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Abstract
Intermittent streamflow is a common occurrence in permeable catchments, especially where there are pumped abstractions to water supply.
Many rainfall-runoff models are not formulated so as to represent ephemeral streamflow behaviour or to allow for the possibility of negative
recharge arising from groundwater pumping. A groundwater model component is formulated here for use in extending existing rainfall-
runoff models to accommodate such ephemeral behaviour. Solutions to the Horton-Izzard equation resulting from the conceptual model of
groundwater storage are adapted and the form of nonlinear storage extended to accommodate negative inputs, water storage below which
outflow ceases, and losses to external springs and underflows below the gauged catchment outlet. The groundwater model component is
demonstrated through using it as an extension of the PDM rainfall-runoff model. It is applied to the River Lavant, a catchment in Southern
England on the English Chalk, where it successfully simulates the ephemeral streamflow behaviour and flood response together with well
level variations.
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Introduction
Ephemeral rivers pose special problems for rainfall-runoff
modelling. A water balance needs to be maintained over
periods when flow ceases in order to simulate correctly the
time at which flow restarts. The water balance of catchments
where groundwater influences dominate is often affected
by the artificial influence of pumped abstractions. Also the
lack of a water balance closure within the surface catchment,
due to subsurface transfers of water across the catchment
boundary, requires special consideration. External spring
flow and underflow beneath the gauging station can be
important influences.

The purpose here is to develop a generic model component
for representing groundwater storage under the influence
of pumped abstractions, spring flows and underflows. This
model component can be used as part of the configuration
of a rainfall-runoff model for application to groundwater
dominated catchments. Application of the model component
is illustrated here by using it to create an extended form of
the PDM rainfall-runoff model, widely used in the UK for
flow forecasting (Moore, 1999; Institute of Hydrology, 1992,
1996; CEH, 2000). By way of background, the first part of

the paper reviews the basic form of the PDM model. It then
focuses on the PDM’s nonlinear storage representation of
an aquifer and how this can be extended to represent
ephemeral flows at times when recharge fails to offset
“groundwater losses”, particularly those associated with
pumped abstractions.

Application of the extended PDM rainfall-runoff model
is demonstrated using the Lavant catchment situated on the
Chalk of southern England. At times of high groundwater
levels, this catchment can become highly responsive to
rainfall causing flooding of the town of Chichester. It is
demonstrated how both the long-term seasonal response and
the dynamic storm response of the catchment are captured
by the model when used to simulate both flows and
groundwater levels.

The Probability Distributed Model
The Probability Distributed Model, or PDM, is a fairly
general conceptual rainfall-runoff model which transforms
rainfall and evaporation data to flow at the catchment outlet
(Moore, 1985, 1986, 1999). Figure 1 illustrates the general
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form of the model. The PDM has been designed more as a
toolkit of model components than as a fixed model construct
and extending a component, as done here to represent
ephemeral flows, can be relatively straightforward. Several
options are available in the overall model formulation which
allows a broad range of hydrological behaviours to be
represented.

Runoff production at a point in the catchment is controlled
by the absorption capacity encompassing canopy
interception, surface detention and soil water storage
processes. This can be conceptualised as a simple store with
a given storage capacity. By considering that different points
in a catchment have differing storage capacities and that
the spatial variation of capacity can be described by a
probability distribution, it is possible to formulate a simple
runoff production model which integrates the point runoffs
to yield the catchment direct runoff prior to translation to
the catchment outlet as surface runoff (Moore, 1985). Other
models utilising this probability distributed principle include
the Xinanjiang model (Zhao et al., 1980) and Arno model
(Todini, 1996).

The standard form of PDM employs a truncated Pareto
distribution of store capacities with probability density
function f(c) and distribution function F(c) given by

(1)

(2)

such that cmin ≤ c ≤ cmax.  Here the shape parameter b controls
the form of variation between the minimum capacity, cmin,
and the maximum capacity, cmax. Over the i’th time interval
(t, t+∆t) with net rainfall rate πi, the volume of basin direct
runoff per unit area generated from this distribution of stores
is

( ) ))()(( tSttStttV i −∆+−∆=∆+ π (3)

where the total water in store across the basin, expressed as
a depth over the basin, is given by

( ) ( ){ }1
minmax
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with a maximum value Smax when C*(t) = cmax. Here, C*(t) is
the critical store capacity below which all stores are saturated
at time t and generating runoff. This capacity is uniquely
related to the water in store across the basin, S(t), such that

(5)

and evolves over the interval according to
( ) ( ) ( )  t +tCC i

** −= τπτ subject to the constraints of the
distribution. The total storage capacity of the basin, Smax, is
equal to the mean of the point storage capacities over the
basin, c =(bcmin+cmax)/(b+1). Also, iiii dEP −′−=π is the
net rainfall rate over the i’th interval resulting from rainfall,
Pi , less losses to evaporation, iE′, and drainage to recharge,
di .  Figure 2 provides a definition diagram for the probability
distributed moisture store which serves to clarify the main
concepts and notation involved (time indicators are omitted
for notational simplicity). Note that, during drying, water is
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Fig. 1. The PDM rainfall-runoff model
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assumed to distribute freely between stores of different depth
so as to maintain an equal water depth across stores that are
not full (Moore, 1985).

Water is lost as evaporation at a rate iE′ from the water in
store as a function of the potential evaporation rate, Ei, and
soil moisture deficit, Smax-S(t), such that

( )( ) eb

i

i

S
tSS

E
E







 −−=

′

max

max1 . (6)

The exponent be is usually set to 1 or 2 to obtain linear or
quadratic forms but higher values can be used to sustain
evaporation even for high soil moisture deficits.

Drainage from the probability-distributed moisture store
passes into groundwater storage as recharge. The rate of
drainage (expressed as a depth over the basin per unit time)
is in proportion to the water in store in excess of a tension
water storage threshold, St , such that

( )( )t
b

gi StSkd g−= −1 (7)

where kg is a drainage time constant and bg is an exponent
(usually set to 1 when kg has units of time). The tension

water threshold can be used to maintain water in store
available to evaporation and can be particularly important
for permeable catchments.

Runoff generated from the saturated probability-
distributed stores contributes to the surface storage,
representing routing of water via fast pathways to the basin
outlet. This is usually represented in the PDM by a cascade
of two linear reservoirs recast as an equivalent transfer
function model (O’Connor, 1982).

The groundwater storage, representing routing of water
to the basin outlet via slow pathways, is usually taken to be
of cubic form, with outflow proportional to the cube of the
amount of water in store. The extension of this storage
component to represent pumped abstractions from
groundwater, losses to underflow and external springs is
the main development of this paper.

The outflow from surface and groundwater storages,
together with any fixed flow representing, say, compensation
releases from reservoirs or constant abstractions, forms the
model output. The parameters involved in the basic form of
PDM model, excluding those involved in the extension to
incorporate groundwater losses, are presented in Table 1.

Fig. 2. Definition diagram for the probability distributed moisture stores. On the right is shown stores of depths in the range cmin
to cmax containing water up to a depth C*. An addition of net rainfall, π∆t, over a time interval (t, t+∆t) increases the water in
store and generates direct runoff. On the left is shown the corresponding distribution function of store depth, F(c), with shaded
areas indicating the volumes of water in store initially, S, and generated subsequently as direct runoff, V. The fraction of the

catchment that is saturated and generating runoff at the start of the interval is F(C*).
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Groundwater storage
The probability-distributed store of the PDM partitions
rainfall into direct runoff, groundwater recharge and soil
moisture storage. Direct runoff is routed through surface
storage: a “fast response system” representing channel and
other fast translation flow paths. Groundwater recharge from
soil water drainage is routed through subsurface storage: a
“slow response system” representing groundwater and other
slow flow paths. The routing of recharge through the
groundwater system can be represented by a variety of types
of nonlinear storage. For notational convenience, S(t) is again
used to denote the volume of stored water, expressed as a
depth over the basin, but now it relates to a nonlinear
groundwater storage and not to a probability-distributed
moisture storage.

The rate of outflow per unit area from a nonlinear storage,
q ≡ q(t), is considered to be proportional to some power, m,
of the volume of water held in the storage per unit area,

S ≡ S(t), so that

00,  , m>k> Skq m= (8)

where k is a time constant with units of inverse time. The
storage here can be conceptualised as a reservoir with a
bottom outlet representing aquifer storage and the release
of water from it as the baseflow component of catchment
flow. Combining the nonlinear storage equation above with
the equation of continuity

q, u  = 
dt
dS − (9)

where u ≡ u(t) is the input to the store, gives

( ) ,<b<,,      q>q qu  = a
dt
dq b 10 ∞−− (10)

Table 1. Parameters of the basic PDM model.

Parameter name Unit Description

fc none rainfall factor
td h time delay

Probability-distributed store
cmin mm minimum store capacity
cmax mm maximum store capacity
b none exponent of truncated Pareto distribution

controlling spatial variability of store
capacity

Evaporation function
be none exponent in actual evaporation function

Recharge function
kg h groundwater recharge time constant
bg none exponent of recharge function
St mm soil tension storage capacity

Surface routing
ks h time constant of cascade of two equal linear

reservoirs (ks=k1=k2)

Groundwater storage routing
kb h mmm-1 baseflow time constant
m none exponent of baseflow nonlinear storage

Artificial influences
qc  m3 s-1 constant flow representing returns/abstractions

1bgmm −
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where a=mk1/m and b=(m-1)/m are two parameters. The
input, in the present context, is the groundwater recharge in
the form of the rate of drainage from the soil per unit area.
This ordinary differential equation has become known as
the Horton-Izzard model (Dooge, 1973) and can be solved
exactly for any rational value of m (Gill, 1976, 1977).

Horton (1945) considered nonlinear storage models as
descriptors of the overland flow process. He found that the
exponent m for fully turbulent flow is 5/3, and for fully
laminar flow is 3. This allowed Horton to define an “index
of turbulence”, I=¾(3-m), ranging from 1 for turbulent flow
to 0 for laminar flow. Horton (1938) found a solution in
terms of tanh (the hyperbolic tangent) when m=2 (the
quadratic storage function), corresponding to I=0.75, which
he referred to as the “75% turbulent flow” case. It is given
a conceptual interpretation as an “unconfined or non-
artesian” storage element by Ding (1967) based on Werner
and Sundquist’s (1951) theoretical analysis of flow from a
deep non-artesian aquifer based on Darcy’s law and Dupuit’s
assumption (they also show that m=1 is appropriate for
confined or artesian aquifers). Todd (1959) provides an
accessible introduction to the groundwater theory involved.
The quadratic storage function was used by Mandeville
(1975) as the basis of the Isolated Event Model (IEM) used
in the UK Flood Study (NERC, 1975) and later adapted for
real-time flood forecasting by Brunsdon and Sargent (1982).
It is also used in the Thames Catchment Model (TCM) to
represent release from groundwater storage (Greenfield,
1984).

The choice of nonlinear storage to use in the PDM includes
the linear, quadratic, exponential, cubic and general
nonlinear forms. The theoretical work of Werner and
Sundquist (1951) and Ding (1967) suggests the use of linear
and quadratic forms for confined (artesian) and unconfined
aquifers respectively. However, a cubic form corresponding
to the laminar flow case (I=0, m=3), has been found useful
in practical applications of the PDM where the hydrograph
recession is initially steep but subsequently is sustained and
slowly decreasing. In this case where q=kS3, an approximate
solution utilising a method due to Smith (1977) yields the
following recursive equation for storage, given a constant
input u over the interval (t, t+∆t):

( ) ( )
( )

( ){ }( ).)(1)(3exp
3

1 32
2 tkSuttkS

tkS
tSttS −−∆−−=∆+

(11)

Discharge may then be obtained simply using the nonlinear
relation

( ) ( ). t+t Skttq ∆=∆+ 3 (12)

Solutions for the other nonlinear forms are presented in
Appendix A. When used to represent groundwater storage,
the input u will be the drainage rate per unit area, di, from
the probability-distributed moisture storage, and the output
q(t) will be the “baseflow” component of flow per unit area
qb(t). The parameterisation kb=k -1 with units h mmm-1 is also
used. Explicit allowance for groundwater abstractions is
incorporated in the extension of the PDM which can also
utilise well level data. The theoretical basis of this extension
is outlined next.

Incorporation of  pumped abstractions
Water held in groundwater storage can be lost to the surface
catchment by pumped abstractions, by underflow below the
gauged catchment outlet or by spring flow external to the
surface catchment. Losses via underflow and spring flow
will be considered later. In the case of abstractions, A, the
nonlinear storage theory introduced in the previous section
requires extension to consider the case of negative net input
to storage, u, and the possibility of storages being drawn
down below a level at which flow at the catchment outlet
ceases. This extension allows for the modelling of ephemeral
streams typical of catchments on the English Chalk.

Formally, the input to the nonlinear storage, u, may be
defined as recharge d, less abstractions, A, dropping the time
suffix for notational simplicity. With u=d–A, the prospect
arises of negative inputs to storage leading to the cessation
of flow. Consider the time interval (t, t+∆t) within which
cessation of flow occurs after a time T´. Using the cubic
storage, q=kS3, for the purposes of illustration, then Eqn.
11 gives the time to flow cessation, T´, by solving

( )
( )

( )( ){ } ( )( )tkSuTtkS
tkS

tS 32
2 13exp

3
10 −−′−−=

which gives
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An extended form of storage is now conceptualised which,
instead of emptying at zero flow, allows for further
withdrawal of water for abstraction (Fig. 3). The “negative
storage” at the end of the interval can then be calculated as
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where a = 3k1/3.
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With further abstractions from storage the negative storage
can be calculated by simple continuity. When recharge
exceeds abstractions the storage is replenished and at some
time flow is initiated once more. The time interval within
the model interval ∆t in which this occurs is calculated by
simple continuity and the residual time interval used in Eqn.
11 in place of ∆t (with S(t)=0). The normal calculations
apply whilst the storage is in surplus. Expressions for the
time to flow cessation, T´, and the initial negative storage,
S(t+∆t), for other types of nonlinear store are given in
Appendix B. As previously indicated, in practice the
parameterisation kb=k-1 with units h mmm-1 is used.

To cater for situations where information on all
abstractions affecting the catchment water balance does not
exist, an abstraction model which scales and adds to known
abstractions is included in the overall model formulation;
thus A=cA+fAAr where Ar is the recorded total abstraction
for a time interval and cA and fA are parameters.

Incorporation of  well level data
If well measurements of groundwater level are available it
is possible to relate the model storage, S≡S(t), to the well
level, Wº≡Wº(t). Well measurements normally record the
depth of the water table from the ground surface. By

introducing a maximum groundwater storage, S g
max , then

the groundwater storage deficit can be calculated as

SSD g −= max
(15)

for both positive and negative values of S. This storage
deficit can be used to calculate the depth to the water table
as

.DYW s= (16)

Here, Ys is the specific yield of the groundwater reservoir,
defined as the volume of water produced per unit aquifer
area per unit decline in hydraulic head. This dimensionless
parameter takes values typically in the range 0.01 to 0.3
(Freeze and Cherry, 1979). An additional datum correction
corresponding to the height of the ground surface at the
well, hw, is required to relate W to observed well levels, Wº,
when these are referenced to Ordnance Datum; then the
modelled depth W is comparable with the observed depth
hw - Wº. The above provides the basis of incorporating well
level measurements into both the model calibration process
and the model state updating procedure. The use of well
level data in model calibration is illustrated in the case study
that follows. Their use for model data assimilation as part

Fig. 3. Conceptualisation of extended nonlinear storage

Losses 
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of a real-time state correction procedure is beyond the scope
of the present paper, which focuses on the simulation
performance of the model.

Incorporation of  losses to underflow
and external springs
Having extended the theory of nonlinear storage models to
accommodate pumped abstractions, it is now appropriate
to consider the conceptualisation of losses to underflow and
external spring flow. Flow emerging from the catchment
beneath the ground surface of the gauging station is referred
to here as underflow. It is reasonable to suppose that
underflow is controlled by the hydraulic head and thus the
water in storage. If Dmax is the maximum deficit for
underflow to occur then the rate of underflow can be defined
as

( ) ,max
1 DDkq uu −= − (17)

where ku is the underflow time constant (units of time). This
is depicted in Fig. 3 as an additional lower outlet to the
nonlinear storage. Note that this conceptualisation of

underflow excludes any local phenomenon more strongly
linked to local river flow than to the groundwater system.

The normal outflow from the nonlinear storage arising
from positive values of storage, S, has been assumed to be
the baseflow component of the flow at the catchment outlet.
An extension allows a fraction, α, to contribute as springs
external to the catchment with flow, qe, whilst the remaining
fraction, (1–α), contributes as the baseflow, qb, at the
catchment outlet (Fig. 3).

The additional parameters introduced into the extended
form of the model are summarised in Table 2.

The Lavant catchment: a case study
application
INTRODUCTION

The Lavant catchment in southern England was selected as
a case study to develop and evaluate the extension of the
PDM model to groundwater-dominated catchments. It has
experienced serious flooding at times of high water table
levels and its water balance is affected by pumped
abstractions, external springflow and underflows beneath
the gauging station (Thomson et al., 1988).

The surface catchment extends over an area of 87 km2 to
its gauging station at Graylingwell, situated north-east of
the main town of Chichester. It is an ephemeral Chalk stream
on the dip-slope of the South Downs, characterised by high
permeability and a rural land use of agriculture with
significant woodland and only a little urban development
close to Graylingwell. Significant groundwater abstractions

Table 2. Additional parameters of the extended PDM
model

Parameter name Unit Description

Underflow
ku h underflow time constant
Dmax mm maximum deficit for

underflow t

External springs
α none fraction of groundwater

outflow contributing
to external springs

Abstraction
cA mm h-1 constant abstraction
fA none factor on recorded

abstractions

Well level

S g
max

mm maximum groundwater
storage

Ys none specific yield of
aquifer

hw m well level datum

Fig. 4. The Lavant catchment to Graylingwell gauging station
showing abstraction, well level and raingauge sites (grid co-
ordinates in km); inset map shows location of catchment in southern
England.

�������
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from wells at Brick Kiln and Lavant reduce river flows.
The gauging structure is a flat-V weir with a weir capacity
of 6 m3 s-1. Bypassing occurs during extreme events, such
as the January 1994 flood peak of 7.1 m3 s-1 estimated at
8.1 m3 s-1.

Figure 4 provides a map of the catchment to the gauging
station at Graylingwell showing the location of the
abstraction and well level sites used in this study and the
recording raingauge at Chichester, a town which can suffer
flooding from the River Lavant.

THE CHICHESTER FLOOD OF 1994

The “Chichester Flood” of January 1994, whilst modest by
international standards, was noteworthy in the UK and
resulted in relatively large damages in the Lavant catchment
and Chichester in particular (Posford Duvivier, 1994).
Whilst groundwater levels were fairly low at the start of the
winter, these rose quickly from 28 November to mid-January
as a result of 350 mm of rain, 40% of which fell in just six
days. The well at Chilgrove (Grid Reference: 4836 1144)
became artesian from 7 January for 18 days and flows in
the Lavant rose from 0.3 m3 s-1 in mid-December to a peak
of 8.1 m3 s-1 on 10 January. The normally slow-responding
flow regime became flashy as the Chalk became saturated.
Above a well level of 69.5 mAOD at Chilgrove, river flows
started to increase markedly faster than groundwater levels.
It has been speculated that above this level a zone of high
permeability Chalk functions as an overflow, providing a
rapid flow path to the river system.

HYDROGEOLOGY

A key feature of the Chalk is its particular form of dual
porosity. The Chalk matrix is so fine-grained and the pore
throats so small in size that the pore water suctions remain
high, stopping the pores from draining fully. This means
that even above the water table the matrix remains largely
saturated and evaporation rates are maintained. This is
represented in the PDM model by the tension water
component controlled by the storage tension threshold
parameter, St, below which free drainage is inhibited whilst
water is made available for evaporation. The zone above
the water table (at atmospheric pressure) is still described
as unsaturated, since pore water pressures are less than
atmospheric pressure. At high pore water suctions (potentials
of less than –5 kPa) hydraulic conductivity is quite constant
at between 1 and 6 mm d-1. With decreasing suctions a rapid
increase in conductivity occurs with typical values in the
range 100 to 1000 mm d-1 as the fracture network becomes
saturated and dominates the flow regime. It is estimated that
10 to 30% of recharge is via fracture or bypass flow rather

than as “piston” flow through the Chalk matrix. This is not
represented explicitly in the current form of the model.

Because of the high porosity (15 to 45%) the matrix is
not readily drained; the effective groundwater storage thus
depends primarily on the fracture network and larger pores
and is probably only 1% of the total saturated Chalk volume.
Pumping tests yield typical values of 0.002 for the storage
coefficient and 500 m2 d-1 for transmissivity. However,
estimates of hydraulic conductivity using a gas permeameter
give typical values of 0.0025 m d-1, implying a very low
transmissivity of 0.25 m2 d-1 for a 100 m thick aquifer. This
serves to highlight the importance of secondary permeability
to groundwater flow in Chalk. Further details of the Chalk
aquifer of the South Downs can be found in the recent survey
edited by Jones and Robins (1999).

MODEL APPLICATION

The extended PDM model was first applied to the Lavant
catchment using a daily time-step over the period 8
December 1991 to 1 January 1997. Potential evaporation
was represented by a simple sine curve over the year with a
mean value of 1.4 mm day-1. The calibration to observed
flow data gave an R2 value of 0.942 (Table 3), accounting
for 94% of the variability in the observed flow series. The
simulated flow hydrograph shown in the upper part of Fig.
5 demonstrates the model’s ability to reproduce the
ephemeral behaviour of the river, including the inception
and cessation time of runoff, as well as the flood peaks.
Calibration to the well level data for West Dean Nursery
gave an R2 value of 0.854. The well level hydrograph shown
in the middle part of Fig. 5 shows very good agreement
until the winter of 1995/96. At this point the modelled well
levels rise and the River Lavant begins to flow whilst in
reality the well levels fall steeply before recovering to normal
levels and there is no river flow. This failing of the model is
under investigation. The lower graph shows catchment
average rainfall in mm over the five-year period.

Note that a formal split sample test involving independent
calibration and evaluation periods has not been invoked
since there are only three flood peaks over the five-year
record. Model performance is regarded as satisfactory on
the basis of visual inspection of the hydrographs, paying
especial attention to the time of initiation and cessation of
runoff, the flood peak magnitude and the shape of the rise
and recession of the hydrograph. The R2 statistic has been
chosen for presentation here as an overall measure of
“goodness-of-fit”; however, other performance measures
were assessed, including root mean square error and bias
statistics. Comments on the model parameters available for
calibration relevant to the robustness of the fitted model are
made at the end of this section.



Incorporation of groundwater losses and well level data in rainfall-runoff models illustrated using the PDM

33

Table 3. Assessment of model performance for the Lavant.

Time-step and Objective Calibrated Model
period function (yes/no) performance, R2

Daily Flow yes 0.942
8/12/1991 – 1/1/1997 Well level yes 0.854

15 minute Flow no 0.958
1/8/1993 – 1/9/1994 Well level no 0.985

Fig. 5. Observed and simulated hydrographs of flow and well level depth (m) together with catchment
rainfall (mm) for the Lavant. Daily time-step model for the period 8 December 1991 to 1 January 1997.
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The continuous time formulation of the model allows it
to be run, without change, at different time-steps. Applying
the model at a 15-minute time-step over a 13 month period
from 1 August 1993 to 1 September 1994, encompassing
the “Chichester Flood” of January 1994, again gave an
excellent R2 value of 0.958 in terms of flow (Table 3). This
was achieved with the model calibrated using daily data
without further adjustment. Assessing the model
performance in terms of simulating well levels gave an R2

of 0.985, again using the model parameters obtained from

the daily calibration. The simulated flow and well
hydrographs are shown in Fig. 6 along with corresponding
15-minute rainfall totals.

Table 4 shows the parameters of the calibrated model.
Worthy of note are the large values for soil tension threshold,
St , and the evaporation exponent, be , which serve to sustain
evaporation losses. The adoption of a cubic form for the
groundwater storage was based on past experience with the
PDM; however, quadratic and linear forms — theoretically
more appropriate for non-artesian and artesian conditions

Fig. 6. Observed and simulated hydrographs of flow and well level depth (m) together with catchment rainfall
(mm) for the Lavant. 15 minute time-step model for the period 1 August 1993 to 1 September 1994.
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respectively — were trialled but failed to improve
performance. The complete knowledge of pumped
abstractions from the Lavant and Brick Kiln wells has meant
that the abstraction model parameters are set to their nullified
values. The external spring component is not invoked as
this failed to improve model performance; it might be
thought to be accommodated implicitly within the underflow
component. This lack of identifiability in conceptual models
which incorporate processes known to be operating in a
catchment, but for which measurements are not available to
support model calibration, is well understood. Whilst the
overall model encompasses as many as 21 parameters, many

are included to invoke special forms of behaviour, only some
of which will be required for a given catchment. Some
parameters can be set to standard values whilst others can
be set to nullify the model function they relate to. This results
in a model with only a modest number of active parameters
for calibration whilst having the advantage of greater
flexibility when this is required. Application of the model
to ungauged catchments would aim to establish a minimum
parameterisation, where possible through establishing
physically-based linkages with digital datasets on terrain,
soil, land use and geology as exemplified by the approach
of Bell and Moore (1998a,b).

Conclusion
The representation of ephemeral flow in conceptual rainfall-
runoff models has been shown to require special treatment.
Groundwater storages conceptualised as nonlinear storage
models, and represented through solutions of the Horton-
Izzard equation, require adaptation and extension.
Adaptation is required to cater for negative inflows arising
when pumped abstractions exceed natural recharge.
Extension is needed to represent cessation of flow below a
given storage, the build-up of storage deficits, and the
subsequent replenishment leading to renewal of flow in the
stream channel. Further extensions may be required to
accommodate transfers of flow across the topographic
boundary of the catchment that are not gauged at the
catchment outlet. These include external spring flows outside
the catchment’s watershed and underflows beneath the
gauging station.

It has been shown how this extended conceptual
groundwater storage element can be incorporated in existing
rainfall-runoff models, using the PDM model for purposes
of illustration. Application to a Chalk catchment in Southern
England has served to demonstrate the success of the model
in simulating both the intermittency of flow and the flood
peak response. Incorporation of well level data into the
model calibration process has also shown that good
agreement with observed water levels can be obtained. Lack
of identifiability of the external spring component served
to confirm the well understood difficulty of representing
too many processes explicitly in a conceptual model without
sufficient observations to support calibration.

The model’s capability of simulation across the full range
of flows in permeable catchments means that its utility
extends from water resource applications, through real-time
flood forecasting, to continuous simulation for land use/
climate change impact assessment and design studies.

Table 4. Extended PDM model parameters for the Lavant
catchment

Model parameter Symbol Value

Rainfall factor fc 0.87

Time delay τd 0.0

Soil moisture
min. depth cmin 0.0
max. depth cmax 430.0
exponent b 0.25

Evaporation exponent be 1000.0

Recharge model
time constant kg 227600.0
soil tension threshold St 85.0
exponent bg 13.0

Surface storage coefficient ks 925.0

Groundwater storage
exponent m 3.0
coefficient kb 340.0

Underflow
time constant ku 38850.0
maximum deficit Dmax 520.0

Spring fraction α 0.0

Abstraction
constant cA 0.0
factor fA 1.0

Well level
max. groundwater storage S g

max 1192.0
specific yield Ys 0.0286
datum hw 83.76

Constant flow qc 0.0
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Appendix A:

Solutions to the Horton-Izzard
equation
The Horton-Izzard equation (Dooge, 1973) for a flow per
unit area, q ≡ q(t), and an input per unit area u ≡ u(t), is

( ) ,<b<,,      q>q qu  = a
dt
dq b 10 ∞−− (A.1)

where a=mk1/m and b=(m-1)/m are two parameters related
to those of the nonlinear storage equation q = k Sm, where
S ≡ S(t) denotes storage per unit area at time t. This ordinary
differential equation can be solved exactly for any rational
value of m (Gill, 1976, 1977). Recursive solutions are
presented here for linear (m=1), quadratic (m=2),
exponential (b=1) and cubic (m=3) cases for a constant input
u over the interval (t, t+T), and for the general case when
u=0.
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LINEAR STORAGE

For m=1 (b=0) the Horton-Izzard equation reduces to the
linear reservoir model with the solution

( )u.eqe=q -Tk
t

-Tk
T+t −+ 1 (A.2)

This is used in the Thames Catchment Model (Greenfield,
1984) to represent unsaturated soil storage. Werner and
Sundquist (1951) and Ding (1967) showed theoretically that
the linear form is applicable to flows from confined or
artesian aquifers.

QUADRATIC STORAGE

The solution for m=2 for a positive input, u, is
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or alternatively
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This predictive equation forms the basis of the Isolated Event
Model (NERC, 1975) and is used in the Thames Catchment
Model to represent release from groundwater storage
(Greenfield, 1984). Werner and Sundquist (1951) and Ding
(1967) showed theoretically that the quadratic form is
applicable to flows from unconfined or non-artesian
aquifers.

For a negative input, u, relevant when abstractions exceed
recharge in groundwater systems, then a valid solution of
the Horton-Izzard equation is

( )( ) ( ){ }.tan tan -12 Tukuquq tTt −√−−√−=+
(A.5)

EXPONENTIAL STORAGE

When b=l (m ∞→ ) in the nonlinear storage model (A.1)
then Moore (l983) shows that the model derives from the
storage equation

( )aS+ = q  aS+ = q γγ exporlog (A.6)

where a is the same parameter as appears in (A.1), and γ is
an intercept parameter. The solution of the Horton-Izzard
equation in this case is

( ) ( ) ( )

( ) ( ) ( )( ) . 
aTuuq+aTu

q
 =

 
aTuuq+uq

q
 = q

t

t

tt

t
T+t
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−−

exp1exp

exp1 (A.7)

This is the “log-storage” model, or more properly the
exponential storage model, derived by Lambert (l972), and
which has been used for flood forecasting on the River Dee
(Central Water Planning Unit, l977).

CUBIC STORAGE

When m = 3, so the relation q = k S3 holds, no simple
recursive solution can be obtained. An approximate
recursive solution can be developed based on the piecewise
linear difference equation solution suggested by Smith
(1977, p213). The recursive solution in terms of storage is

( )( )( )32
2 13exp 

3
1

tt
t

tTt kSuTkS
kS

SS −−−−=+ (A.8)

from which flow can be predicted as

. 3
TtTt kSq ++ = (A.9)

Horton (1945) showed theoretically that the cubic form is
applicable to laminar overland flow.

GENERAL STORAGE IN RECESSION

For the recession case when the input, u=0, then the Horton-
Izzard equation can be solved for all permissible values of
m and k to give

( ) ; b   abT + q = q
/b--b

tT+t 0
1

≠ (A.10)

also for the linear reservoirs case (m=1, b=0), then

( ) .exp qkT  = q tT+t − (A.11)

Appendix B:

Groundwater abstraction, negative
storage and ephemeral flows
When the input, u, to the nonlinear storage is allowed to be
negative and the storage is allowed to develop negative
values, with no outflow, then additional theory is required.
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Such a case might arise when the nonlinear storage is used
to represent a groundwater catchment with input, u, given
by natural recharge less pumped abstractions with the
possibility of ephemeral flows. Two additional expressions
are needed to cater for the transition from the normal
nonlinear storage with positive outflow to the case of zero
outflow and a simple water balance calculation of negative
storage values. If (t, t+T) is the time interval containing the
transition then two quantities are required: the time to flow
cessation T´ (at time t+T´) and the initial negative storage,
S(t+T). Expressions for these are given below for each type
of nonlinear storage.

LINEAR STORE:
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QUADRATIC STORE:
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EXPONENTIAL STORE:

This storage is inappropriate for ephemeral flows since
positivity of flow is required.

CUBIC STORE:
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