numerical evaluation of
integrals or the use of approximations. The same is true of
the probability that an arbitrary point in space-time is dry.
In addition, for the purposes of model fitting using the
method of moments, the aggregation of properties over a
radar pixel will require the numerical evaluation of a double

'integral for all the models considered here. Further details

of the specification and fitting of these models are in
Northrop (1997).

For the class of spatial-temporal model considered here,
it can be shown theoretically that Taylor’s hypothesis holds
approximately for time lags which are small relative to the
mean cell duration.

MULTI-SITE MODELS

In regions where radar data are not available, it is useful to
develop spatial-temporal models that can be calibrated from
a network of raingauges. In principle, it is possible to apply a
full spatial-temporal model as described above, by deriving
and using properties of the model at a discrete collection of
spatial locations. This is complicated, however, and an
alternative approach is to develop models in which between-
site interactions are expressed directly in a manner which
reflects the underlying spatial-temporal structure of the
rainfall, but which avoids the complications of a full spatial-
temporal model. These are referred to as multi-site models:
they should have inter-site properties that depend on the
distances between the sites and possibly on topography, and
should also preserve the structure of single-site models for
their marginal processes at each site.

The models considered are generalisations of those
proposed by Cox and Isham (1994), whose motivation was
as follows: when studying rainfall over a network of k sites, a
storm or cell may be categorised according to the subset of
sites which it affects. Excluding the empty subset, there are
N=2*% _1 possible subsets of the sites, which may be



labelled Si,...,Sn- A storm (cell) affecting all of the sites in
S; and no others is said to be of type j. The basic idea
underpinning the models of Cox and Isham (1994) is that
cells arrive at the study area in a point process called the
master process, and the type of each cell is determined by
some random mechanism. This type of model structure
offers great flexibility for building a wide variety of different
multi-site models; however, it requires the probabilities of
each of the 2* -1 different types to be modelled, which in
general will involve a large number of parameters unless
simplifying assumptions are made.

An intuitively reasonable strategy for simplifying this
problem is to assume that the probability of a cell hitting two
sites depends in some way upon the distance between the
sites. There are various ways of doing this, the easiest being
to assume a simple algebraic form for this probability as a
function of inter-site distance (e.g. an exponential decay).
Alternatively, the choice of functional form for this
dependence can be made more physically plausible by
incorporating assumptions about the spatial structure of a
storm. These assumptions reflect the structure of the full
spatial-temporal models already described. Specifically, it is
assumed that storms move with a constant velocity and that
they hit the study area in ‘fronts’ which are perpendicular to
the direction of movement. The centre of a storm thus
traces out a straight path called the storm axis, which is fixed
throughout the storm’s lifetime. A storm gives rise to a
cluster of rain cells, each of which moves with the same
velocity as the storm, along its own axis which is displaced
from the storm axis according to some random mechanism.
Each cell has a random ‘width’ (measured at right angles to
the direction of movement). A cell’s type (i.e. the subset of
sites which it affects) is thus determined by its axis position
and width.

In the specific example developed and presented here,
various choices have been made regarding the specification
of various components of the model. These are detailed
below. Unless otherwise specified, any random quantity in
the model has been taken to follow an exponential
distribution, realised independently and identically for each
cell and independently of any other quantity in the model.

e The master process of storm arrivals (i.e. times at
which storm fronts hit some arbitrarily chosen point
within the study region) is Poisson in time.

®  The axis position of each storm is random, distributed
uniformly over some region enclosing the study area,
and realised independently from storm to storm.

®  The speed of storm and cell movement is random, fixed
for each storm but realised independently and
identically between storms according to a gamma
distribution. The direction of storm and cell movement
also varies randomly between storms, this time
according to a discretised cardioid distribution (F isher,
1993).

e  Within storms, the temporal clustering of rain cells is
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achieved via a Neyman-Scott mechanism with an
exponential scatter distribution. The number of cells in
each storm follows a Poisson distribution.

® The spatial displacement of each cell’s axis from the
storm axis is drawn, independently and identically for
each cell, from a double-sided exponential distribution
whose probability density function is of the form

S(x) = %C_AM (—infinity < x < infinity)

for some positive parameter A.

®  Each cell has a random intensity and nominal duration.
However, the time for which a cell is active at any site
after hitting that site is obtained by scaling this nominal
duration by a site-specific constant. This is intended to
model topographic effects; its justification lies in the
observed influence of topography upon mean rainfall
through the proportion of wet intervals (as mentioned
previously and in Fig. 3), for it is only if cells are active
for different lengths of time at each site that this feature
can be incorporated realistically into the model.

These multi-site models are reasonably parsimonious in
their parametrisation, requiring a single extra parameter, the
cell duration scalar, for each new site that is included in the
study. The cross-correlation function of the rainfall
intensity at a pair of sites has been derived (Kakou, 1997)
as has the implied functional form of the probability of a cell
hitting two sites. It turns out that, for individual storms, this
probability decays approximately exponentially with inter-
site distance for sites which are well-separated and which are
not aligned along the direction of the storm’s movement; for
sites which are closer together, the dependence is no longer
exponential.

SINGLE-SITE MODELS

The models described in the preceding sections were
generalisations of models that have been used successfully to
model the temporal evolution of rainfall at a single site. A
first step towards improving the performance of these
models involves studying ways in which the single-site
models can be improved.

One of the most obvious ways in which the basic single-
site models of, for example, Rodriguez-Iturbe et al. (1987),
can be extended is by allowing for different types of storm.
One way of achieving this, adopted by Rodriguez-Iturbe ez
al. (1988), is to randomise the cell duration parameter
between storms — in this approach, storms have a common
structure but occur at different timescales. The main
advantages of such models, in practical terms, lies in their
ability to reproduce well the observed probability of no
rainfall at various levels of aggregation.

An alternative to the randomisation of the cell duration
parameter for single-site models has been investigated. This
allows for different types of storm using an inverse
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relationship between the duration of an event and its
intensity (the motivation being that intense convective
events tend to be shorter-lived than shallower stratiform
systems). By adopting an explicit functional form for the
dependence between cell depth and cell duration, it is
possible to overcome the problems of over-parameterisation
typically associated with attempts to model different cell
types explicitly (e.g. Cowpertwait, 1994).

The work is based on the Neyman-Scott and Bartlett-
Lewis point process models (Rodriguez-Iturbe ez al., 1987)
which are modified to allow raincells with stochastically
dependent duration and intensity (Kakou, 1997). It is
assumed that the cell duration, L, is exponentially
distributed with parameter 7, and that given L =/, the
conditional intensity, X, is exponentially distributed with
mean of the form

EX|L=1)=f I’ exp(—cl) (2)

where f; ¢ and d are positive constants. Depending on the
value of 4, this family of models covers a wide range of
possible forms of dependence. The special cases with d =0,
corresponding to a negatively correlated X and L,andd =1,
resulting in a positive correlation when 7 > ¢, have been
explored and the second order properties of the models have
been derived. These properties involve only the distribution
of X through E{XL} and E {X2L}, so the explicit distribu-
tional forms are unimportant once these moments are
known (Kakou, 1997).

MODEL FITTING

One of the biggest problems with the type of model
described above is the difficulty in estimating model
parameters. Standard statistical techniques such as Maxi-
mum Likelihood estimation are not available here, for the
complex dependencies in the models prohibit the formula-
tion of a likelihood function. Further problems are created
by the aggregation of the data, for the models themselves are
built in continuous space and time. Two approaches to
model fitting have been investigated. The first is a
generalised method of moments, where parameters are chosen
to minimise a weighted sum of squared differences between
suitably-chosen model properties and their corresponding
sample values; and the second is a spectral approach which
treats the sample Fourier coefficients as data and formulates
an approximate likelihood function in terms of these
coefficients.

Generalised method of moments

In the absence of any more sophisticated techniques for
parameter estimation, an intuitively reasonable procedure is
to try to obtain as close as possible a match to observed
features of the data. Denote the p-dimensional parameter
vector of the model by ® = (6,,...,0;), and pick a set of £
features y (i=1,...,k) of the data for which model
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expressions can be obtained. If the model expression
corresponding to y; is f{®) then take £ = p and try to solve
the set of simultaneous equations

yi=£0O) i=1,...,k (3)

for ©.

The model expressions involved will be highly non-linear
so that a unique solution to Eqn. 3 may not exist. A
generalisation of the approach is to minimise the sum of
squared differences between the {y;} and the {f(®)},
weighting each term appropriately to avoid bias due to the
differing orders of magnitudes of observed values of the
features involved. So a value for ® is found which
minimises the objective function

k
> m (i(©) - )’ (4)
i=1
where the {w;} are some suitably-chosen weights. There is
now the possibility of having £ > , i.e. including more than
p features in the minimisation.

The fitting features chosen should have relatively small
sampling errors, not be highly mutually correlated and
contain sufficient information that all the parameters of the

*model can be estimated reliably. Apart from these criteria,
the choice of fitting features is essentially subjective and the
estimates of certain parameters will, in general, depend
greatly upon the set of features used for fitting the model —a
parameter identification problem. Additionally, the par-
ameter estimates may depend upon the initial estimates
given to the numerical minimisation algorithm. Certain
parameters may also be highly correlated in the sense that
many different pairs of values of two parameters give very
similar values for the objective function. This corresponds
to the objective function being almost flat in some region of
the parameter space, so that convergence to the minimum is
difficult. Re-parameterisation of the fitting procedure using
more stable parameters may alleviate this problem. A
further feature of these models in general is that different
sets of parameters may yield similar sets of fitted values,
leading to multiple minima in the objective function.

Assessment of the fit of the model to the data is achieved
by comparing the predicted values of features not used in
the fitting procedure with those of the data. Simulation from
the fitted model can be used to assess how well the model
reproduces features for which it is not possible to obtain
model expressions.

Spectral method

The method of moments suffers from a number of
disadvantages. In particular, the choice of features to
incorporate into the fitting procedure is subjective, and
the parameter values obtained can be quite sensitive to the
features used in the fitting — hence model comparison can be
difficult. Moreover, the method makes inefficient use of
available data, as only a few summary statistics are used in



the fitting. In an attempt to overcome some of these
difficulties, a spectral method has been developed. This
method uses the sample Fourier coefficients rather than the
original data, and makes use of the fact that, for large
samples, small collections of the Fourier coefficients have a
joint distribution which is approximately multivariate
normal (Brillinger and Rosenblatt, 1967). This enables
approximate likelihood functions for the model parameters
to be written in terms of small subsets of the sample Fourier
coefficients. By combining all of these approximate likeli-
hood functions, an objective function is defined which can
be interpreted as a log quasi-likelihood (Chandler, 1997).
This then provides a basis for objective model comparison
procedures using standard statistical techniques such as
likelihood ratio tests (McCullagh and Nelder, 1989).

The method has been developed for use in fitting single-
site and spatial-temporal models. In both cases, the only
theoretical properties required from the model are the mean
and second-order spectral density of the process; the
required expressions (corresponding both to the underlying
model and to the aggregated domain of observation) have
been derived for wide classes of models in both cases. The
reliance on second-order properties is a potential disadvan-
tage in distinguishing between models whose main
difference is in their wet/dry interval properties. More
details may be found in Chandler (1996b, 1997).

MODELLING RESULTS

This section presents a selection of results obtained when
the models described in the previous section are fitted to
HYREX data. Lack of space precludes a more complete
enumeration of results, which may be found in Northrop
(1996), Kakou (1997) and Chandler (1996b, 1997).

Spatial-temporal model (GDSTM)

The results reported here were obtained by fitting the
GDSTM to a one hour sequence of 2 km resolution radar
images from the event of 6th February 1994, using the
method of moments to estimate parameters. The data used
in the fitting were of 2 x 2 km? spatial resolution, and their
quality appears reasonable—there are no indications from
the radar images of any of the problems commonly
encountered with radar data, and the mean radar/raingauge
ratio for each radar grid square covered by the HYREX
raingauge network is 0.68.

Table 1 shows the estimated parameters in the GDSTM
model. These are in broad agreement with the spatial and
temporal dimensions of rain cells and small mesoscale areas
identified in observational studies such as Austin and Houze
(1972). Table 2 shows the observed and model fitted values
for features used in fitting the model. These properties have
been chosen to enable the estimation of all the parameters of
the model, and a very close match has been obtained. In
addition to the properties used to fit the model, there is good
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Table 1. Parameter estimates for Gaussian Displacements
Spatial-Temporal Model fitted to event of 6/2/94.

Process property Fitted value

Storm arrival rate (km~2h™") 3.44x107*
Expected cell duration (min) 38.80
Expected cell intensity (mm h™') 0.537
Variance of cell intensity (mm h™') 0.288
Expected cell area (km?) 22.99
Cell/storm eccentricity 0.831
Cell/storm orientation (degrees) 94.35
Cell/storm velocity (x) (km h™!)  36.49
Cell/storm velocity (y) (km h™')  33.76

Expected number of cells per storm 648.6

Expected storm duration (h) 2.707
Expected storm area (kmz) 307.3
Variance of storm area (km?) 29.38

agreement between the observed and fitted spatial and
temporal autocorrelation functions (see Figs. 7a and 7b).
Goodness of fit can also be assessed in terms of the spatial
scaling properties of radar and model simulated data. One
feature which the model does not reproduce is the decrease
in spatial variability of accumulated storm depth reported
previously (Fig. 6).

Figure 8 is presented to provide a visual assessment of the
GDSTM. The figure shows three snapshots of radar data to
which the model was fitted, together with a corresponding
specimen realisation of the fitted model (the time labels for
the bottom sequence are from the start of simulation). The

Table 2. Fitted and observed values of fitting features for
Gaussian Displacements Spatial-Temporal Model fitted to
event of 6/2/94. Y® denotes mean rainfall over a
hx hkm?® pixel, and p(x,y,t) denotes the space-time
autocorrelation at spatial lag (2x,2y)km and time lag 5t
minutes.

Property Fitted Observed
Mean 1.781 1.781
Var(Y?) 3.649 3.649
Var(Y®) 2.588 2.586
Var(Y9) 1.925 1.926
£(0,0,2) 0.447 0.450
£(0,0,4) 0.214 0.216
p(2,2,1) 0.860 0.861
p(—2,-2,1) 0.423 0.414
p(—1,0,0) 0.825 0.829
p(—4,0,0) 0.447 0.452
p(—7,0,0) 0.249 0.247
p(—4,4,0) 0.421 0.407
0(0,8,0) 0.415 0.396
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Fig. 7. Event of 6/2/94: observed autocorrelations compared with
those fitted using GDSTM. Top: temporal autocorrelations. Bottom:
spatial autocorrelations.

apparent similarity between the interior structures of each
sequence is striking (the model is intended to provide a
description of the interior of a rainfall event which can be
regarded as statistically homogeneous; hence there is a lack
of ‘edges’ in the simulated sequence). An exact correspon-
dence is not expected owing to the stochastic nature of the
model: a visual comparison of the two sequences should be
made on the basis of whether or not they exhibit broadly
similar features.

The simpler EPPM has also been fitted to this data
sequence using the method of moments. The results are not
reported here; the fit was significantly poorer, in terms of
both the comparison of observed and fitted process
properties, and a visual assessment of the data. The
conclusion, from fits to this and other data sequences, is
that the spatial-temporal clustering of the GDSTM is
indeed necessary for the realistic modelling of rainfall fields,
even within a single weather system.

Multi-site model

The results of fitting the multi-site model described above
are now presented, again using the method of moments to
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estimate parameters. For illustrative purposes, results are
presented for the month of December 1994, using hourly
raingauge data from three sites which form a roughly
equilateral triangle of side about 10 km see Fig. 1; the sites
chosen are numbers 5, 29 and 42).

To model the rainfall at 3 sites, 13 parameters are used.
To fit the model, the mean direction of storm and cell
movement is first estimated from the observed cross-
correlations between the sites. To estimate the remaining
parameters, 18 features were selected for inclusion in the
objective function Eqn. 4, 4 marginal features from each site
and 2 cross-correlations between each pair. The estimated
model parameters are given in Table 3.

The fitted model estimates nearly all the marginal
statistics quite accurately, and fitted cross-correlations are
close to observed ones. Table 4 shows some of the statistical
properties of the data, and gives the corresponding values
for the fitted model (the features used in the fitting are
shown in bold type). From this table, it appears that the
main areas of discrepancy between model and data are as
follows:

1 There is a tendency for the model to underestimate the
proportion of wet intervals at a site, particularly for the 6-

+ hourly level of temporal aggregation. The discrepancy is
especially noticeable at site 29, which is in the North-East
of the Brue catchment — this may indicate a gauge location
effect which has not been captured by the model.

2 The model overestimates the probability that two sites are
simultaneously dry at large levels of temporal aggregation.
This is perhaps to be expected from the previous
comment. However, the problem is particularly noticeable
for sites 5 and 29 taken together, once more indicating a
geographical effect — these two sites are in opposite
quadrants of the Brue valley (see Fig. 1).

3 The model underestimates the lagl cross-correlation
between all three pairs of sites for hourly data; conversely,
there is a tendency to overestimate this feature at higher
levels of temporal aggregation.

Despite these discrepancies between data and model, these
results indicate that these models are capable of capturing
most of the observed features of rainfall at a few sites;
moreover, they are reasonably parsimonious in their
parameterisation thanks to the simplifying assumptions
regarding storm structure. There is clearly scope for further
development of these models, and the features for which
lack of fit is apparent from Table 4 may serve as pointers for
such development. Indeed, the problems with reproducing
proportions of wet intervals at a site were experienced by
Rodriguez-Iturbe et al. (1987) in their original single-site
model and resolved by randomising the cell duration
parameter in Rodriguez-Iturbe et al. (1988): perhaps the
multi-site models could be extended in a similar way.

Single-site models
Below are the results of fitting one of the dependent depth-
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Data sequence

621994 1305 6-2-1994

1320 6-2-1994 1335

Specimen realization simulated from GDSTM

015

04:30 0445

Fig. 8. (a) Actual and (b) simulated sequences for GDSTM fitted to event of 6/2/94.

duration models described previously to hourly data from
gauge 19 for December 1994, again using the method of
moments; this model is compared to the random parameter
Bartlett-Lewis model of Rodriguez-lturbe ef al. (1988). In

Table 3. Parameter estimates for multi-site model fitted to
hourly data from sites 5, 29 and 42, December 1994,

Parameter Estimate
Storm arrival rate 0.020 h !
Mean rain cell intensity 0.97mmh!
Mean temporal displacement of cells 437 h

from storm origin
Mean no. of rain cells per storm 14.9

Mean speed of storm/cell movement 84kmh !
Std. dev. speed of storm/cell movement 2.8 km h™!
Mean width of a rain cell 45.5 km
Mean distance of cell from storm axis 1.4km
Mean direction of storm/cell movement  202.5°
Concentration parameter of direction 0.37
distribution
Mean cell duration Site 5 34.6 min
Site 29  41.2 min
Site 42 49.9 min

the dependent depth-duration model, a Neyman-Scott
clustering structure was used and the value of 4 in the
intensity-duration relationship Eqn. 2 was taken to be 0.
This model has 5 parameters, whereas the random
parameter Bartlett-Lewis model has 6.

The estimated parameters for both of these models are
given in Table 5. In addition, an alternative parameter set
for the Bartlett-Lewis model, derived using the spectral
method, is presented. The fitting features used to obtain the
moment-based parameter estimates were the mean and lag1
correlation of hourly rainfall amounts, and the variance of
rainfall amounts and proportion of dry intervals at hourly
and daily levels of temporal aggregation. The difference
between the two sets of estimates for the random parameter
model is worrying; however, quite different sets of
parameters can result in similar performance, so these
parameter sets must be assessed in the light of their ability to
reproduce various features of the data.

Table 6 shows the observed values of various features of
the data, together with their model fitted values for the
various models and parameter values given in Table 5. First
of all, on comparing the moment-based fits of the two
different models, it is seen that both are generally in good
agreement with the data, with some minor discrepancies (for
example, the random parameter model overestimates the
correlations in hourly data at lags 2 and 3). At levels of
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Table 4. Observed properties of rainfall at sites 5, 29 and 42 for December 1994, with their model fitted values (in brackets).
Top: marginal properties at each site. Bottom: joint properties at each pair of sites. Features used in fitting are indicated in

bold type.

Property Aggregation level  Site 5 Site 29 Site 42
Mean 1 hour 0.133 (0.127) 0.165 (0.151) 0.176 (0.181)
Proportion of wet intervals 1 hour 0.164 (0.168) 0.202 (0.174) 0.165 (0.181)
6 hours 0.419 (0.308) 0.516 (0.310) 0.467 (0.400)
24 hours 0.742 (0.528) 0.835 (0.529) 0.874 (0.530)
Standard deviation 1 hour 0.465 (0.479) 0.533 (0.550) 0.653 (0.632)
6 hours 1.834 (1.928) 2.097 (2.282) 2.501 (2.711)
24 hours 4.745 (4.743) 5.537 (5.642) 6.999 (6.742)
Property Aggregation level  Sites 5 and 29 Sites 5 and 42 Sites 29 and 42
Probability that both sites are 1 hour 0.769 (0.787) 0.793 (0.754) 0.753 (0.728)
simultaneously dry
6 hours 0.419 (0.676) 0.500 (0.517) 0.411 (0.508)
24 hours 0.132 (0.471) 0.161 (0.199) 0.132 (0.196)
Lag 0 cross-correlation 1 hour 0.885 (0.811) 0.778 (0.772) 0.743 (0.721)
6 hours 0.952 (0.921) 0.957 (0.923) 0.902 (0.920)
24 hours 0.971 (0.985) 0.977 (0.955) 0.947 (0.954)
Lag 1 cross-correlation 1 hour 9.513 (0.336) 0.637 (0.561) 0.447 (0.358)
6 hours 0.193 (0.223) 0.259 (0.298) 0.261 (0.229)
24 hours 0.025 (0.065) 0.059 (0.083) 0.036 (0.066)
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Table 5. Parameter estimates for single-site models fitted to hourly data from gauge 19,
December 1994, Top: dependent depth-duration model, fitted using method of moments.
Bottom: random parameter Bartlett-Lewis model, fitted using both the method of moments

and the spectral method.

Dependent depth/Duration model

Parameter Estimate
Storm arrival rate 0.027 h™!
Mean number of cells per storm 83
Mean cell duration 54h
Mean temporal displacement of cells from storm origin 1.36 h
¢ 0.79
f 347

Random parameter model
Parameter Moment estimate Spectral estimate
Storm arrival rate 0.063 h™! 0.021 h™*
Mean number of cells per storm 20.65 9.04
Mean cell intensity 1.800 mm h™! 1.307 mm h™!
Mean of cell duration parameter 0.07 h™! 2.860 h™!
Std. Dev. of cell duration parameter 0.01h~" 1.728 h~!
Cell duration/spacing ratio 15.7 0.0045
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Table 6. Assessment of model fit for single-site models fitted to hourly raingauge data from gauge 19, for December 1994. H:
Historical values. M;: mode! with dependent duration and intensity as given in equation (2) with d = 0. M,™°™): random
parameter Bartlett-Lewis model, fitted using method of moments. M,®?*): random parameter Bartlett-Lewis model, fitted
using spectral method. Highlighted entries indicate features used in the moments fitting.

Level of Mean Prob. of Variance Correlation
aggregation no ramn Lag 1 Lag 2 Lag 3
1 hour H 0.153 0.824 0.263 0.524 0.279 0.188
M, 0.153 0.824 0.264 0.524 0.281 0.222
M,(mem 0.153 0.824 0.264 0.524 0.341 0.259
M, 629 0.153 0.722 0.256 0.509 0.236 0.142
6 hours H 0.916 0.556 4.271 0.274 0.186 0.021
' M, 0.918 0.501 4.207 0.393 0.202 0.110
M, o™ 0.918 0.600 4.400 0.369 0.162 0.100
M, 679 0.918 0.263 3.664 0.207 0.055 0.031
12 hours H 1.832 0.387 10.805 0.255 0.127 0.061
M, 1.836 0.369 11.721 0.325 0.094 0.028
M, o™ 1.836 0.412 12.045 0.290 0.107 0.063
M, (2 1.832 0.085 8.844 0.109 0.038 0.030
24 hours H 3.665 0.194 31.064 0.112 0.081 —0.025
M, 3.672 0.194 31.064 0.204 0.018 0.002
M, (™o 3.672 0.194 31.064 0.220 0.071 0.041
M, 629 3.665 0.011 20.242 0.109 0.038 0.030

aggregation which were not explicitly included in the fitting
procedure, the dependent depth-duration model under-
estimates the probability of no rain whereas the random
parameter model overestimates it; however, the magnitude
of the discrepancy is approximately the same for each
model. Hence, the dependent depth-duration model may
offer an alternative to the random-parameter model, whose
performance is roughly comparable.

Comparing the two different fits of the random parameter
model in Table 6, it is clear that the spectral parameter set

produces a much worse fit to these features of the data than
does the moments set (the exact fit to the mean of the data in
the spectral case was proved theoretically by Chandler
(19964) and is in fact used explicitly in the fitting procedure
to ease computation). The poor fit to the wet/dry properties
is to some extent expected, for the spectral method relies
upon means, variances and covariances only. However, the
evident lack of fit to the variances and covariances is
somewhat surprising. Although this is a rather more
extreme example than many encountered in fitting different

Table 7. Approximate log-likelihoods obtained using the spectral method to fit five different models to 15-minute data from
gauge 19, for the months of June and December 1994. The ‘best’ models are those with the highest log-likelihoods.

Model No. of Description Log-likelihood
parameters
June December
Poisson 3 No clustering of cells into storms 978.14 718.38
Bartlett-Lewis 5 Cells follow storm origin in a Poisson Process  986.05 739.25
Neyman-Scott 1 5 Symmetric scatter of cells about storm origin ~ 985.75 738.34
(Gaussian displacement)
Neyman-Scott 2 5 More cells at beginning of storm (Exponential  986.05 739.72
displacement)
Random parameter 6 As Bartlett-Lewis, but storms can occur at 986.13 740.52

Bartlett-Lewis

different timescales
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datasets, it would appear that in general this estimation
method is not suitable for providing parameters for
hydrological application (this comment regarding likeli-
hood-based methods for this sort of model has been made
by other authors such as Rodriguez-Iturbe et al. (1987)). In
the next section the uses of the method are discussed in
more detail.

Fitting using the spectral method

The spectral method has so far been used extensively in the
fitting of single-site models (Chandler, 1997), and some
preliminary work on the fitting of spatial-temporal models
has also been done. The main area of interest has been that
of model comparison, as it is here that the apparent
objectivity of the method is particularly useful. In the
single-site case, numerous different models have been fitted
to data from the HYREX raingauge network. Table 7 shows
the log-likelihoods obtained when the method was used to
fit 5 different models to 15-minute raingauge data from June
and December 1994. Rigorous procedures for model
comparison, such as likelihood ratio tests, are available
which allow for the different numbers of parameters in the
models. The clustering models fit the data better than does
the Poisson model and storms tend to be asymmetric with
more intense activity towards the beginning of a storm than
at the end. The same conclusions hold for all the data
analysed. These results are in line with those reported by
previous authors (e.g. Rodriguez-Iturbe et al., 1988).

Spatial-temporal model fitting using the spectral method
has so far been confined to two simple models: the EPPM
already described and a simpler model with circular cells.
Work has been restricted to an exploration of the parameter
space for a few individual rain events, including that of 6/2/
94 whose results were reported above for the GDSTM. The
main conclusions are that elliptical cells provide a better fit
to the data than circular cells, and that there is clustering in
the data which is not captured by the simple Poisson models
(Chandler, 1996b). This confirms the earlier results.

In general the spectral method suffers from being
computationally expensive. This is particularly true of its
application in a spatial-temporal context, where computa-
tion time is currently seriously restrictive. Recent theore-
tical developments (Chandler, 1996a) have, however,
allowed its speed to be increased substantially for the fitting
. of single-site models and, in principle, may be applied to the
spatial-temporal fitting problem in exactly the same way.
The method provides a useful complement to the method of
moments, particularly regarding model choice and com-
parison; and it makes more efficient use of available data,
which allows model fitting to proceed based on shorter runs
of data than does the moments method.

SUMMARY OF MODELLING WORK

The modelling work reported above makes a significant
596

contribution to ability to generate realistic rainfall scenarios
using a stochastic mechanism. In particular, the full spatial-
temporal models have extended the preliminary work of
Cox and Isham (1988) to the stage where the use of the
models for hydrological design, on an event-by-event basis,
is feasible. The availability of an extensive quantity of
continuous radar data in the HYREX database has been
invaluable in the development of the models, both in
guiding their construction and in calibrating them against
data. Continuing investigation of models for rainfall at a
single site indicates directions in which the spatial-temporal
models may be improved in the future.

Rainfall disaggregation

The models described in the previous section are ideally
suited for use in problems where design rainfall is required,;
the stochastic nature of the models allows an ensemble of
different realisations to be generated as input to models of
the surface hydrology.: A rather different problem arises in
linking the output of an atmospheric General Circulation
Model (GCM) to the behaviour of surface processes. GCMs
operate over grid squares, the size of which can be of the
order of 200300 km?. The atmospheric component of such
a model generates the mean rainfall intensity over each grid
square at each timestep. To use this GCM output for
hydrological applications, therefore, a disaggregation
scheme is required to represent the distribution of rainfall
at smaller spatial scales so as to provide a realistic input to
hydrological models of surface processes.

Currently, methods of disaggregating GCM output
assume that the coverage (that is, the proportion of a grid
square which is experiencing precipitation in a fixed time
interval) is a prespecified quantity depending only upon the
rainfall type, and that where it rains the point rainfall depth
is exponentially distributed (Warrilow ez al., 1986). Previous
analyses of coverage in the UK have shown that this does
not reflect the spatial structure of real radar fields (Onof and
Wheater, 1996a) and that the time-series of consecutive
coverages is highly correlated at short time-intervals and has
a long memory (Onof and Wheater, 1996b), a feature which
is not reproduced by the current scheme.

The next section presents analyses of the dependence of
coverage upon scale, using Wardon Hill radar data. Such
analyses are important to enable a more realistic choice of
the coverage in the existing disaggregation scheme.
Subsequently, a different approach to the disaggregation
problem is examined, which allows for the generation of
disaggregated fields by assuming that rainfall fields have a
Markovian spatial dependence structure. In what follows, a
single temporal snapshot of the spatial rainfall field is
referred to as an image.



Coverage vs. Window Size
(5km Wardon Hill radar data, Single snapshot)
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Fig. 9. Log-log. plot showing linear variation of coverage with window
size for single snapshot from Wardon Hill radar station, events of 17/
6/94 and 25/12/94.

EMPIRICAL ANALYSES

The estimated rainfall coverage obtained from any image

depends on two factors:

® the spatial resolution of the image, which is referred to
as the pixel size;

® the size of the area studied, referred to as the windd
size.

Variations of the coverage with these two factors are
investigated. In general, the coverage for a particular
window of data is estimated by the proportion of pixels
within that window which are wet; windows which are
completely dry are excluded from the calculations.

Dependence of the rainfall coverage on the window size

Since GCMs are being used for a variety of grid-square
sizes ranging from side lengths of a few hundred km to the
meso-scale, it is essential to know how the rainfall coverage
varies with the size of the grid-square over which it is
estimated. This can be achieved, for any window size
smaller than the range of a radar station, by defining a grid
of windows inside the radar range, estimating the coverage
over each window for which it is non-zero, and taking the
mean value over all these windows. The estimated coverage
is found to decrease with increasing window size, both for
instantaneous rainfall fields and for fields which are
temporally aggregated over a time-interval of a few days.
The relationship invariably appears linear on a log-log
scale — Fig. 9 is a typical example. This clear scaling pattern
is maintained for most window sizes all the way up to the
range of the radar; however, a deviation from this behaviour
occurs for small window sizes approaching the pixel size.
This is due to the constraint of unit coverage when the
window size is the same as the pixel size.

Dependence of the rainfall coverage upon pixel size

The coverage ¢ which is used in the GCM is not dependent

Spatial-ternporal rainfall fields: modeling and statistical aspects

upon resolution since it is simply a proportion of the area
which is wet; however, the coverage analysis above is based
on data at the resolution of the radar pixels. It is therefore
important to determine whether the coverages estimated
from radar pictures exhibit a strong dependence on the pixel
size.

Given radar data for either 2 x 2 or 5 x 5 km? pixel size,
the resolution can be degraded by aggregation of the pixels
so that a coarser-scale image can be obtained. In this
manner, the coverage for a range of resolutions can be
obtained (Fig. 10a). The variation of the rainfall coverage
with the resolution is considerable and for the smaller scales,
appears almost linear. The problem of how to provide an
estimate for ¢ on this basis remains open.

However, this analysis is not wholly appropriate for
determining the dependence of coverage upon pixel size.
The problem is that radar estimates the true rainfall field for
rainfall intensities above a certain threshold. When
aggregating as above, rainfall intensities smaller than the
given threshold will be obtained but have so far been
counted as representing rain. The best way to mimic the
mechanism of the radar and ensure a meaningful compari-

(a)
Coverage vs. Pixel Size
(2km Wardon Hill radar data, Single snapshot)
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Thresholded Coverage vs. Pixel Size
(2km Wardon Hill radar data, Single snapshot)
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Fig. 10. Variation of coverage with pixel size for Wardon Hill radar
station, events of 17/6/94 and 25/12/94. (a) raw data, (b) data
thresholded to mimic the behaviour of the radar station at coarser
spatial scales.
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Areal average rainfall vs. Coverage
From 941225 0000-0855

(Ln Ln plot)
(2km Wardon Hill radar data)
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Fig. 11. Log-log plot showing relationship between coverage and mean areal rainfall ata 2 x 2 km? pixel scale, Wardon Hill radar station, event of

25/12/94.

son over the full range of pixel scales is for all such
intensities to be set to zero.

With this new convention, the variation of the coverage
with pixel size becomes much less, particularly for small
scales (see Fig. 10b). This means that the ‘true’ coverage is
well estimated by the coverage for small pixel sizes (2 X 2 or
5 x 5 km?).

Inter-dependence of rasnfall coverage and mean areal rasnfall
intensity

The atmospheric component of the GCM provides one
value of mean areal intensity. An analysis of the radar data
shows that this value is not independent of the coverage
observed (Fig. 11). This dependence is probably best
represented in the form of a linear regression over the
logarithms of both quantities:

In(e;) =alnX, +5 (5)

“where ¢, and X, denote respectively the coverage and the
mean areal rainfall at time z. The squared multiple
correlation (R?) here is approximately 0.75. This relation-
ship provides the basis for an improved disaggregation
model which allows for temporal dependence by linking
coverage to the mean areal rainfall intensity, which itself
incorporates temporal dependence. Spatial memory, i.e. the
fact that if it rains at time-step 7 at point M, there may be an
increased probability of rain in the neighbourhood of M at
time ¢ + 1, is not addressed by this scheme. To deal with
this problem, another approach, in which fields of
disaggregated rainfall are generated, is considered.
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*MARKOV RANDOM FIELDS

An alternative approach to the disaggregation problem uses
statistical image reconstruction techniques. The problems of
image reconstruction and rainfall disaggregation share a
common feature: in both cases, the objective is to
reconstruct an unknown ‘image’ from imperfect data. In
the case of image restoration, the imperfection is due to
noise being added to the original image, whereas in the
disaggregation problem, the imperfection arises because the
data are available only as a very coarse-scale spatial average.
Whereas in image processing there is a predetermined
‘correct answer’ to the reconstruction problem (the correct
answer being the original image or ‘true scene’), this is not
necessarily the case in the rainfall disaggregation problem.
In fact, it may be advantageous to have several different
reconstructions of a rainfall field for design rainfall
purposes.

The underlying concept behind statistical image recon-
struction techniques is that of the Markov Random Field, in
which the probability distribution for rainfall at a site (‘site’
being taken here to mean a pixel at a particular spatial scale)
is specified conditionally on the pattern of rainfall in the
neighbourhood of that site. As a simple example, consider the
pattern of wet/dry pixels at a single time instant. An
intuitively appealing neighbourhood structure may be
obtained by defining two types of neighbours of site ¢; type
I neighbours are those immediately horizontally and
vertically adjacent, and zype 2 neighbours are those
immediately diagonally adjacent. Let X; be a random
variable taking the value 1 if site 5 is wet, 0 otherwise, and
denote by #,/¥ (k = 1,2) the number of type k neighbours of
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Fig. 12. Estimated parameter values for simple Markov Random Field
model of wet/dry rainfall pattern observed at Wardon Hill radar
station, event of 17/6/94. (a) shows variation with time, (b ) shows
variation over different pixel sizes.

site ¢ which are wet (for example, #,"” is the total number of
wet pixels lying immediately to the North, South, East or
West of pixel 7); then a Markov Random Field model may be
specified as

Pr{X; = 1| rest of scene} = exp [oz n Zz:(ﬁkn(k))] . (6)
=1

Pr{X; = 0| rest of scene}

The specification of the model in terms of the conditional
odds ratio is a consequence of the Hammersley-Clifford
Theorem. For a fuller discussion of the theory of Markov
Random Fields, see for example Besag (1974, 1986) and
" Isham (1981).

The parameters «, f; and B, in this model represent
respectively some measure of the overall proportion of wet
pixels, and measures of association in the vertical/horizontal
and diagonal directions. Parameter estimation is straightfor-
ward, using methods such as the conditional likelihood
approach suggested by Besag (1972). Figure 12 shows
estimated parameter values from the event of 17/6/94
shown in Fig. 2, using the model specified in Eqn. 6. The
variation of the parameter estimates with both time and
spatial scale is shown. The stability of the estimates is

Spatiaktemporal rainfall fields: modelling and statistical aspects

encouraging, and is typical of the several events which have
been analysed. In general, the estimates of ; and B> tend to
be negatively correlated (presumably because of collinearity
between 7,/ and 7% in the model at Eqgn. 6, and f, tends
to be lower in summer than in winter; moreover at coarser
spatial scales there is less dependence in the rainfall field
(indicated by larger values of « and smaller values of B1and
B2). All of these results are in line with what is expected — for
example, the smaller values of B; in summer reflect the
spottiness of summer rainfall relative to that in winter.

To apply this theory in a disaggregation context, an
analogue of the cascade algorithm (Jennison and Jubb, 1988)
can be used to reconstruct the rainfall field successively at
finer and finer spatial resolutions. This has proved to be
very successful at reconstructing the pattern of wet and dry
pixels: the approach, and some results, are described by
Onof et al. (1998) and in Chandler ez al. (2000). This work
will be extended in the future to include rainfall intensities
rather than just the wet/dry pattern.

Applications

The results presented above indicate the complexity of
spatial-temporal rainfall fields, but also point the way
forward to new developments in the treatment of rainfall for
hydrological applications.

The representation of rainfall in GCMs is clearly
important in terms of the performance of the surface
hydrology parameterisations and affects surface energy
exchange and runoff production. The feedback between
surface hydrology and climate is well established (Manabe,
1975); without rainfall disaggregation, runoff from major
river systems such as the Nile cannot be represented
(Abourgila, 1992) — a consequence of the highly nonlinear
response of surface processes to rainfall inputs. The analyses
of UK rainfall have pointed the way to simple improve-
ments in current GCM procedures, for example, preserving
temporal correlation of disaggregated fields (Onof and
Wheater, 1996b) which are likely to be implemented
shortly. However, problems of lack of spatial location of
sub-grid-scale rainfall and associated lack of spatial memory
in surface parameterisations remains a major difficulty. The
work on Markov Random Fields provides potentially the
basis of a method to overcome these difficulties.

More generally, the treatment of rainfall for hydrological
design is primitive, and has thus far taken little account of
the insights into spatial rainfall structure available from
radar data. For example, current flood design practice in the
UK (NERC, 1975) is based on uniform spatial distribution
and a symmetric, unimodal temporal distribution of rainfall
for small and medium-sized catchments (<500 km?). For
larger catchments, design guidance is unclear. The
importance of these approximations is currently the subject
of preliminary investigation, but one way forward could be
based on the application of spatial-temporal models as
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outlined above. This would require design to be cast in a
framework of stochastic analysis, either based on alternative.
realisations of a design event, or from generated long
sequences of continuous rainfall. A first step, considering
stochastic generation of storm interior temporal distribu-
tions is reported by Onof ez 4l (1996). Since that time,
spatial-temporal models have been developed to the point
where they are suitable for continuous simulation, by
incorporating a second level of clustering.
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