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Abstract
The practical application of simulation models in the field is sometimes hindered by the difficulty of deriving the soil hydraulic properties of
the study area. The procedure so-called inverse modelling has been investigated in many studies to address the problem where most of the
studies were limited to hypothetical soil profile and soil core samples in the laboratory. Often, the numerical approach called forward-
backward simulation is employed to generate synthetic data then added with random errors to mimic the real-world condition. Inverse
modelling is used to backtrack the expected values of the parameters. This study explored the potential of a Genetic Algorithm (GA) to
estimate inversely the soil hydraulic functions in the unsaturated zone. Lysimeter data from a wheat experiment in India were used in the
analysis. Two cases were considered: (1) a numerical case where the forward-backward approach was employed and (2) the experimental
case where the real data from the lysimeter experiment were used. Concurrently, the use of soil water, evapotranspiration (ET) and the
combination of both were investigated as criteria in the inverse modelling. Results showed that using soil water as a criterion provides more
accurate parameter estimates than using ET. However, from a practical point of view, ET is more attractive as it can be obtained with
reasonable accuracy on a regional scale from remote sensing observations. The experimental study proved that the forward-backward approach
does not take into account the effects of model errors. The formulation of the problem is found to be critical for a successful parameter
estimation. The sensitivity of parameters to the objective function and their zone of influence in the soil column are major determinants in the
solution. Generally, their effects sometimes lead to non-uniqueness in the solution but to some extent are partly handled by GA. Overall, it
was concluded that the GA approach is promising to the inverse problem in the unsaturated zone.

Keywords:  Genetic Algorithm, inverse modelling, Mualem-Van Genuchten parameters, unsaturated zone, evapotranspiration, soil water

Introduction
In developing improved water management alternatives,
physically-based simulation models could be helpful. These
simulation models can be used as tools to understand the
current system better since they provide information over
an unrestricted spatial and temporal resolution. Models are
also strong in providing information about processes that
are difficult to measure in the field such as capillary rise,
soil evaporation and crop transpiration. Most important is
their ability to do scenario analysis as they can integrate
easily the impacts of any changes to the system. However,
an obstacle to their practical application in the field is the
difficulty of deriving the soil hydraulic functions θ(h) and

K(h) of the study sites, where θ is the soil water, h is the
hydraulic head and K is the unsaturated hydraulic
conductivity. This seems to be of minor concern in
conventional thinking but inevitably the veracity of the input
data will be reflected in the end. According to Xevi et al.
(1996) proper evaluation of the water balance in the
unsaturated zone depends strongly on the appropriate
characterisation of the soil hydraulic functions.  Therefore,
proper definition of the soil hydraulic parameters under field
conditions should be taken into consideration.

Direct measurement in the laboratory using soil core
samples is the classic way to determine the soil hydraulic
functions (Van Genuchten et al., 1991). Although this is
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relatively easy in principle, in practice it is difficult and time-
consuming. To obtain sets of soil water at different hydraulic
heads also needs specialised apparatus; likewise for
conductivity values. The major concern with this approach
is the question of whether the parameters derived in a soil
core sample with pre-defined boundary conditions are
representative of the field situation (Kool and Parker, 1988;
Van Dam, 2000). A broad range of field methods was also
developed to determine the soil hydraulic functions
(Dirksen, 1991).

Using pedo-transfer functions is another approach, where
soil texture, bulk density and organic matter content are used
to estimate soil hydraulic parameters (e.g. Vereecken et al.,
1989, 1990; Wösten et al., 1998; Droogers et al., 2000;
Antonopolous, 2000). These are very useful functions if
limited information is available about the soil. However,
Wösten et al. (1998) stressed the need for further research
to develop a more robust and efficient methodology that
could estimate soil hydraulic parameters practically for real-
world applications.

The potential of a heuristic approach to estimate the
Mualem-Van Genuchten parameters has been investigated
recently. Schaap et al. (1998) studied 19 Hierarchical Neural
Network (HNN) models (based on the input data) and found
that the accuracy of the prediction improved when more
input data were used. They concluded that the developed
HNN models performed better than the published pedo-
transfer functions in predicting soil water and hydraulic
conductivity parameters. The use of the HNN models
developed is claimed to be attractive because of the
considerable flexibility toward available input data.

The inverse modelling approach is also applied where the
measured soil hydraulic data are used as fitting criteria to
estimate the soil hydraulic parameters by inverting the
governing equation of the soil water movement. The inverse
approach has been implemented extensively in groundwater
studies (e.g. Yeh, 1986). The obvious reason is that direct
measurement of aquifer characteristics is far more difficult
than in the vadoze zone. Using observed pressure heads
and measured discharges, the transmissivity, specific yield,
storage coefficient and other aquifer parameters could be
determined by the inverse solution of the groundwater flow
equation. Yeh (1986) reviewed the common techniques to
solve the inverse problem in the saturated zone. The review
showed that the problem could be solved using either a direct
(equation error criterion) or an indirect approach (output
error criterion). The indirect approach is more attractive
because it does not require spatial and temporal data at
regular intervals, hence avoiding the interpolation of data
from sparse observations which could increase the noise in
the dataset. Gradient-dependent search algorithms are

widely used in this case. Non-linear regression is also
adopted, e.g. MODFLOWP (Hill, 1992), the ModGA_P
used a Genetic Algorithm (Zheng, 1997).

Kool and Parker (1988) solved the inverse problem in
unsaturated transient flows using the indirect approach with
the Levenberg-Marquardt algorithm. The Richards’ equation
was solved inversely during infiltration and redistribution
in a hypothetical soil profile to determine the soil hydraulic
functions simultaneously. The soil water and hydraulic head
were used as fitting criteria. Based on their works (Kool et
al., 1985; Kool and Parker, 1988), several studies were
conducted to investigate the inverse problem in unsaturated
flows further. The method has been applied with  reasonable
success in the laboratory using outflow experiments such
as the one-step (e.g. Van Dam et al., 1992) and multi-step
outflow approach (e.g. Van Dam et al. 1994; Zurmühl and
Durner, 1998) where the measured outflow and soil water
(in some cases) were used as fitting criteria in estimating
the soil hydraulic parameters. In contrast, Šimùnek et al.
(1998) and Romano and Santini (1999) among others
approached the inverse problem using the evaporation
method (which is the opposite of the outflow experiments)
where the soil water and hydraulic heads were usually used
as criteria. In general, most of the literature about the inverse
approach always emphasised the ill-posed nature of the
solution. This is caused mainly by (1) the non-uniqueness
problem and (2) instability in the solution. The non-
uniqueness problem occurs when the parameters under study
have low sensitivity to the criteria being investigated. This
could happen in the solution because at some point in the
search space, the parameter(s) may not be sensitive any
longer. This problem is also caused by local optima and is a
threat to gradient-dependent search algorithms. The
instability problem, on the other hand, is caused by the high
sensitivity of the parameters (Yeh, 1986; Kool and Parker,
1988; Van Dam et al., 1992).

The inverse modelling approach seems to be a very
promising way to estimate soil hydraulic functions in the
unsaturated zone where most plant activities are
concentrated. However, the fitting criteria used in previous
studies are mostly the soil water, hydraulic head and bottom
flux. Soil water can be monitored easily in the field but
bottom fluxes are more difficult to measure. Hydraulic heads
can be measured using tensiometers. It seems that broader
application of the methodology in the field depends strongly
on the practicality of the criteria being used in terms of
spatial and temporal dimensions. Evapotranspiration could
be explored in this case because: (1) it can be estimated or
measured easily (Kite and Droogers, 2000) and (2) it has an
advantage in larger scale applications (e.g. an irrigation
system) using remote sensing data e.g. SEBAL
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(Bastiaanssen et al., 1998). In a recent study (Jhorar et al.,
2002), the use of evapotranspiration as a criterion was
investigated in inverse modelling using SWAP (Van Dam
et al., 1997) and a parameter estimation package, PEST
(Watermark Computing, 1994). The actual
evapotranspiration and actual transpiration were used as
criteria, separately. The benchmark values of the criteria
were established using forward simulation by assuming
some base values of the Mualem-Van Genuchten parameters
and then backward simulations were done to obtain the
parameters again. To emulate the real-world situation,
random errors were included in the benchmark values. In
reality, actual transpiration is difficult to obtain separately
from evapotranspiration. Therefore, evapotranspiration
alone is more realistic to explore as a criterion in inverse
modelling. On this basis, robust search algorithms are
needed to investigate this option further. A heuristic yet
powerful search technique like Genetic Algorithms could
be suitable in this case.

In summary, the objectives of this paper are: (1) to explore
the inverse problem in the unsaturated zone using
evapotranspiration, soil water and the combination of both,
as fitting criteria, numerically, (2) the same, but using
measured evapotranspiration and soil water from lysimeter
data, and (3) to investigate the potential of Genetic
Algorithms in the solution of the inverse problem and how
the technique handles the issues of non-uniqueness and
instability.

Methodology
SIMULATION MODEL

The Soil Water Atmosphere and Plant model generally
known as SWAP (Van Dam et al., 1997) is a physically
based, detailed agro-hydrological model that simulates the
relationships of the soil, water, weather and plants. The core
of the model is the Richards’ equation (Eqn. 1) where the
transport of soil water is modelled by combining Darcy’s
law and the law of continuity:
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where θ is the soil water content (cm3 cm-3), h the hydraulic
head (cm), C the water capacity (cm-1), t the time (d), z the
vertical distance taken positive upward (cm), K the
unsaturated hydraulic conductivity (cm d-1) and S is the sink
term (d-1). SWAP models the soil water movement by
considering the spatial and temporal differences of the soil
water potentials in the soil profile. The governing equation

is solved numerically with the implicit scheme of Belmans
et al. (1983), which can be applied effectively in saturated
and unsaturated conditions.

In SWAP, the soil hydraulic functions are described by
the analytical functions of Van Genuchten (1980) and
Mualem (1976) for the soil water retention (Eqn. 2) and
hydraulic conductivity (Eqn. 3) referred hereafter as MVG:
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where θres is the residual soil water content (cm3 cm-3), θsat

the saturated soil water content (cm3 cm-3), α (cm-1), n (–),
m (–) and λ (–) are empirical shape parameters and Ksat is
the saturated hydraulic conductivity (cm d-1).  Equations 4a
and 4b define the relative saturation, Se (–) and parameter
m (–):
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SWAP does not only simulate the quantity of soil water but
also the quality and considers the effect of heat on the fate
of solutes. Hysteresis, water repellency, soil swelling and
shrinkage can be also assumed to affect soil water and solute
transport. For this study these options were not employed.

The water balance is solved by considering two boundary
conditions, the top and bottom boundaries. These boundaries
can be either flux or head controlled. The Penman-Monteith
equation is used to estimate evapotranspiration. SWAP uses
the leaf area index (LAI) or soil cover fraction (SC) to
calculate the potential transpiration and evaporation of a
partly covered soil. The model separates firstly the potential
transpiration (Tp) and potential evaporation (Ep) then
subsequently calculates the reduction of Tp in a more
physically based approach (Feddes et al., 1978; Maas and
Hoffman, 1977). The compounded effect of salt and water/
oxygen stress to the actual transpiration (Ta) is considered
multiplicative. In the case of wet soil, the soil evaporation
is determined by the atmospheric demand and is equal to
Ep. However, as the soil dries, the soil hydraulic conductivity
also decreases and the evaporation is decreased to actual
evaporation (Ea). The maximum evaporation (Emax) is
calculated using Darcy’s law at the top boundary, then Ea is
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computed as the minimum of Ep and Emax. Alternatively, the
soil evaporation can be estimated using the empirical
equations of Black et al. (1969) or Boesten and Stroosnijder
(1986). In general, the actual evaporation is calculated as
the minimum of Ep, Emax and the Ea using the empirical
functions.

The surface runoff is calculated as the ratio of the
difference between the depth of ponding water and the
maximum sill (embankment) height to the resistance of the
soil to surface runoff. The surface detention is accounted
for in the resistance term. Field drainage can be simulated
using the Hooghoudt and Ernst equations in homogenous
and heterogeneous soil profiles. Drainage systems can be
modelled as a single or multi-level system. Bottom flux is
calculated according to the bottom boundary condition
adopted in the model.

A simple crop model and detailed crop model WOFOST
can simulate crop growth in SWAP. The simple crop model
is based on the linear production function of Doorenbos
and Kassam (1979). WOFOST (Supit et al., 1994) is a
generic crop model, capable of simulating the growth and
development of most crops. In this study, the detailed crop
model was used.

Several water management scenarios can be modelled in
SWAP. Irrigation scheduling can be considered as fixed time
or according to a number of criteria. A combination of
irrigation prescription and scheduling is also possible. The
scheduling criteria define the timing and depth of irrigation
in the growth process.

GENETIC ALGORITHMS

Genetic Algorithms (GAs) are mathematical models of
natural genetics where the power of nature to develop,
destroy, improve and annihilate life is abstracted and used
to solve complex optimisation problems. Holland (1975)
developed this powerful technique and it has been applied
in various fields of science. GA is termed a global optimum-
seeking algorithm (Zheng, 1997). The algorithm works by
mimicking the mechanisms of natural selection to explore
decision search space for optimal solutions (Goldberg,
1989).

Goldberg (1989) identified four unique attributes of GA
(binary) among the more traditional optimization methods:
(1) GA works with a coding of the parameter set (string),
not with the parameters themselves, (2) GA searches from
a population of points, not a single point, (3) GA uses
objective function information, not derivatives or other
auxiliary knowledge and (4) GA uses probabilistic transition
rules, not deterministic rules.

GA consists of three basic operators: the selection,

crossover and mutation (Cieniawski et al., 1995). First, an
initial set of individuals (strings) is generated. This
population is a representative set of solutions to the problem
under investigation. Each individual is evaluated on its
performance with respect to some fitness function which
represents the environment. Using this measure, the
individual competes in a selection process where the fittest
survives and is selected to enter the mating pool; the lesser-
fit individual dies. The selected individuals (parents) are
assigned a mate randomly. Genetic information is exchanged
between the two parents by crossover to form offspring.
The parents are then killed and replaced in the population
by the offspring to keep the population size stable.
Reproduction between the individuals takes place with a
probability of crossover. If a random number generated is
less than the probability of crossover, crossover happens,
otherwise not, and the parents enter into the new population.
GAs are very aggressive search techniques; they tend to
converge quickly to a local optimum if the only genetic
operators used are selection and crossover. The reason is
that GA eliminates rapidly those individuals with poor
measures until all the individuals in the population are
identical. Without a fresh influx of new genetic materials,
the solution stops there. To maintain diversity, some of the
genes are subjected to mutation to keep the population from
premature convergence (Goldberg, 1989; Cieniawski et al.,
1995). Selection, crossover and mutation are repeated for
many generations, with the expectation of producing the
best individual(s) that could represent the optimal or near
optimal solution to the problem under study.

In this study, a modified-µGA was developed and used in
the inverse modelling. This is a slight modification of the
securGA (small-elitist-creep-uniform-restarting GA) of
Carroll (in Yang et al., 1998). The µGA technique
(Krishnakumar, 1989; Caroll, 1996, 1998) was extended to
enable creep mutation to take place in the solution
(securGA). In complex problems, however, more individuals
might be needed to arrive at the best solution. In the
securGA, the innate nature of convergence of a µGA is still
being used, i.e. 95% uniformity of the genes which
suppressed the restarting power of a µGA in larger
populations. For this reason, a 90% convergence is used in
the modified-µGA.

SWAP-GA LINKAGE

Figure 1 shows the linkage between SWAP and GA. The
fitness function serves as an environment for the thriving
population in each generation. The fitter individuals
(represented by a high value of fitness) that survived the
test of the environment tend to reproduce and produce
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Fig. 1. The SWAP-GA linkage for the inverse modeling
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offspring that are expected to express better genetic traits
in the next generation, to cope up with the environmental
demands. In this study, the fitness function used is expressed
as follows:

(5)

where ξ is a weighting factor (–), θSWAP and θOBS are the soil
water content simulated and observed, respectively
(cm3 cm-3), ETaSWAP and ETaOBS the actual evapotranspiration
simulated and observed, respectively (cm d-1), T is an index
of year, i is for day, j is for soil compartment, k represents
an individual in the GA, N and M are indices of the number
of observations of θ and ETa and fitness is the measure of
an individual.

The θ and ETa are the criteria in the parameter estimation
and their contributions to the fitness function is determined
by the weighting factor ξ. The observed and simulated soil
water and ET values used in evaluating the fitness function
are normalized using the observed minimum and maximum
values of θ and ETa.

The Mualem-Van Genuchten (MVG) parameters in the
SWAP-GA linkage are represented as binaries (0s and 1s),
similar to the standard GA approach of multi-parameter
representation (see Fig. 2), where P stands for parameter.
The real value of a parameter is defined as:

(6)

where Cmax is the maximum value of the parameter and Cmin

the minimum value, a represents alleles or bit value (0 or
1), i is an index of bit position (referred as gene), L is length
of the (sub) string, and j, the index for parameter.

LYSIMETER

Lysimeter data (Tyagi et al., 2000) from a wheat (Triticum
aestivum) experiment in India (Karnal, Haryana) during the
1991–1992 rabi season were used in the study. The lysimeter
is a weighing type, with a surface area of 4 m2 and depth of
2 m. Daily changes in lysimeter weight were recorded in a
data logger and retrieved regularly. These weight changes
were subsequently converted to equivalent actual ET.
Accurate daily ET data could be generated from this
experiment except when there is excessive rainfall or
irrigation application. Weather data were monitored using
a manual and an automatic weather station adjacent to the
lysimeter site. In addition, data on crop, soil and water
management practices were collected and recorded during
the duration of the experiment. Percolation losses were
collected from the sump located at the bottom of the
lysimeter.

In the model set up, the soil profile was divided into two
layers: 0-60 cm (31% sand, 50% silt, 19% clay) and
60–200 cm (29% sand, 49% silt, 22% clay). Soil water
monitoring was done mostly in the first layer at four depths
(0–15, 15–30, 30–45 and 45–60 cm) using a Time Domain
Reflectometer (TDR). Soil water measurements were taken
frequently at irregular intervals and a total of 31 observations
were available. In the simulations, the soil column was
assumed to be well drained.

Using the data on soil texture, bulk density and organic
matter content, the estimates of the MVG parameters were
derived with pedo-transfer functions (PTF) (Wösten et al.,
1998; Droogers, 1999). These estimates (see Table 1) were
used in the numerical study as parameter base values where
the performance of GA to handle the non-uniqueness and
instability issues was tested.

SENSITIVITY ANALYSES

The sensitivity of a parameter to the fitness function
determines the success of the estimation of the parameter
involved. A straightforward method was applied by first
setting the MVG parameters at an initial value as close as
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possible to the expected value and then running the SWAP
model. Subsequently, MVG parameters are changed from
their initial values by a certain percentage and model output
is compared to the output from the initial runs. A parameter
change resulting in an insignificant change in output of the
model indicates that the parameter considered is less
important in the analysis. Moreover, such a parameter is
very unlikely to be estimated successfully, as it is not
affecting the fitness function used in the inverse modelling.
The initial values of the parameters were set to the values
obtained from the PTF as described above.

All six MVG parameters were subjected to this sensitivity
analysis. Actual ET was selected as a criterion because it is
included in the fitness function and ET can be considered
as an integrated output from the complex soil-water-plant-
atmosphere processes. A second criterion used was the flux
at the bottom of the soil profile. The bottom flux also reflects
the soil-water-plant interactions and can be considered as
an integrated representation of the soil water status in the
entire profile, which is the other component of the fitness
function. Only the MVG parameters at the first soil layer
were set as variables during the sensitivity analysis.

PARAMETER ESTIMATION CASES

Two main cases were considered to estimate the MVG
parameters: (1) whether generated observations were used
(the numerical case) and (2) whether real-life observations
from the lysimeter experiment were used (the experimental
case).

To evaluate the performance of GA, model-generated
output was used first instead of actual field measurements,
i.e. the numerical case. Such an approach is common in many
studies, often extended with the incorporation of random
errors in the generated “observations”. The MVG parameters
as estimated from the PTF were considered for the numerical
case as the real parameter values. The SWAP model was
run with these parameters and the generated output was
assumed in the inverse modelling as the “measured” values.
The results from the sensitivity analyses, as presented later,
were used to determine which parameters have to be
estimated. However, it is well known that the inclusion of
too many parameters in inverse modelling tends to result in
non-uniqueness; therefore, the number of parameters for
the first test was limited to two per soil layer (4-parameter
problem) and in the second stage, four parameters per soil
layer were considered (8-parameter problem).

In addition to these 4- and 8-parameter problems, two
other cases were considered. First, the daily model output
was used as the “measured” values and second, the daily
model outputs were aggregated into weekly values. The

latter can be seen as a first step towards the experimental
case where daily measurements are usually scarce, especially
for soil water data.

The fitness function was constructed in such a way that
different weights could be given to ET and soil water. For
this study three options were considered: (1) only ET (ETa)
was used in the fitness function (ξ = 0), (2) only soil water
(θ) was used (ξ = 1) and (3) equal weights to soil water and
ET (ξ = 0.5), a multi-objective situation (θ + ETa). Obviously,
additional values between 0 and 1 could be used but were
not considered in this study.

For the experimental case, actual ET data as well as
measured soil water contents were used in the fitness
function. As in the numerical case, two different sets of
parameters were estimated per soil layer: (1) α and n and
(2) α, n, Ksat and θsat. Obviously, the situation is different
from the numerical case as the exact parameter values are
unknown for the lysimeter experiment.

To summarize, 18 different cases were considered, based
on the combinations of generated or measured data, two or
four MVG parameters per soil layer, daily or weekly data
and weights on ET and soil water (see Table 1).

Results and conclusions
SENSITIVITY ANALYSES

A summary of the output generated by SWAP using the
parameter values derived from PTF is presented in Fig. 3.
The amounts of rainfall and irrigation were derived from
the recorded daily changes of lysimeter weight. These were
compared to the measured rainfall and irrigation during the
experiment; the lysimeter was able to produce highly
comparable values. The high sensitivity of the lysimeter
allows the accurate measurements of the crop ET and thus
increases the level of confidence in the analysis.

SWAP is able to partition the actual soil evaporation and
plant transpiration. In the figure, the interception by the
canopy during a rainfall event is incorporated in the
evaporation. The crops were well watered during the
experiment, no significant water stress is evident along the
crop growth; only the minimal water stress experienced by
the crops before the third irrigation (day 22) is apparent.
The abrupt reduction in relative transpiration is mainly due
to oxygen stress when the soil is saturated during an
irrigation or rainfall. At some stages the crop could not
recover immediately from oxygen deficiency, which can be
noticed after the fourth irrigation followed by the succeeding
rainfall events. This increase in water input is evident in the
subsequently increased bottom flux during and after these
periods. In the figure, the high quantity of bottom flux at
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Fig. 3. Daily output of the SWAP model for the base case using pedo-transfer functions

the onset of simulation is due mainly to the initial condition
used in the soil profile. All soil compartments were
initialized at field capacity (h = –100 cm).

Before the start of the inverse modelling, the sensitivity
of parameters was assessed to define the most applicable
parameters to be optimised. The situation in Fig. 3 was used
as a base scenario where the sum of the daily actual ET
(sumETa) and bottom flux (sumQbot) were used as sensitivity

criteria. The results of the sensitivity analysis (Fig. 4a and
b) indicate clearly that θres and λ are non-sensitive parameters
and can be ignored in further analyses: a change in one of
these parameters does not affect the model output
substantially. The other four parameters are sensitive in
changing the model output; therefore, these could be
included in the inverse modelling. Parameter n could be
tested only for values higher than the original 100% as n
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has a lower limit of 1 in the MVG equations. The sensitivity
of Ksat was clearly limited to lower values, indicating that
the parameter estimation by inverse modelling will yield
reliable results only when the predicted Ksat values along
the search are lower than the expected value. Interestingly,
the θsat mainly affects the bottom flux while ET is only partly
affected. The results of the sensitivity analyses were used
to select the number of parameters to be estimated as
explained before, as shown in Table 1.

GENETIC ALGORITHM

An example of a typical parameter estimation using GA is
shown in Fig. 5a and b. The figures present the GA solutions
of the 4-parameter problem using daily data in the numerical
case with the three criteria being used (ETa, θ and θ + ETa).
The maximum and the average fitness show the typical
behaviour of GA in comparison to other parameter
estimation techniques. A maximum fitness value in a
generation corresponds to the measure of the best individual
in that instantaneous population for any of the fitting
criterion mentioned above. The average value corresponds
to the average fitness of the population. Fig. 5a shows that
an elitist GA is not gradually moving to an optimum, but a
stepwise improvement can be observed. After finding a new
maximum fitness value, the corresponding parameter
combination (individual) is tagged as elite and carries this
identity along the generations until a new elite is found in
the search. The GA continues the process of selection,
crossover and mutation (creep) to search for new parameter
combination that gives the best possible value of the fitness
function until the end of the generations. In the numerical

Fig. 4 (a) Sensitivity analysis of the soil hydraulic parameters to ET. (b) Sensitivity analysis of the soil hydraulic parameters to bottom flux.

Fig. 5. (a) Maximum fitness values in a generation with the
modified-µGA solution (daily, 4-parameter). ETa indicates ET alone
as criterion, θ, soil water alone and θ + ETa, the combination.
(b) Average fitness values in a generation with the modified-µGA
solution (daily, 4-parameter).
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case, the maximum number of generations was limited to
1000 while in the experimental case it was 2000. The longer
timeline in the experimental case was intended to produce
the best possible solution with the real-world condition.
Further, the average fitness (Fig. 5b) shows how the GA
exploited the micro population to explore the search space
under each fitting criterion. When the average fitness is high
and nearly touching the maximum fitness line, the population
is composed of highly measured individuals and is near
convergence. On the other hand, when the value is low, some
or even the majority of the population are lowly measured
individuals (as compared to the elite). This contrast,
however, is necessary in the search because diversity means
more genetic traits to be introduced in the generations, which
is induced by the mutation and population restart
mechanism. The crossover operation will exchange these
genetic traits with the selected individuals.

The scope of the study is limited to the use of GA in the
inverse problem. As such, the computational efficiency and
accuracy of results were not compared with other methods.
The computational efficiency, however, can be gauged by
the GA parameters used in the search such as the number of
individuals in a population and maximum number of
generations. With the present computing capabilities, doing
the GA processes (selection, crossover and mutation) alone
is not as computationally intensive as compared with the
time the integrated model SWAP takes to do the simulations
for the evaluation of individual fitness. As observed, when
the parameter combination is extreme, the model takes a
long time to finish the simulation. As regards accuracy, the
results to be discussed show that, in theory, GA is able to
match the solution with high accuracy. In the study, the 4-
and 8-parameter problems had a population size of 20 and
30, respectively. A 0.5 probability of crossover was used in
all cases and the probability of creep mutation was taken as
the reciprocal of the population size. In all cases, a random
number seed of –1000 was used in the search.

NUMERICAL CASE

The results of the 12 cases considered in testing the
performance of GA for the generated “observations” are
given in Table 1. Considering the ability to match the
“measured” and simulated values, the GA performance was
thought to be excellent, with R2 in all cases higher than 91%
and in most cases even higher than 99%. The average error
in ET was always lower than 0.003 cm d-1. However, average
deviations in soil water contents for the whole soil profile
varied between 0.13 and almost 0 cm3 cm-3. In this study,
the soil profile is discretised into 33 compartments, i.e. 20
and 13 compartments for the first and second soil layers,
respectively.

Figure 6a and b shows the reduction in the average errors
between the “observed” and simulated ET and soil water
contents during the GA search for the 4-parameter problem
using daily data. In the case where only the soil water (θ)
was included in the fitness function, the average error
between the “observed” and simulated soil water contents
was reduced rapidly during the first 400 generations.
Interestingly, simultaneous reduction of the average error
in ET was also substantial, particularly during the first 100
generations, then eventually decreasing with the soil water
along the remaining generations. For the cases where only
ET or soil water and ET (θ +ETa) were included in the fitness
function, the reduction in the average errors in soil water
and ET are still very satisfactory: 0.007 and 0.003 cm3

cm-3, and 0.004 and 0.001 mm d-1, respectively. It is
interesting that optimising the fitness function using the soil
water contents only also improved the ET solution.

Fig. 6.(a) Average error of soil water (q) in a generation with a
modified-µGA solution (daily, 4-parameter). ETa indicates ET alone
as criterion, θ, soil water alone and θ + ETa, the combination.
(b) Average error of actual evapotranspiration (ETa) in a generation
with a modified-µGA solution (daily, 4-parameter).
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The ability of the GA to reproduce exactly the initial
parameters gave a somewhat mixed result but some clear
trends could be observed. First of all, parameters of the
second soil layer were more difficult to estimate than those
in the topsoil layer. Second, α and n were, in general, better
estimated than Ksat and θsat. Third, including daily values in
the fitness function gave better results than using weekly
values. Finally, the inclusion of ET or soil water content or
a combination of both in the fitness function gave some
diverse results; there is a tendency that using soil water only
is the best option, although in one case including ET only
was better (daily, 8-parameter).

As expected, using only soil water in the fitness function
was best in all cases to predict the soil water (with respect
to average error). However, this was not the case for ET.
Sometimes ET was predicted better by including only ET
in the fitness function (daily and weekly, 8-parameter),
sometimes only with soil water (daily, 4-parameter) and
sometimes the combination (weekly, 4-parameter). A
possible explanation for this counterintuitive result that ET
in the fitness function does not improve the ET estimates
might be the lack of any dry period in the simulation. Jhorar
et al. (2002) have concluded already that such a period is
essential in a successful inverse modelling approach based
on ET. The inclusion of ET in the fitness function means
that less weight is given to θ, making the inverse modelling
more difficult.

As a conclusion: daily observations are better than weekly,
four parameters are easier to estimate than eight and the
case for whether to use soil water, ET or a combination, is
vague but with an inclination towards soil water.

It is clear from the results that the non-unique nature of
the inverse problem is to some extent partly handled by GA.
The first and second observations in the preceding discussion
could give some insight to this statement. The parameter n
was estimated best in all cases, both in the topsoil and
subsoil. This is attributed to its high sensitivity to both of
the criteria included in the fitness function.  For the other
parameters, there are regions in the search space where they
are not sensitive to either of the two components of the
fitness function. GAs are very powerful in highly perturbed
functions but cannot respond well to relatively flat surfaces.
The algorithm is hard to narrow down for all the parameter
possibilities when there is no strong response from the fitness
function. The insensitivity factor in non-uniqueness is then
an innate aspect of the problem that even robust search
algorithms like GA cannot handle. The possible solution to
this is that, when setting up the problem, narrow down as
much as possible the parameter search space in the vicinity
of the expected value.

Aside from the sensitivity of a parameter, the zone of

influence could also affect the solution which could explain
why some parameters are more difficult to estimate in the
second layer. Kool and Parker (1988) noticed this in their
study: the best sampling point of the hydraulic head during
infiltration is in the vicinity of the infiltration front.  For the
case of ET, the processes in the top 5–10 cm of soil could
be described by the soil evaporation while below, until one
enters the regions influenced by root water extraction, it is
accounted for by plant transpiration. Probably, the defined
bottom boundary condition could have influenced the
inverse modelling process also.

Figure 7a–d shows the soil water simulations using the
derived MVG parameters from ET as a criterion for the 4-
and 8-parameter problems, daily and weekly cases. The case
of the 4-parameter problem (Fig. 7a and b) shows a
promising fit with the base values. The minor discrepancies
in the predicted parameter values compared to the originals
(see Table 1) did not cause significant deviations between
the simulated and “measured” soil water, both in the first
and second soil layers. When the frequency of data collection
is on a weekly basis, the solution is still very reasonable.
On the other hand, Fig. 7c and d (daily and weekly, 8-
parameter) show a different pattern, especially with the daily
basis in the first soil layer. Although the predicted parameter
values are reasonably better than the weekly basis (see Table
1), the soil water situation is overestimated significantly.
The reason for this is the high value of θsat predicted by the
inverse modelling. Based on the sensitivity analysis, θsat has
low sensitivity to ET. Interestingly, a better estimate of θsat
was obtained using the weekly data.

EXPERIMENTAL CASE

Results of the inverse modelling using the lysimeter data
are also presented in Table 1. As the real parameter values
are not known, as was the case in the numerical study, the
only criteria to test the parameter estimation by GA are the
observed soil water and ET values. The observed uniqueness
in some parameters indicates the robustness of the GA.
Overall, the value of the fitness function is low and the
comparison between observed and simulated values shows
a big discrepancy between model and measurements.
Average errors between observed and simulated ET are
about 0.7 mm d-1 for all cases. Errors in soil water contents
vary between 0.02 and 0.17 cm3 cm-3.

Scatter diagrams of soil water contents for the best (4-
parameter, θ + ETa) and the worst (8-parameter, ETa) cases
are shown in Fig. 8a and b. The range in observed soil water
contents is limited to wetter conditions (Fig. 8a), so no actual
water stress has occurred in the crops. According to Jhorar
et al. (2002), a dry period is of paramount importance for a
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Fig. 7. (a) Simulated soil water as compared to the base values using ETa as search criterion (daily, 4-parameter). (b) Simulated soil water as
compared to the base values using ETa as search criterion (weekly, 4-parameter). (c) Simulated soil water as compared to the base values
using ETa as search criterion (daily, 8-parameter). (d) Simulated soil water as compared to the base values using ETa as search criterion
(weekly, 8-parameter).
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Fig. 8. (a) Scatter diagrams of the best observed and simulated soil
water contents after a GA solution in the experimental study (4-
parameter, θ + ETa ). (b) Scatter diagrams of the worst observed and
simulated soil water contents after a GA solution in the experimental
study (8-parameter, ETa )

successful parameter estimation, which is lacking in this
case. Ranges in observed ET are from 0.3 to 6.5 mm d-1,
where the lower values do not indicate water stress but are
observations at the emergence stage of the crop or after a
rainfall event or low evaporative demand (see Figs. 10 and
3). For the worst case (Fig. 8b), the simulated and observed
ET values still match reasonably well (Table 1). However,
the soil water contents show a big discrepancy between
simulated and observed values. This shows that the soil
water was not matched properly during the search process;
the lower cluster suggests that the soil water was
underestimated and the upper cluster along the 45o line
depicts reasonably matched data (see Fig. 9b). But the
average error suggests that the prediction improved
compared to the case of the 4-parameter problem where ET
was used as the criterion (see Table 1).  This result reveals

the danger of using only one statistical test criterion in the
solutions.

Figure 9a and b show the results of the soil water
simulations at the upper soil layer using the derived MVG
parameters from the 4- and 8-parameter problems, with the
three search criteria being used. In the figures, it is obvious
that soil water (θ) as criterion is adequate to define the soil
hydraulic parameters because of its direct relationship with
the parameters. The case of ET (Fig. 9a), however, is
interesting to explore. In theory, for a 4-parameter problem

Fig. 9a. Simulated and measured soil water using the GA derived
MVG parameters in the experimental study (4-parameter). ETa
indicates ET alone as criterion, θ, soil water alone and θ + ETa, the
combination.
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with daily or weekly data, the use of ET as search criterion
can define the soil hydraulic parameters adequately. This is
true provided that the other (known) parameters are defined
properly. Figure 9a shows that the simulated and measured
soil water contents using θ as criterion have reasonable
agreement with each other, meaning that the other known
soil hydraulic parameters defined in this case are quite
appropriate. Therefore, the prediction of the soil water using
ET as search criterion was influenced by other factor(s) in
the process. Along this line, it is speculated that the

uncertainty involved in ET prediction is the main cause of
this discrepancy. As observed in Table 1, the R2 of ET did
not change significantly in all cases.

Figure 10 shows the observed ET from the lysimeter
(ETlys) and predicted potential ET (ETpot) from the SWAP
model. The effect of model and data errors to ETpot can be
observed in the figure: there are times in the season when
ETpot values are lower than the ETlys and the unusual opposite
trend in some days is apparent.

Discussion
Many studies presented on inverse modelling in the vadoze
zone are limited to the so-called forward-backward
simulation approach, referred to here as the numerical case.
Generated output of a model, with or without artificial
random errors, is used as “observed” values in the objective
function to estimate the parameters. In most cases results
were satisfactory but Jhorar et al. (2002) concluded that
parameters were difficult to assess and emphasis should be
put on the prediction of the terms considered in the objective
function. In this study, the numerical case showed that the
GA was able to represent the terms included in the fitness
function very well and parameters could be estimated
reasonably well, especially if only four parameters were
included. It should be taken into account that in this study,
periods with water stress are completely lacking, which is
considered essential to produce reliable results (Feddes et
al., 1993; Van Dam, 2000; Jhorar et al., 2002). This leads
to the conclusion that the GA approach as used in this study
is a powerful tool in inverse modelling.

The cases where the actual lysimeter data were used
showed a different picture. Parameter estimations are less
successful and the ability of the model to produce similar

Fig. 9b. Simulated and measured soil water using the GA derived
MVG parameters in the experimental study (8-parameter). ETa
indicates ET alone as criterion, θ, soil water alone and

Fig. 10. Comparison of the ETlys and calculated ETpot by SWAP.
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ET and soil water values as observed was worse than the
numerical case, although the overall performance can be
described as reasonable. In reality, better prediction of the
actual ET may require parameterisation of the sensitive
parameter(s) that can influence the estimate of ET from the
simulation model significantly. At the point where GA could
not improve the solution any more, the problem could have
been controlled already by the model and data errors.

The different performances of the numerical and
experimental case indicate clearly the danger of focusing
only on the forward-backward approach. Such a numerical
approach takes no account of the simplifications,
assumptions or errors included in any simulation model.
Even the inclusion of a generated random error term in the
simulated “observations”, as seen as the ultimate test in many
studies, does not overcome this problem. This can be
revealed only by the use of real field data.

In addition, GA as a tool is very promising for the inverse
problem in the unsaturated zone. Aside from its advantage
of partially handling the causes of non-uniqueness and being
favourable to highly perturbed functions, the setting up of
parameters to be investigated can conveniently be arranged
in a series of strings; no complex inversion matrix is
required. The concepts of micro and restarting population
minimised the problem of the too much redundant fitness
function evaluations in a conventional GA and thus
improved the computational time. The features of securGA
and 90% convergence criterion improved the search for a
solution. From other tests, however, convergence criteria
lower that 90% did not improve the search; this could be
explained by the reduced opportunity of the good genes in
an individual being shared and expressed in a generation.
For the case of 90% convergence, this disadvantage is
compromised by the increased frequency of the fresh influx
of new genetic materials. However, a comparison of GA
with other methods is highly recommended.

Furthermore, despite the weakness of ET as a criterion in
the inverse problem, its use for the practical application at
regional scale is appealing because ET is so far the most
practical and reliable hydrological component that can be
derived from satellite imagery (Bastiaanssen et al., 1998).
Setting up the inverse problem appropriately could probably
circumvent its weak points.  Further research is needed to
address this uncertainty.
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