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Abstract

The classical one-dimensional advection-diffusion equation (ADE) gives an inadequate description of tracer cloud evolution in the
River Severn, U.K. A solute transport model incorporating the effects of tracer storage in dead zones is presented in which the
channel is conceived as being divided into two parallel regions. The bulk flow region occurs in the central part. Its longitudinal
dispersive properties are described by the ADE. Adjacent to this, an additional cross-sectional area is defined in which tracer can be
stored temporarily in regions of slowly moving water called dead zones. Exchange between the two regions follows a first order rate
equation. Applying the model to the River Severn shows that a dispersing cloud’s evolution occurs in two distinct stages with a rapid
transitional phase. Initially, shear-dispersion is dominant while the tracer particles mix fully over the bulk flow. Once this has
occurred, dead zone storage accounts well for the non-Fickian evolution of the cloud. After the transitional phase the dead zone
storage mechanism clearly dominates over shear-dispersion. Overall, the combined shear flow dispersion—dead zone model (D-
DZM) provides a much better, physically consistent description of the tracer cloud’s evolution than the simple classical ADE

approach can do alone.
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Introduction

This paper deals with the longitudinal dispersion of a
passive, conservative tracer as it is transported and diluted
by the flow in a natural river channel. Experimental data on
tracer cloud evolution over 14 km in the River Severn,
U.K., was introduced in a companion paper (Atkinson and
Davis, 2000). Here a detailed analysis is presented of these
data in terms of two dispersion processes—shear flow
dispersion within the main channel, and tracer storage,
retention and release from regions of static or slowly moving
water known as dead zones. The structure of the paper is as
follows. Firstly, it is shown that the classical approach to
longitudinal dispersion by advection combined with
turbulent shear, first developed by Taylor (1954), does
not provide an adequate description of the River Severn
data. The possible reasons for this failure are discussed and
the omission of dead zone processes is identified as a likely
cause before an analytical model is developed incorporating
both sets of processes. This is then applied to the River
Severn data; the inclusion of dead zone processes provides a
physically consistent description of the tracer cloud’s

evolution, which is greatly superior to the classical model.
By means of this analysis, different periods in the cloud’s
evolution can be identified; firstly, shear flow dispersion
dominates and later dead zone dispersion becomes pre-
dominant. This affords new insights into the longitudinal
dispersion process in natural channels.

Application of Taylor’s theory to the
River Severn data

TAYLOR’S SOLUTION OF THE ADVECTION-
DISPERSION EQUATION

Conventionally, the approach to the dispersion problem in
natural channels has been based upon Taylor’s (1921)
classical analysis of diffusion by continuous movements,
which was subsequently applied to the analysis of
continuous turbulent shear-dispersion in a uniform circular
pipe (Taylor, 1954). Provided sufficient time has elapsed
since mass injection, this theory leads to the one-dimen-
sional advection-dispersion equation (ADE) for cross-
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sectionally averaged concentration C and velocity U,

- ac ;9 _ Kazc )
o o oR M)
where K is the shear-dispersion coefficient.

Equation (1) is a limiting case that is applicable only after
the solute has been dispersing for a period of time in excess
of the Lagrangian time scale. This is the time required for
tracer particles to lose memory of their initial, position-
dependent velocity, or alternatively is the time scale over
which the Lagrangian streamwise velocity of an individual
tracer particle can be regarded as a stationary random
function with zero mean. It is also the time required for
tracer particles to sample fully the variation in advective
velocities over the flow field.

For an instantaneous injection extending over the cross-
section at ¥ =0, =0 a solution to the one-dimensional
ADE is given by:

M (-
24(nKi)'/? P 4Kt

Equation (2) states that the distributions of C when
sampled as a function of ¢ at some longitudinal distance &
will be asymmetrical about ¢ = x/U. This reflects the fact
that the parts of the cloud which pass x later have been
dispersing for a longer time than those which pass x first.
However, if the rate at which the tracer cloud is advected
past x is rapid compared to the rate of dispersion, then there
will be negligible evolution over the sampling period and
Eqn. (2) will be an approximately Gaussian function of ¢.
This is known as the frozen cloud approximation.

It has long been known that Taylor’s limiting theory,
Eqgn. (1), is an inadequate description of the mechanisms
present in natural channels (Elder, 1959; Fischer, 1967,
Nordin and Sabol, 1974; Day and Wood, 1976). Empirical
data show initial development of a pronounced skewness in
the trailing limb that is much greater than can be accounted
for by the frozen cloud approximation or by the continued
dispersion by shear flow as the cloud passes the sampling
point. The assumption that these skewed concentration
distributions will eventually converge to equations of the
form (2) is not supported by empirical observations in
natural channels.

This paper examines the origin of the systematic devia-
tions of empirical concentration distributions from Taylor’s
limiting theory and attributes them to the temporary reten-
tive effects of regions of tracer storage. These so called ‘dead
zone’ regions have been the subject of ongoing discussion
(Schnelle ez al., 1967; Hays and Krenkel, 1968; Patterson,
1968; Thackston and Schnelle, 1970; Valentine and Wood,
1977, 19793, b; Nordin and Troutman, 1980; Bencala and
Walters, 1983; Beer and Young, 1983; Legrand-Marcq and
Laudelout, 1985; Purnama, 1988a, b; Wallis ez al., 1989,
Denton, 1990) but surprisingly few of these studies have
discussed the nature and role of dead zones in natural
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channels, nor analysed their influence on empirical data
from tracer experiments in rivers.

APPLICATION OF THE ADVECTION-DISPERSION
EQUATION TO DATA FROM THE RIVER SEVERN

Atkinson and Davis (2000) give a detailed description of the
13775 m reach of the River Severn used for a tracer
experiment. The channel dimensions of width (i), average
depth (D) and cross-sectional area (A) showed considerable
variability from one cross-section to another, the cross-
sections being spaced ~100 m apart. On distance scales
greater than ~100 m, however, the variability was much
less, and the whole reach is statistically of uniform depth.
Statistically it is somewhat non-uniform with respect to
both width and cross-sectional area, as the downstream part
of the reach tends to be wider and have a larger area than the
upstream part. The difference is not great, however, This
variability is on the ~10 km scale and appears much smaller
than that on the ~100 m scale. Details are given by Atkinson
and Davis (2000). The overall mean cross-sectional area and
standard deviation is A4 = (12.06 & 3.76) m?, while D=
(0.53 £ 0.18) m and W =(23.8 & 6.6) m. Overall, the chan-
nel appears to be near enough to statistical uniformity for it
to be expected that an equation such as the one-dimensional
ADE (i.e. Eqn. (1)) would be applicable over distance scales
of ~1000 m or more. At these larger scales the irregularities
of the channel should be treatable as “noise”, so that the
classical approach of assuming a truly uniform channel is
appropriate. This point is important in the analysis which
follows, because an effectively uniform channel should
display statistically constant shear flow dispersion. There-
fore, it may be expected a priori that the shear-dispersion
coefficient K in Eqn. (1) will have a constant value over all
distances from the injection point. If fitting the ADE to
tracer data from such a near-uniform reach as that on the
River Severn gives values of K which change significantly
with distance, then the ADE itself does not provide a
complete description of the dispersion processes which
actually occur.

Chatwin (1971) proposed a method to provide informa-
tion on the deviations, or otherwise, of concentration-time
distributions from Eqn. (2) which is first linearized,

" 172 x Ut
[restr o] = (g —gm) @

where A* is introduced for M/2A(nK)"/%. If the concen-
tration distributions are symmetrical, then at ¥ = U, C =
C, = A',' giving A* = C,t)/” where C, is the peak
concentration and 7, is the time to the peak concentration. It
has been shown by Day (1975) that calculating A* in this
manner leads to only very small errors for asymmetrical
distributions. In addition, Chatwin (1971) states that only
those points near ¢ = /U are sensitive to the value of A*
used.



Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K.

400

\\ \\\

i\

-200 1

Chatwin parameter

-300-

-400

-600 1+

T LA S s e e e B o B
0 5000 15000 20000 25000 30000 35000

Time (s)

T T
10000

Fig. 1. Application of Chatwin’s (1971) analysis. The solid lines are
regression lines fitted to the leading edges of the tracer distributions.

The left hand side of Eqn. (3), called the Chatwin
parameter, is calculated and plotted against time. If the
graph is a straight line Eqn. (3) is an appropriate model, for
which the values of U and K can be determined from the
slope and intercept.

The results of applying Chatwin’s (1971) analysis are
shown in Fig. 1. The non-linearity exhibited by the data sets
for all stations show that none of the empirical tracer
distributions can be accounted for by Eqn. (2).

For times less than approximately x/ U, which represent
the leading parts of the tracer distributions, the plots are
linear and this part of each curve can be described by the
Gaussian equation,

2
C=Ar"exp {-— = Uty 4KU;J) :I “)

where the subscript in K, and U, indicates that these are
estimates based on Chatwin’s (1971) analysis. The fitted
values of K, and U, are shown in Table 1. In Fig. 2 the
velocities U, are plotted against the average velocity
upstream of each station given by Atkinson and Davis
(2000, Table 2). The shear-dispersion coefficients K, are
plotted against distance in Fig. 3.

Table 1. Values of K, and U, from Chatwin’s (1971) analysis
applied to the River Severn.

1.0
Y
] S
: 4 Q@"’
0.9 & » %
e ] g v
PR & A
B _ &0
= &
g "IT 08': 0\0
g g j 60 By Mh;lng complete
@ oo
3 Y g
s D¢ eC
o 4 «©
- E T \sbo';
>2 06] &
) E ] Eeeg °D © S
o = . W o
oL 1 F » o.b
2 A R
S L b"oe‘\
o 0.59 N
0.4 Trrjrtryrryrrrryrrryryryrrerr T
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average discharge velocity (ms-1) from measurements

Fig. 2. Upstream average current-metered discharge velocity u, versus
Chatwin-fitted velocity of the leading edge of the tracer distribution,
U,. The solid line represents u, = U,, and the arrowed box shows the
movement of the tracer cloud’s velocity across the line, which indicates
the Lagrangian timescale.

Even if the non-Gaussian nature of the trailing edges is
ignored, the downstream increase in K, shown in Fig. 3
implies that the tracer cloud does not evolve according to
Eqn. (2). Thus, Taylor’s limiting theory fails the a priori test
of constancy of dispersion parameters in a statistically
almost uniform channel. This suggests that it will also prove
inadequate to describe the statistical properties of the
evolving cloud.

THE ADVECTION-DISPERSION EQUATION AND THE
STATISTICAL PROPERTIES OF THE EVOLVING
CLOUD

Figure 43 shows the peak concentrations of the empirical
data as a function of downstream distance. Equation (2)

Table 2. Optimal solutions (o,) of the D-DZM with

corresponding values of F(a,) for the River Severn.
. 4

Station K (m*™") Ufms™) Station K, (m*s™ ") %, 7,(6)  FK, Yo To)
A 1.26 0.71 A 2.461 4044 2920 0.0061
B 1.42 0.76 B 3.358 2713 4197  0.0187
C 7.88 0.69 C 7.164 3.118 5077  0.0008
D 14.07 0.59 D 2.387 2.144 1260  0.0059
E 12.72 0.58 E 0.053 2111 4797  0.0612
F 16.10 0.57 F 0.079 2098 2973  0.0422
G 27.78 0.58 G 0.105 2166 3046  0.0272
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Fig. 3. Shear-dispersion coefficients obtained from Chatwin’s (1971)
analysis, K, versus longitudinal distance.

A
104 2 sl L1 o1 asd . L ad
3
= B L
3103-5 3
c p =
] ] C
g [
§ 100+ { .
g10§ .0.0’ D §
8 3 ’o,.&’ E E -
= ] Q"."'),,\NG N
& 8o
10'3 3
100 T T T TTTT] T |||-n]‘ L 1111115
2 102 10 10
10 l")Time to peak (s)
B
108 i bttt 1 gl L [T | g

- -
3 3
l" i umur Lyl

-
o

Temporal variance (s 2)
-
o
-
paansal Loy acoin

103 T 1 LA | Bl 1 VAT L ) LR EL I |
102 102 104 108
Time to centroid (s)

Fig. 4. (a) Peak concentration versus time-to-peak (closed circles)
together with the peak concentration decay rate predicted by Eqn. (2)
(upper line). Lower line is a regression through stations B to G. (b)
Temporal variance, G2 of the cloud (closed circles) against time to cloud
centroid, with regression line through stations C to G (upper line).
Lower line shows expected evolution of the cloud with K = 7.88 m?s!
(t.e. value for station C) according to Eqn. (2).
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predicts that C, will decay at a rate proportional to F12je.

with the gradient shown by the straight line. The rate of
decay of the empirical peak concentrations is seen to be
continually greater than 7~'/? and at no time approaches it.
Consequently, Eqn. (2) is increasingly inaccurate in
predicting C, for stations further downstream, unless the
value of K is continually increased so as to force the ADE to
mimic the data, as has been done in deriving the values of K,
in Fig. 3.

Figure 4b shows the temporal variances of of the tracer
distributions given by

) ff"oo(t—i)ZCdt
g, =

AT (5)

where 7 is the time to the centroid of the concentration
distribution. After a sufficiently long time period has
elapsed for Eqn. (2) to become applicable, Taylor’s limiting
theory predicts that a’ﬁ = 2Kt. By making use of the frozen
cloud approximation, the spatial variance o2 can be

X
converted to a temporal variance via 62 = 62/ U?. Predic-

2=
tions based on Eqn. (2) will therefore give rise to o’f
increasing linearly with time, i.e. with a gradient of unity on
logarithmic axes.

The upper sloping line shown in Fig. 4b is a regression
through the af values of the data from station C through to
station G. It has a correlation coefficient of 0.96 and a
gradient of 0.95. Thus, the values of ¢ increase at a rate that
is very nearly linear with time, just as Eqn. (2) predicts. This
means that the temporal variance of the tracer cloud from
station C downstream evolves at a constant rate in
accordance with the Taylor theory. However, the value of
K required is 65 assuming a value of U, of 0.58 m.s!
[Stations D-G, Table 1]. This is a much greater dispersion
coefficient than any of those in Table 1 and Fig.3. Linearity
in variance with time is a necessary but not a sufficient
criterion for Eqn. (2) to be a valid description of the evolving
cloud.

Later in this paper, it is shown that the Lagrangian
timescale was passed when the peak and leading edge of the
cloud lay between stations B and C. Thus, station C is the
first at which the conditions assumed in Taylor’s limiting
solution of the ADE can be expected to apply. The value of
K, at station C is 7.88 m%~". The lower sloping line on
Fig. 4b indicates the expected evolution of the cloud
according to the ADE if K were constant at this value. It is
clear that this line cannot, even to a first approximation,
account for the values of o7 at station C or any other
downstream station. This shows that the true dispersive
processes affecting the cloud are much more effective than
suggested by the values of K, which are derived from only
the leading edges and peaks of the tracer distributions. In
their entirety, the tracer curves have a much greater
temporal variance associated with the non-Gaussian,
asymmetrical trailing limbs that were not taken into account
in deriving K.
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Another feature of the ADE model when fitted by the
Chatwin (1971) method is that it does not preserve mass
balance. There are various ways in which this shortcoming
can be expressed. If the Chatwin-derived values for 4* and
K, are used, then their ratio can be used to calculate an
implied mass injected which is invariably smaller than the
true mass. This, of course, reflects the operation of an
unaccounted process which transfers mass from the main
part of the cloud into a growing tail. If, on the other hand,
one adopts the value of K = 65 m’s™! required to describe
the evolution of the temporal variance, the mass of dye is
overestimated at all stations except F and G.

Possible explanation for non-
Gaussian behaviour

Systematic inconsistencies and discrepancies between the
one-dimensional ADE and actual cloud evolution are well
known in empirical data and have been reported by Fischer
(1967), Godfrey and Frederick (1970), Nordin and Sabol
(1974), and Nordin and Troutman (1980), but not always
comprehensively explored.

Taylor (1954) confirmed his theory for turbulent flow by
experiments in a smooth-walled uniform pipe with sampling
at times which he judged to be sufficiently long for Eqn. (2)
to apply. However, at low Reynolds numbers he observed
similar deviations from his theory to those described above.
These he attributed to the development of a significant
laminar sublayer which is not considered in his theory.
Taylor’s limiting theory has successfully been extended to
uniform smooth- and rough-walled laboratory flumes, a
natural stepping-stone in the progression to river flows
(Fischer, 1966; Sayre and Chang, 1968; Valentine and
Wood, 1979a). Here however, the effects of the sublayer
become important, increasing the time required for the
theory to become applicable and the apparent value of the
shear-dispersion coefficient.

Sullivan (1971) describes the dispersion process in a
uniform shear flow in terms of three stages. The first stage is
not important here as it relates to the time period before
cross-sectional mixing has been established. The second
stage begins when tracer particles have become well mixed
over the bulk flow region but before a significant flux of
particles into the viscous sublayer has occurred. In this
stage, tracer particles enter the sub-layer for the first time
and are retained there before being released by diffusion
back into the main flow. Cross-sectionally averaged
concentrations for particles outside the viscous sublayer
are Gaussian and described by the value of the shear-
dispersion coefficient determined by conditions in the main
flow. Complete cross-sectional average profiles (including
the sublayer) exhibit tailing. The second stage evolves very
slowly into a third stage (Chatwin, 1973; Dewey and
Sullivan, 1977) which is reached when the tracer particles
have had time to sample the entire flow field, including the

viscous sublayer. Sullivan (1971) suggests that this is the
time period when Taylor’s limiting theory is a sufficient
description of the dispersion process.

In an explanation of the non-Gaussian behaviour of
empirical data from natural channels, many authors hold the
view that the retention of tracer in low velocity regions
(caused for example by irregularities in cross-sectional
geometry, embayments in the banks, or the porosity of
coarse gravels on the bed) are analogous to the sublayer in
uniform laboratory flumes. It is concluded by such authors
that the reason Eqns. (1) and (2) appear inadequate is
because the tracer has not been dispersing for a sufficiently
long time period. It is implicit in this view that eventually
the concentration distributions will be described adequately
by Eqn. (1) when a stage analogous to the third stage
described by Sullivan (1971) is reached.

The main failing of this explanation is that no data from
natural channels has shown a reduction in skewness that
might be associated with the trend towards fitting Eqn. (2).
The same is not true, however, for the longitudinal
dispersion process in laboratory flumes, even with idealised
dead zones. For natural channels deviations in the empirical
data from Eqn. (2) become greater at increasing times
(distances) from the point of mass injection.

The reason for the inadequacy of Taylor’s limiting theory
therefore lies in the variation in tracer concentration over
the cross-section. Visual observation of the longitudinal
dispersion process in natural channels provides information
on this e.g. the descriptions and photographs in Fischer
(1967, 1968) and Rutherford ez al. (1980). These publica-
tions show that, for times greater than the time to the peak
concentration, the tracer particles are concentrated near the
boundaries of the channel. The tails of the concentration
distributions decay more slowly than Gaussian distributions
as a result of the temporary entrapment of tracer particles in
regions of dead zone storage. This evidence suggests that
the reason for the inadequacy of Eqn. (2) is associated with
the retentive properties of boundary regions. It is proposed
here that Egn. (2) is applicable (after a sufficiently long time)
to describe the shear-dispersive properties of the bulk flow
regime, and that the non-Gaussian behaviour arises as a
consequence of the dead zone storage mechanism. Previous
studies have shown that the dispersive properties of dead
zones can vastly increase the dispersion and skewness in
models (Aris, 1959; Thackston and Schnelle, 1970;
Valentine and Wood, 1979a, b; Purnama, 1988a, b; Denton,
1990).

In the River Severn data, the discharge velocity #, is a
property of the bulk flow regime. Dead zones were not
included in the measured cross-sections which were chosen
for their regularity and lack of backwaters. Thus, the
current-metered values of discharge and velocity do not take
into account the very low longitudinal velocities adjacent to
the channel boundaries. Prior to the time period when the
tracer particles have had time to sample all the advective
velocities over the bulk flow regime, U, will be greater than
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u, as the cloud will be concentrated in the faster-moving
parts of the main flow. A distance scale for cross-sectional
mixing over the bulk flow regime can be determined from
the comparison of U, and %, in Fig. 2. When U, =%, the
ensemble of tracer particles in the leading edge of the cloud
has an average velocity equal to the discharge velocity. This
occurs only when tracer particles have sampled all the
advective velocities over the bulk flow regime.

In the dispersion model to be presented, the Lagrangian
time scale is defined in terms of cross-sectional mixing over
the bulk flow regime and not the entire flow field. Figure 2
shows that the longitudinal distance required for U,/ to be
unity occurs between 1175m (station B) and 2875m
(station C). This estimate of the Lagrangian scale suggests
that for stations C through G the tracer will have sampled all
parts of the bulk flow regime and that Eqns. (1) and (2)
should apply. The facts that Eqn. (2) does not in fact
describe the evolution of the cloud and that U, <%,
downstream of station C confirm the previous conclusion
that an important storage mechanism has been neglected.
Dead zone storage can account for the entrapment and
subsequent slow release of tracer particles stored in local
areas of the channel boundary that are partially isolated from
the bulk flow, and are assumed to have little or no net
longitudinal advective velocity.

It can be seen in Fig. 2 that the velocity of the quasi-
Gaussian leading edge of the cloud becomes progressively
less than the discharge velocity, eventually settling to
around 88% of its value in stations E, F and G. This may be
explained by the retention of tracer particles from both the
leading edges and trailing parts of the tracer cloud, when
sufficient time has elapsed for most particles in the cloud to
have passed through the dead zone storage mechanism at
least once.

The shear flow dispersion-dead zone
model (D-DZM)

For channelled flows Hays (1966) and Hays and Krenkel
(1968) were the first to consider two-zone models where
non-Gaussian behaviour arises from the retentive effects of
dead zones. Subsequently, other authors have taken this
approach (Thackston and Schnelle, 1970; Valentine and
Wood, 1977; Nordin and Troutman, 1980; Bencala and
Walters, 1983; Legrand-Marcq and Laudelout, 1985;
Purnama, 1988a, b; Denton, 1990). Appendix B indicates
related mathematical work in other fields.

MODEL DEVELOPMENT

This section develops a model incorporating both the
classical shear flow dispersion of Eqn. (1) and the dead zone
mechanism discussed above. It is, therefore, termed the
Dispersion—Dead Zone Model (D-DZM). The channel is
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separated into two parallel regions, one with bulk flow in
which the cross-sectionally averaged concentration is C, the
other being the dead zone storage region with uniform
concentration (at a single position, ¥) of C, After an
appropriate time to allow cross-sectional mixing following
injection, it is assumed that Eqn. (1) will describe the
longitudinal transport and dispersion of tracer in the well
mixed bulk flow region. The quasi-Gaussian leading edges
of the tracer curves in Fig. 1 support the view that shear-
dispersion does indeed play a role. Adjacent to the core part
of the channel a dead zone area is defined with an effective
cross-sectional area A,. Transfer of tracer between the dead
zone and the bulk flow is described by a first-order mass
transfer. The actual physical mechanism involved may
depend on the type of dead zone, e.g. advection into
backwaters by means of occasional random eddies; diffusion
either by molecular motion or by frequent small scale
eddying at the entrance to dead zones; molecular diffusion
into the pore space of a granular bed; entrapment of tracer in
permanent eddies behind obstructions and so on. It is
assumed in the D-DZM that a single type of dead zone
predominates, that the tracer within it is well mixed, and
that dead—zone effects can be characterised by a single
transfer velocity coefficient. One might object that this is
excessively crude by comparison with physical reality, but it
leads to simplicity of mathematical formulation and
tractability, which a more complicated model might not do.
By applying the principle of mass conservation to an
incremental volume the following coupled partial differ-
ential equations can be derived. For the bulk flow region,
~ 2
oc, ,0C_ @C_ 106 o
Ot Ox Ox? 1% O
The first three terms are identical to Eqn. (1), while the
RHS represents the dead zone source/sink term. For the
dead zones,

aC,

=~ (C-C 7
2=Lc-c) @
¥ = (A/A)"? is a relative measure of the effective area of
the dead zone region and 7 is the characteristic time scale for
the exchange of tracer particles between the bulk flow and
the dead zones.

Making use of the following initial and boundary
conditions,

Cy(x,0) =0 8)

C(x,0) = %5(;;) ' 9)
UA/0 C(x,0)dr =M for all » (10)

Asx — 00, C—0 (11)

where d(x) is the Dirac delta function, the following solution
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can be obtained for C(x;¢) via the Laplace transform method
_ shown in Appendix A. k ~

M 2= U 0 2
Clx, 1) = T [_( . N
g M (.X'— UV)2 2/ X /
.| ———5exp|—————|t V.27V
/0 2A(7rKv)1/2 [ 4Kv
v \2 o [2x 1/2 1/2
. (m) ..[1 |:T v .(t - V) .adv (12)

where v is the variable of integration and 7; is a modified
Bessel function of the first kind and first order.

The two terms of Eqn. (12) show that the tracer cloud
will comprise a part obeying the simple mechanism of shear-
dispersion in the bulk flow regime, described by the first
term, and a part which has been affected by storage in dead
zones described by the second term. As time proceeds, the
exponential coefficient of the first term becomes progres-
sively smaller, approaching zero as ¢ — co. This describes
the declining importance of simple shear-dispersion effects
as a larger and larger proportion of the particles in the tracer
cloud have passed through a dead zone at least once. On the
- other hand, tracer which has already passed into a dead zone
and then returned to the main channel will be subject to the
shear-dispersion mechanism again, until it re-enters a dead
zone for a further time. The first two terms after the integral
sign in Eqn. (12) describe this process. They are identical to
the right hand side of Eqn. (2) which is the asymptotic
solution proposed by Taylor (1954) for the simple shear-
dispersion process acting alone. Their reappearance in the
context of the second, dead zone term of Eqn. (12) indicates
the interaction of the processes in the two zones of the
model channel.

If 7 is infinitely large, then tracer particles will be
infinitely slow in entering dead zones. In this case the last
term of Eqn. (6) will be zero, dC,/ Ot will be zero in Eqn. (7)
and Eqn. (12) will become the same as Eqn. (2). In other
words, the one-dimensional ADE is a special case of the D-
DZM in which tracer exchange with the dead zones takes
place at a negligible rate. ‘

The storage and release of tracer in dead zones is a
powerful dispersing mechanism in itself. As a simple
illustrative example, consider the case of a well mixed dead
zone with an initial finite concentration at =0, ie.
Cyx,0) = Cy. If there is an input of fresh water and an
equivalent volume output to the bulk flow regime, then a
trivial solution to Eqn. (7), which describes both the
concentration within the dead zone and the output from it at
time ¢, is given by,

Cy(t) = Coe *'/" (13)

This exponential decay, which appears in front of the
integral of the second term of Eqn. (12), expresses the

effects of progressive dilution in the dead zone as tracer
particles are released to the bulk flow after storage.

CALIBRATION

Calibration of the D-DZM involves identifying values of the
unknown parameters K, y and 7 such that the best fit is
obtained between Eqn. (12) and a particular set of field data.
This was achieved by minimizing the least squares
estimator,

n _ i 2
F(a) — Zi: l(zcgli:l ((::é(a);)

in which e is the parameter set [K, y, 7], Cris the measured
concentration, C(e) is the predicted cross-sectional average
concentration from the model and s = 1, # corresponds to #
sampling times at a sampling station at x. The minimum was
found using a deterministic gradient-searching algorithm
developed by the Numerical Algorithms Group (NAG
Library, 1990) and varying the values of K, y and 7. The
D-DZM also includes the parameters U, A and M, but
these were treated as known constants with appropriate
values from Atkinson and Davis (2000).

(14)

SENSITIVITY ANALYSIS

The optimization procedure tells us little about the internal
form or structure of F(a). It is useful to know something of
its sensitivity to changes in the parameters in the neighbour-
hood of an optimal solution e,. The essential point is that
redundant parameters show low sensitivity, i.e. their values
can be changed considerably without significant deteriora-
tion in the fit of the model to the data (Beck, 1987). Since in
the D-DZM each parameter is associated with just one
physical process, sensitivity analysis should allow us to
discriminate the relative importance of dead zones and shear
flow dispersion. To gain insight into the nature of F(a)
specific isovalue contours of F(a) about oy were examined
using two separate criteria; firstly, the isovalue contour
Fa)=1.1 F(e,), which provides the ranges in the
parameters for solutions which fall within a 10% relaxation
of F(e,) and secondly, the isovalue contour F(a)= 0.09,
which was chosen as a subjective limit to the solutions of the
D-DZM with an acceptable fit on a purely visual basis.
The optimal solutions of the D-DZM presented below
reflect differing' degrees of ‘goodness of fit’ so that both
sensitivity criteria contain an element dependent on the
value of F(a,) for that station. Since the effect of ‘goodness
of fit’ acts proportionally and inverse-proportionally on the
apparent sensitivities for F{a) = 1.1 F(e,) and F(et) = 0.09
respectively, a geometric mean of the ranges in the
parameters for the two criteria was calculated. This achieves
a crude cancellation of the effect of differing values of F(a,)
upon the apparent sensitivities. The combined sensitivity
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index therefore shows the range within which each
parameter can be changed without producing a noticeable
degradation of the fit of Eqn. (12) to the shape of the tracer
cloud as recorded at each station.

Application of the D-DZM to the
River Severn

The optimal fits for parameters K, y and 7 for each station
are given in Table 2 and compared with the data in Fig. 5.
Clearly, with a reach-by-reach variation in the model
parameters, the D-DZM can describe individual tracer

curves quite well. The values of F(a,) are low and the
solutions are visually acceptable at most stations.

It is comparatively easy for a dispersion model to describe
individual tracer distributions. A much more important test
for the D-DZM is that any successful model should be able
to describe the evolution of the dispersing cloud with
physically realistic downstream trends in the parameters.
For a channel with nearly uniform flow properties or
statistically nearly uniform geometry, “physically realistic”
is likely to mean no trend at all, i.e. constant or nearly
constant parameter values. Clearly the dispersion coefficient
K depends upon the transverse velocity distribution over
the bulk flow. If this has no downstream trend, as it should
not in a channel with no downstream trend in velocity and
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only a very weak trend in width, then only very weak trends
in K may be expected. In the general case, x and 7 probably
depend on the channel shape and the geometry of the dead
zones, so they could be functions of longitudinal distance. In
the case of the River Severn, however, the irregularity of the
channel, as expressed by the variance of its dimensions,
shows little downstream trend. So it is reasonable to expect
¥ to be nearly constant along the whole test reach. The
timescale parameter T depends on both the dead zone
geometry and on the speed of exchange between dead zones
and the bulk flow. Once again, there is little reason to expect
a systematic change in parameters along the reach, although
this expectation is somewhat less certain than for y and K.

In the D-DZM the whole reach length from x =0 is
treated as a single dead zone element. Because of this,
parameter values established by best-fit at a particular
station include the effects of the whole channel upstream.
Therefore, two criteria must be satisfied if the model is to be
regarded as providing a satisfactory description of the
cloud’s evolution. Firstly, the fitted values should display
little or no overall downstream trend, in accordance with the
expectations derived from near-constancy of velocity and
geometry. Secondly, the sensitivity ranges of parameters
should overlap (or since sensitivity range is defined partly
subjectively, they should almost overlap). This implies that
a set o consisting of a single value for each parameter could
be chosen which would give a satisfactory simulation of the
data at all stations, thus describing the whole observed
evolution of the cloud.

CONSTANT PARAMETER PREDICTION

The results of the sensitivity analysis for K, y and t are
shown in Figs. 6a, 6b, 6c¢ respectively. The figures show the
geometric mean of the ranges in the sensitivity of the
parameters and also the optimal solutions from Table 2.

Stations A, B and C show a significant trend in the
longitudinal shear-dispersion coefficient K (Fig. 6a). This is
to be expected as it has already been shown that mixing over
the bulk flow region becomes established by the time station
C is reached. To assess the predictive ability of the D-DZM,
the values of K at stations A and B are therefore ignored.
There is a good physical argument for setting the shear-
dispersion coefficient for the whole reach to a constant value
given by K for station C. Because mixing over the bulk flow
regime has been established in the reach between B and C,
K at station C defines shear-dispersion over the whole of the
bulk flow regime. Any tracer particles that have already
migrated into dead zone regions upstream of C are
accounted for by the dead zone storage term and not in
the best-fit value of K. (This is not the case for the value of
K, at station C (Table 1), which implicitly incorporates the
diluting effect of tracer storage, and is 10% larger than K
derived from fitting the D-DZM as a result).

By the criteria given above for a successful model,
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Fig. 6. (a)Geometric mean of sensitivity of F(ot,) to K about optimal
solutions of the D-DZM (vertical lines) versus longitudinal distance.
The optimal solutions of K are shown as closed dots. (b) Geometric
mean of sensitivity of F(at,) to ) abour optimal solutions of the D-
DZM (vertical lines) versus longitudinal distance. The optimal solu-
tions of y are shown as closed dots. (¢c) Geometric mean of sensitivity of
F(a,) to T about optimal solutions of the D-DZM (vertical lines)
versus longitudinal distance. The optimal solutions of © are shown as
closed dots.

stations D, E, F and G should possess the same value of K as
station C. The best-fit values are in fact very different from
the value at station C, but the marked insensitivity to K
shown by the vertical bars for each point in Fig. 6a indicates
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that similarly good fits could be obtained for large ranges in
K which overlap the value at C. Thus, although there is a
downstream trend of reducing best-fit values of K this
cannot be regarded as significant, since the value from the
initial station in the trend, C, would give almost as good a
result as the optimum fits. In the case of K| therefore, the D-
DZM satisfies the second criterion of success in describing
the evolution of the tracer cloud, but not the first. To the
extent that the second criterion subsumes the first (i.e. the
trend is not “significant” in sensitivity terms), the fitted
values of K in the D-DZM may be regarded as satisfying the
expectations of constancy posited on the basis of near-
constant velocity and channel geometry. The only significant
trend in fitted values of K is in the first three stations, and
this is readily explainable in terms of mixing during the pre-
Lagrangian period established from Fig. 2.

Figure 6b shows the optimal solutions and the range in
sensitivities for y. There is a certain amount of scatter
among the early stations, but this can be explained partly by
insensitivity to changes in the value of y. The average value
of y for the last four stations (D through G) lies within the
sensitivity ranges of stations A and B. Stations D through G
are particularly well-behaved with regard to y, which is
clearly constant over this part of the study reach. Thus, in
the downstream part of the reach, the D-DZM clearly meets
both the criteria for success in describing the cloud’s
evolution. However, the tendency towards higher values of
¥ in the upstream part requires explanation. The data show
that over the pre-Lagrangian time period the values of x are
higher than further downstream. Thus, the ratio A/A; is
larger and the dead zones appear to have a smaller effective
size in the upstream part. This might be expected if mixing
in the bulk flow regime were incomplete. A greater-than-
average proportion of the tracer would be concentrated near
the centre of the channel from which dead zones in the
banks would be inaccessible. The D-DZM, on the other
hand, is based on an assumption of complete mixing which
applies only in the post-Lagrangian period. This provides a
physical explanation for the higher values of y and the
apparently smaller dead zones at the first three stations. It
also explains why the sensitivity range of y decreases from A
to C. At A and B, little of the tracer will have passed through
a dead zone, so that the solution is not sensitive to y. By the
time the cloud reaches station C, a significant proportion of
tracer particles have passed through a dead zone, and so the
sensitivity to this parameter is enhanced.

For predictive purposes a constant value of y can be
chosen by 217:1 Xo®i/ Z}:l w; = 2.26, where w is the
inverse of the range of the geometric mean in Fig: 6b. On
this basis, the effective cross-sectional area of the dead zone
storage region A, is approximately 2 m? which from general
field observations seems a realistic value for backwaters
created by the pool-riffle sequence, bank irregularities, and
slack water in the cores of meanders.

The optimal solutions of T (Fig. 6c) show no significant
trend downstream. However they do show a larger degree of
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scatter, relative to sensitivity ranges, than either y or K. A
value of 7=4000 seconds gives a near-overlap to the
sensitivity ranges of all stations except D. The “error-
weighted” mean value of 7 is 2220 seconds, calculated as for
x above. The parameter 7T governs the ratio of the first and
second terms of Eqn. (12) according to the exponent "' in
the first term and is a characteristic time scale for the
exchange of tracer particles between the bulk flow regime
and dead zone storage region. At ¢ =1, 63% of the tracer
particles have passed through the dead zone storage
mechanism at least once. For =27t and t=37 the
proportions are 87% and 95% respectively. Values of 1
within the range 1200 to 5100 seconds demonstrate that the
exchange of tracer with the dead zone system takes place on
a timescale of twenty minutes or more in the River Severn.
This is much longer than the lifetime of individual turbulent
eddies. The time-scale for shear flow dispersion within the
channel can be estimated from L?/K where L is a
characteristic channel dimension (e.g. L~ average width
~24m, or L*~ average cross-sectional area ~12 m?). With
K ~7m? " this timescale lies in the range 2-80 s, which is
one to three orders of magnitude smaller than 7. Therefore,
a slower mechanism than simple eddy diffusion must
transport tracer into and out of dead zones. One group of
probable candidates are occasional larger-than-average
eddies which enter the mouths of backwaters and embay-
ments in the bank, or swirl into the slower moving parts of
pools. From observation, these eddies occur every few
minutes and are capable of a temporary but vigorous
displacement of slow-moving or static water. This com-
parison militates in favour of identifying the D-DZM’s dead
zones with backwaters and embayments which are an
ubiquitous feature of the River Severn’s channel. It does not
preclude other possibilities, however, such as molecular
diffusion into the pores between the gravel particles on the
bed. But an effective dead zone area of ~2 m* would require
physical penetration of tracer for some 0.3-0.5 m into the
gravel, depending on the porosity. Since the interstices are
invariably packed with smaller stones and sand beneath the
top layer of particles, this seems very unlikely. The value of
7, therefore, suggests that backwaters and embayments are
the most likely physical features to be acting as dead zones.
A residence timescale for tracer particles in the dead zone
storage system is given by 7/%”. For the range of values of ,
this suggests that tracer particles will spend, on average,
between 230 s and 1000 s in storage before returning to the
bulk flow regime. Visual observation of tracer at the time of
the dispersion test indicated residence times of this order in
eddies and backwaters, which tends to confirm the argu-
ment that these features are the main ones acting as dead
Zones.

It is, nevertheless, difficult to identify an optimum value
for T which might be taken to apply to the whole length of

the channel. Because there is no trend in values, any one of

three estimates might apply, i.e. the simple mean (3470 s),
“error-weighted” mean (2220s) or “nearest overlap”
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(4000 s). As Beck (1987) stated; “to fix the most uncertain
parameter seems a logical contradiction. It implies perfect
knowledge of the least certain parameter.” Thus, a fourth
alternative for predictive purposes is to allow 7 to vary from
station to station, assuming its optimal value (Table 2) at
each.

Within certain bounds therefore, the D-DZM does
predict approximately constant parameters as was suggested
by the characteristics of the flow and channel. It is now
possible to ascertain whether the model is able to predict the
statistical properties of the evolving cloud with constant
parameters K = 7.16 m*s~! and % = 2.26, with T = Toptimum.
The results are shown in Fig. 7 with the appropriate values

of F(a). With the exception of station A and B, constant-
parameter model provides acceptable fits. 'Peak heights are
correct to within 10~15%, peak timing shows excellent
agreement and “tailing” or asymmetry is represented
satisfactorily or well. In the downstream stations, there is
a tendency for the modelled concentrations to rise too
steeply initially, bth this discrepancy is not serious. Much
poorer fits are to be expected at stations A and B, as the
tracer there appears not to have mixed fully over the bulk’
flow region. In addition, the chosen value of y =2.26 is
heavily weighted toward the optimal values at stations D
through G because of the greater sensitivity of Fla) to
changes in y there. This explains the inadequacy of the
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model with respect to the general shape of the cloud at A
and the peak height at B where tailing is well represented
(Fig. 7).

The predictive abilities of the D-DZM to describe
downstream trends in peak concentration and the temporal
variance of the tracer distributions are shown in Fig. 8,
- which may be compared with the performance of the one-
dimensional ADE shown in Fig. 4. Clearly, after cross-
sectional mixing is established over the bulk flow, the model
is a vast improvement on simple shear-dispersion. Figure 8a
demonstrates that the dead zone storage process can account
for the non-Fickian rate of peak attenuation. Figure 8b
shows that it also accounts for the magnitude and growth
rate of temporal variance.
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RELATIVE IMPORTANCE OF DISPERSION
MECHANISMS

Sensitivity analysis is useful as a tool for hypothesis
discrimination. When the objective function F(ot) is
insensitive to a parameter, the dispersing mechanism that
it describes is relatively unimportant at that particular
station since there are a wide range of parameter values
giving almost equally “good” fits of the model to the data.

From the results of the sensitivity analysis, it is possible to
identify two perjods in the tracer cloud’s evolution when
either shear-dispersion or the dead zone mechanism is
dominant. Between these two end members, there is a
transition in which neither dominates but both act together.

The Pre-Lagrangian Time Period

Figure 5 shows that the D-DZM is capable of describing the
tracer distributions at stations A and B provided that the
optimal solutions are used. These are sensitive to the value
of K (Fig. 6a), but are much less sensitive to changes in ¥
and 7 (Figs. 6b and 6c), which suggests that shear-
dispersion is the dominant process. The first and second
terms of Eqn. (12) are plotted separately for the optimal
solutions at stations A and B in Fig. 9. The dominance of the
first term shows that a large proportion of tracer particles
have not yet entered dead zones for the first time. Thus,
dead zones are a much less important mechanism than
simple shear-flow dispersion at this early stage in the cloud’s
evolution. Nevertheless, dead zones still need to be invoked
in order to account for the definite tailing of the tracer
curves, which Fig. 1 shows is greater than expected from the
ADE model Eqgn. 2.

The Lagrangian time and distance scales for mixing over
the bulk flow were identified above, using the criterion that
the ratio U,/u, should be equal to unity and an implicit
assumption that dead zones have no important effects on the
leading edge of the cloud while initial cross-sectional mixing
is established. Figure 9 confirms this assumption. At
stations A and B, only a very small proportion of the tracer
particles that constitute the leading edges of the optimal
solutions (i.e., for < 250s and ¢ < 1600s respectively)
appear on the basis of the model to have passed through
dead zones.

The Post-Lagrangian Time Period

Figure 6 shows that in the post-Lagrangian period only
station C is sensitive to all three parameters K, y and 7. This
is also the point at which the D-DZM is particularly
aceurate (see Figs. 5 and 7). Figure 9c shows the first and
second terms of Eqn. (12) for station C. It is clear that
roughly half of the tracer has passed through dead zones at
least once. Thus, neither shear-dispersion nor the dead zone
mechanism is dominant at Station C but both act together.

For stations D, E, F and G the model fits are not at all
sensitive to the value of K. This suggests that the dispersion
process is dominated by the dead zone mechanism, which is
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confirmed by high sensitivity to y and © (Fig. 6). The
percentage of the mass in the first term of Eqn. (12) for
stations D, E, F and G (with K =7.16 m%s~!, y=2.26 and
T = Toptimum) are 0.01%, 6.88%, 0.28% and 0.04%
respectively. This indicates that all but a very small

proportion of tracer particles have passed through dead
zones at least-once. This confirms the suggestion made
above that the slowing of the cloud velocity relative to the
water in the bulk flow region (Fig. 2) is due to storage of
tracer from the leading edge of the cloud in dead zones.

Quasi-Gaussian leading edges are a persistent feature of
empirical data from natural channels. The shear-dispersion
process is responsible for their formation in the pre-
Lagrangian time period (stations A and B) and in early post- )
Lagrangian time (station C). At longer times (corresponding
to stations D through to G) the leading edges of the cloud
are diluted by dead zone storage, yet their Gaussian
appearance is preserved (see Fig. 1 in which straight lines
can be fitted to the leading edge parts of the data on a
Chatwin plot). Quasi-Gaussian leading edges are observed
so often in empirical data that they are often thought to
signify the importance of shear-dispersion effects. This is
not strictly the case. The values of K, determined by
Chatwin’s analysis (Table 1) describe the pseudo-Gaussian
form, combining in one coefficient the dispersive effects of
shear-flow and the more important effects of dead zone
storage.

At stations D, E, F and G the first term of the D-DZM is
unimportant. Although shear-flow dispersion still occurs, as
reflected by the coefficient K’s occurrence within the
integral of the second term of Eqn. (12), it is relatively
unimportant in comparison with the dead zone process. Not
only is there a large range of almost equally suitable
solutions for K at each station, but the optimal values (Table
2) tend towards zero. This is strong evidence for the
contention of Beer and Young (1983) and Wallis ez al
(1989) that dispersion is dominated by the dead zone
mechanism once full mixing has been established over the
channel cross-section. It suggests that the cloud shapes at
stations D-G could perhaps be predicted realistically by a
model incorporating dead zone storage alone, without any
consideration of the shear-dispersion in the bulk flow

region. This idea is developed further in a companion paper
(Davis and Atkinson, 2000).

Conclusions

Once full mixing of tracer over the bulk flow has been
established, the two mechanisms of shear flow dispersion
and dead zones both contribute to longitudinal dispersion.
The D-DZM models the decline of peak concentration,
growth of variance, and overall cloud shape successfully
while keeping parameter values constant or within a narrow
range. Thus, dead zone storage accounts for the non-
Fickian elements in the tracer cloud’s evolution. Further-
more, sensitivity analysis and comparison of first and second
terms in the D-DZM demonstrate the relative importance
of the two mechanisms. There are two distinct stages of
cloud evolution with a rapid transitional phase between
them. In the time period before mixing over the whole bulk
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flow regime is established, corresponding to stations A and
B, the dispersion process is characterised by values of z/
T < 1 and U,/u, > 1, indicating that little of the tracer has
passed through dead zone storage and that the tracer
particles have not yet fully sampled the range of velocities
found in the bulk flow region. The shear-dispersion mech-
anism dominates, although the limiting one-dimensional
model of Eqns. (1) and (2) does not apply. The most
appropriate mathematical model for this time period would
involve a two-dimensional treatment with local values of
turbulent dispersion coefficient (e.g. Smith, 1982; Chatwin
and Allen, 1985).

For a short transitional period just after mixing over the
bulk flow region is established, when the value of /7 ~ 1
(corresponding to station C), about 50% of the tracer
particles have passed through the dead zone storage
mechanism at least once. Tracer particles near the peak of
the cloud have an average velocity very nearly equal to the
discharge velocity. In this transitional stage, a rough equality
of terms from Eqn. (6) holds, such that xz(C - C)/t =~
K(& C/8xY).

The second distinct stage of cloud evolution corresponds
to stations D-G, where #/7 > 3 and comparison of terms
indicates that more than 95% of the tracer particles have
passed through the dead zone storage mechanism at least
once. Thus, y*(C — C)/t )) K(8*C/0x%), demonstrating
the dominant contribution that the accumulated effects of
dead zone storage have made to the overall dispersion
process. As a result, tracer particles in the leading part of the
cloud in the River Severn have an average velocity of
approximately 85% of the discharge velocity.
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List of Symbols

A cross-sectional area of the bulk flow region of a
channel

Ag cross-sectional area of dead zone region of a
channel

A* Chatwin parameter, M/(2A(nK)"?)

C cross-sectionally averaged concentration of tracer

Cr tracer concentration measured in field data

G, peak concentration of tracer

C, tracer concentration in dead zone

Cr(x,f) concentration as defined by the Advection-
Dispersion Equation

K longitudinal dispersion coefficient in the bulk

' flow region

X

estimated value of K based on Chatwin’s analysis

of the rising limb and peak of a tracer curve

Mass of tracer injected

time elapsed since tracer injection

time from injection to centroid of tracer

distribution

average streamwise velocity in the bulk flow

region

estimated value of U based on Chatwin’s analysis

of the rising limb and peak of a tracer curve

average water velocity upstream of a station s

weighting factor for parameter averaging, based

on sensitivity range of the parameter at the jth

station

x streamwise distance from point of tracer injection

a the parameter set [K y, 7]

o, best-fit parameter set [K, Yo, To]

d(x) Dirac delta function of &

o, B, 0,s symbols used and defined in Appendix One

v variable of integration

o} temporal variance of tracer distribution

o,> ' spatial variance of tracer distribution

T characteristic time sacle of tracer exchange
between mobile and stationary regions of the
channel '

X dead zone storage parameter, defined by y* = A4/

As

MIME

S

J =
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Appendix A: analytical solution
The solution to Eqns. (6) and (7) subject to Eqns. (8), (9),

(10) and (11) is derived as follows. Making use of the
Laplace transform method;

70) = L)) = /0 " ey,

which gives:

~ iC _4&PC 1, ~
— “=K-—_--(C-C, 1
pC C(0)+de dez 1:(C' C) (15)
and
pCs - CS(O) = ?(C - Cs) (16)

for Eqns. (6) and (7) where C and E‘s are the Laplace
transforms of C and C; respectively, and C(0) and C(0) are
the values of C and C; at # = 0.

Eliminating C; from (15) using (16) and applying the
initial condition Eqn. (8) results in the following linear
inhomogeneous Eqn. with constant coefficients,

#C UdC C {1 2 p] . C(0)
)

Kdex K

__X =
T ‘c(p‘c+x2+ K (17)

The general solution of (17) is given by,
~ 1 co) _,,
— 8% A* N\ —ax
C=e [ +(b—a)/0 s dx]
1 [7c) _
bx B* _ ________/ A\ bxd 18
+e [ G=a) K e P dx (18)

where A+ and B« are constants to be evaluated from
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boundary conditions, and 2 and % are the roots of the
auxiliary equation of the left hand side of (17).

Applying (9) we see the integral terms in (18) have the
form,

M [ M
T — 24 = —_—
AK/O Olw)eTdr = T (19)

Therefore, (18) becomes,
~ M M
— 0% A* bx 3
C=e [ +—(b~ )AK] +e [B —( —a)AK] (20)

Evaluating the roots of the auxiliary equation of the left
hand side of (17):

b U _U () AR\
_ ZIN

2K 2K
U U/, 4K\
b—R'Fﬁ{(l'l'W) (21)

where W=[1/1 — ¥2/(p7* + ¥*1) + p).

Applying (11), [Bx — M/(b — a)AK] = 0 in order for the
second term of (20) not to be infinitely large when x — 0.

Applying (10) when p =0, C=M/UA. By evaluating
(b — a) with p =0, A»=0.

Therefore, (18) is reduced to

Va M ax
C= me (22)

To obtain the solution in explicit form, the inverse Laplace
transform of (22) must be determined. Substituting 4 and 4
from (21) into (22) we can obtain,

-1/2
G M (P at B
T 24K q

exp l_g(w) 1/2] (23)

q

where 0=x/K"? g=p+ /1), a=—x*/1* and B=
[(1 = x*)/7) + (UP/4K)
From (23):

~1/2
24K/ ~Ux/2K _ 7-1 (¢ +a+Pyg /
C.——c¢ =L e
M q

i)

The problem is now to find the inverse Laplace transform
on the right hand side of (24). Eqn. (25) is derived from a
standard form by differentiation (Roberts and Kaufmann
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1/2
{/f)(w)mldMWW% w”w&

—f(p+ ) ~Fo) 3)

2 is a constant and f’is a function whose Laplace transform is
f . Substituting 4 =p+s and applying the translation
theorem to (25) gives,

fﬂhﬁ=L*{ﬂ¢+§}—f“fm (26)

where {Int} is the bracketed integral on the LHS of (25).
Now define the function f as,

F) =P e ()2 (27)

where 6 and f are constants. The Laplace transform of (27)
is,

._o\/_

which defines the Laplacian f in the RHS of (26) if f{z) is
replaced by (27). For consistency (26) must now be written,

_1{(4 + % + B exp [—G(q + i:. + ﬁ)l/z] }

= e~ P14 L (1) 4 o~ {Int}, (29)

which is the desired inverse transform. With the integral
{Int} expanded from (25), and (27) applied to f{v), re-
arrangement of (24) gives:

-e—ste—ﬂte—ez/h . (nt)_l/2+

M Ux/2K
C=zir”

et [ P14 p) V2 (o) 2
0

(t - v)—‘/zy_; [2(a)'/?
(t= )y |
(30)

Equation (12) in the main text can easily be derived from
(30) by substituting appropriate combinations of x, U, K| ¥
and 7 for the parameters s, &, f§ and 0. Use is also made of the
relations _, = —%; and Jiz) = —i I1(2).

Finally, if the LHS of (2) is designated as Cr(x,t) then
(12) may be written in a simplified form,

t
C = Cr(x,0)e™/" 4 X1/ 0ch(x, V).tV L Ul
v(t —v)|.dv

.7%.11 24
31)

which shows clearly how the first term represents tracer
which has never entered dead zones, whereas the second
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term represents tracer particles that have resided in dead
zones at least once.

Appendix B: Previous models of
mathematically related systems

Natural channels with dead zones are just one example of a
class of phenomena in which a fluid moves through a region
in which tracer is dispersed according to Fick’s Law, but
can also be exchanged with an adjacent region of immobile
fluid, with a first-order rate equation governing the
exchange. Examples occur in chromatography, Raschig
reaction towers, and porous media containing blind pores,
as well as porous media in which tracer undergoes linear,
reversible sorption. Mathematically, all these systems have
strong similarities. Solutions to Eqns. (6) and (7) have been
presented for various boundary conditions by Coats and
Smith (1964), Lapidus and Amundson (1952), De Smedt
and Wierenga (1979a, b) and Carnahan and Remer (1984),

among others, but do not include the particular solution
presented here. However, the model of Raschig towers by
Villermaux and Van Swaaij (1969) uses a Dirac delta
function to represent an initial input of a chemical, and
differs mathematically from the present model only in their
choice of boundary condition at ¥ = 0, ¢ = 0. In this model,
dispersion occurs only after the tracer has been advected
into the test reach (Eqn. (9)), whereas Villermaux’ and Van
Swaaij’s tracer may enter the test reach by forwards
dispersion from a non-reactive reach upstream. Villermaux
and Van Swaaij (1969) provide a useful discussion of the
properties of their solution, which shows the same general
features as our model.

Analytical derivation of solutions by the Laplace trans-
form method can be achieved only for a few, tractable cases.
Models such as the present one can now be produced in a
workable form for a great variety of input conditions by
using numerical methods of Laplace transform inversion
(e.g. Barker, 1982; Moench, 1989, 1991).
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