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Abstract

This paper addresses the problem of uniqueness of catchment areas in relation to model representations of flow processes. The
uniqueness of field measurements as a limitation on model representations is discussed. The treatment of uniqueness as a residual
from a modelled relationship may conceal information about the uniqueness of catchments, while the treatment of uniqueness as a set
of parameter values within a particular model structure is problematic due to the equifinality of model structures and parameter sets.
The analysis suggests that a fully reductionist approach to describe the uniqueness of individual catchment areas by the aggregation
of descriptions of small scale behaviour will be impossible given current measurement technologies. A suggested strategy for the
representation of uniqueness of place as a fuzzy mapping of the landscape into a model space is suggested. This will lead to a
quantification of the uncertainty in predictions of any particular location in a way that allows a conditioning of the mapping on the
basis of the available data. This process can incorporate a hypothesis testing approach to model evaluation but the problem of
multiple behavioural models may provide an ultimate limitation on the realism of process representations: not on the principle of
realism but on the possibility of unambiguous process representations.

The character of uniqueness of place

It is a geographical aphorism that all places are unique. This
is one reason why the progression from empirical observa-
tion and classification to theorising has been relatively slow
in many areas of the geographical and environmental
sciences including hydrology. Such theorising has also
tended to be somewhat speculative, resulting in conceptual
models rather than theory, particularly when applied to real,
rather than laboratory, scale systems. In such applications,
models have been commonly developed as specific tools for
specific purposes, reflecting the demand for quantitative
predictions that has grown with the increase in the
availability and power of computers. This demand has,
however, been largely a sociological response to techno-
logical advances in the means of making predictions; it has
not necessarily been a response to an increasing scientific
basis for those predictions. Why? Primarily, as will become
clear, because of uniqueness of place.

It is, of course, not only the technology underlying
predictive models that has improved. The technology of
observation and of recording and analysis of observations
has also improved. There is no doubt that this has led to
improved scientific understanding of hydrological pro-
cesses, at least at the small scale. Most of the measurement
techniques available to the hydrologist for studying pro-

cesses directly are limited to the point, plot or patch scale.
Detailed studies at such scales have led to an improved
recognition of the heterogeneity and complexity of the flow
processes (e.g. Flury er al, 1994; Binley et al, 1996;
Henderson et al., 1996). Parameters such as hydraulic
conductivity, dispersivity and surface roughness have
become scale dependent, if they can be calculated at all at
larger scales in media with strong preferential flow
components (see discussion in Beven, 1996). Values of
parameters calculated by the calibration of models have been
recognised as being effective values that may not have a
physical interpretation outside of the model structure within
which they were calibrated, and may be scale dependent
even within that structure (e.g. Bruneau ez al, 1995;
Franchini ez al., 1996; Saulnier ez al., 1997). Recognition of
such small scale complexity and its implications has not
really, however, led to an improved scientific approach to
dealing with it.

There have been, certainly, some theoretical develop-
ments in addressing the problems of heterogeneity,
particularly in the field of groundwater flow and transport.
Assuming a statistical structure for the spatial heterogeneity
of aquifer properties, the resulting scale dependent effective
parameters can be inferred (see for example Dagan, 1986).
This is an advance, but at the expense of introducing
parameters that must be defined at each (unique) site at
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which the theory is to be applied. The only way of defining
such parameters at present appears to be by calibration
against observations, as demonstrated, for example, in
applications to the results of some of the large scale tracer
tests that have become available in recent years. Even so,
attempts to model flow and transport given small scale
information about aquifer properties have not generally
been very successful without some optimisation of par-
ameter values. Moltyaner ez al. (1993), for example, con-
cluded that it was necessary to use velocities directly derived
from tracer measurements rather than estimated from a
hydraulic conductivity and gradient using Darcy’s Law to
obtain adequate predictions of solute transport. This,
however, begs the question of how far such velocities may
be extrapolated to other flow conditions and nearby sites.

At the catchment scale, there is the continuing problem of
the extrapolation of knowledge to sites where no data are
available. This regionalisation problem has largely resisted
both empirical and physically-based approaches. It is
difficult because catchments are unique in their particular
characteristics of topography, soil, rocks, vegetation and
anthropogenic modification. It would appear that aquifers
and catchments remain unique in a way that transcends the
most advanced theorising available. In what follows, this
problem will be analysed further with the aim of assessing
whether this is inevitable, and if so, what approach should
be taken to modelling catchments as unique entities.

Uniqueness in field observations

With a few exceptions, measurement techniques in
hydrology are point measurement techniques. Very few
techniques give a direct representation of the spatial
patterns of hydrological behaviour. A discharge measure-
ment is a point measurement that integrates over all the
intra-catchment spatial patterns of hydrological behaviour
that affect the response characteristics at that point. Not a
lot about the internal dynamics of a catchment; can be
learned unambiguously from a discharge measurement;
perhaps some mean residence times (Jakeman and Horn-
berger, 1993; Young and Beven, 1994) may be determined
but even these may be subject to some nonstationarity and
uncertainty. Raingauges, tensiometers, soil moisture probes,
_ piezometers, soil solution lysimeters, are also point
measurements, at scales small enough that multiple
measurements may reveal considerable local heterogeneity.
All will reflect an integration over some effective volume
(Cushman, 1994), but in general this will be small compared
with the scale of heterogeneity of the flow domain. In
essence, the measurements have a uniqueness that reflects

the conditions at that particular location (and that particular ™

time of measurement). The-difference in scales of measure-
ment and heterogeneity means that the measurement may
not always be “representative” of a larger volume of the flow
domain.
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The extent of this problem varies with the process and
flow conditions. Measurements of pressure in saturated
conditions, for example, will tend to reflect an effective
integration over-a much larger volume (because of the rapid
dissipation of local pressure differences in saturated flow)
than for unsaturated conditions where, in structured soils,
the integration volume for a pressure measurement may be
very small. When the difference in scales is large, a very
large number of samples may be required to obtain an
adequate characterisation of conditions. A long time ago,
Hills and Reynolds (1969), using a gravimetric analysis of
near surface soil samples, estimated that 80 samples would
be required to estimate mean surface soil moisture of a
catchment to 95% confidence (or 490 samples to 98%
confidence). Correlation lengths are expected to be small for
such measurements. How many studies since have followed
such a recommendation, or even made the same calculation
from the smaller number of samples collected? And if spatial
correlation is to be taken into account, how many samples
(and holes) would be needed, given that there is some
evidence that the correlation structure of soil variables may
be (empirically) described as fractal (see the review and
example data set from the Tarrawarra catchment of Western
et al., 1998). In addition, it has been shown that, under
certain conditions at least, near surface soil moisture
exhibits a structure that reflects that of the topography
but that under dry conditions this may degrade to a
stochastic pattern without strong spatial structure (again,
the Tarrawarra catchment provides a good example, see
Grayson et al., 1997).

A further question then arises. If it is not feasible to have
an adequate characterisation of the spatial heterogeneity of
characteristics and flow processes, by means of the detailed
measurement techniques available, how is the uniqueness of
individual hillslopes or catchments to be assessed? Some
broader scale characteristics can be assessed, certainly. The
surface topography, vegetation type, geology and soil classi-
fication, for example, are widely available now in geogra-
phical information system databases. These databases are
now being used to define hydrological response units in
modelling (e.g. Schultz, 1994; Fligel, 1996; Becker and
Braun, 1999). However, these give information that may be
only broadly hydrologically relevant. On some hillslopes,
bedrock topography may be more significantly related to
flow patterns than surface topography. Soil texture derived
hydraulic characteristics (pedotransfer functions) may not
give good simulations of soil water behaviour where
preferential flows are important. There may also be strong
differences in transpiration over short distances within a
single vegetation type where downslope flow results in
strong differences in water availability during dry condi-
tions. Thus, there may be considerable uncertainty
associated with the estimation of parameter values to
represent a particular hydrological response unit, or
hillslope or catchment, on the basis of such data. The
question is not yet answered adequately.
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There is a reductionist argument that suggests that if
better models for the nature and effects of heterogeneity
could be developed, then a better representation of indi-
vidual sites might be possible. This is one of the arguments
made by De Marsily (1994). He uses the example of
modelling the structure of fluvial deposition as a way of
characterising the structure of certain aquifers (e.g. Gross
and Small, 1998). For advancing understanding of flow
processes under different circumstances, this may be an
important path to pursue but in applications to real aquifers
and catchments this argument seems flawed. However such
models are constructed, they will have some parameters that
will need to be defined for each application site. There may,
indeed, be many such parameters, regardless of whether a
model structure is a perfect physical representation or
whether the model is a simplified, largely statistical, repre-
sentation of the small scale heterogeneity. In both cases, the
uniqueness of a site must be reflected in specific parameter
values (or distributions of parameter values) within the
model structure.

The reductionist argument suggests that because these
parameters represent more fundamental descriptions of
nature, they should be easier to define or measure. I do not
agree with this argument. I believe that, in a measurement
technique limited field of study, such as hydrology, the
measurement or unambiguous definition of parameters for
small scale descriptions will be impossible. I use unambig-
uous since one consequence of measurement limitations is
that that there may be many different models or parameter
sets within a model that might be equally acceptable
descriptors of the (often limited) data that are available to
any study (Beven, 1993, 1996). It is important to note that
this will be true in applications even if the perfect model
structure was known (which, as yet at least, it is not).

In fact, at the current state of knowledge, the assumption
of specific model structures for the description of the spatial
variation of parameter values (as, for example, in Dagan,
1986, and others) may be misleading if the resulting theories
are constrained by such assumptions in such a way that the
scaling behaviour of a particular site will be wrongly
predicted. This is not in any way to deny the value of such
studies which represent real progress in trying to understand
the scaling and aggregation issues. After all, the assumptions
can, in principle, be checked for validity in any particular
application. The problem is the effort required to do so in
that particular application, such that assumptions, originally
made for reasons of mathematical tractability as much as for
physical realism, might be accepted without proper testing.

This problem of effort is a fundamental limitation on the
use of scaling theories in the prediction of responses for real
unique sites. With current and foreseeable measurement
techniques, the consequence of this limitation is’ that the
aggregation of the small scale to the large scale will prove
generally unachievable (for an extended argument see
Beven, 1995). Essentially, there is much about the unique-
ness of the subsurface flow domain that will remain

unknowable, 4 fortiori, and is revealed only in the responses
observed at larger scale, with all the limitations of knowledge
that those observations imply. Hence, there are difficulties
in predicting discharges as well as the element of surprise
associated with any large scale tracer experiment. Such
larger scale measurements are, however, unambiguous.
They represent the real response (albeit still within the
limitations of measurement scales, sampling densities, time
resolution and measurement accuracy). The difficulty is
then extrapolating from those sets of measurements that are
available to applications to other conditions and other sites
(as noted above in respect of the use of tracer velocities in
the simulations of Moltyaner er al, 1993). For this
extrapolation, models are needed but perhaps not necessa-
rily a fully reductionist physical description.

Uniqueness as model residuals

The catchment hydrological system is an open, energy
dissipating system whose characteristics are the result of the
action of nonlinear interacting processes subject to pseudo-
random forcing conditions (together with the effects of man)
that have changed over time. The response of such systems
is known to be sensitive to the initial and boundary
conditions, to the extent that in some such systems chaotic
behaviour may ensue. If the responses of hydrological
systems are not demonstrably chaotic over short periods of
time, it is because the responses are strongly constrained by
the boundary conditions associated with individual events.
In short, the hydrograph resulting from each event cannot
have a volume greater than the rainfall inputs. This still
leaves scope for the sensitivity of possible hydrograph
volumes and shapes to initial conditions and interactions
between processes. In the past such variability has been
adjudged as stochastic rather than chaotic and, with limited
data, it may be impossible to distinguish between these forms
of explanation (see the discussion in Wilcox et al., 1991).

Opver longer periods of time, such nonlinear systems have
a tendency to display emergent characteristics associated
with the concept of self-organised criticality. This appears
to be true of hydrological systems in that the continual flux
of water, solutes and sediment through the system results in
drainage networks that have some (generally dendritic)
similarities and are, at least over a certain range of scales,
scaling (see, for example, Rodriguez-Iturbe and Rinaldo,
1997). This is one area where theories of scaling have been
proposed (e.g. Gupta and Dawdy, 1995). It suggests that
there may be a way out of the uniqueness problem if this
self-organisation allows the establishment of criteria for
similarity and scaling of catchment responses.

The study of scaling behaviour across a wide range of
catchments, as in the studies of Gupta et al. (1994) and
Gupta and Dawdy (1995) is one example of a regionalisation
model that seeks to find structure in catchment responses, at
least for regions that are “homogeneous” in some sense. As
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Gupta et al. (1994) note, there may still be a wide degree of
variability about the postulated structural relations in the
data for individual catchments (their example was for
catchments in Applachia; see also the example of instanta-
neous unit hydrograph (IUH) parameters for Bavarian
catchments in Becker and Braun, 1999). Similar variability
has been found in the past in attempts to regionalise
hydrological responses using multiple regressions against
indices of catchment characteristics (e.g. NERC, 1975;
Pilgrim, 1987; Post and Jakeman, 1994). The uniqueness of
the response of individual catchments in this context, as
measured, appears as a residual from a model structure.
Traditional statistical analysis, of course, assigns the
residuals to purely stochastic effects but, from a physical
viewpoint, there may still be information in the residuals.
Why do some catchments tend on average to produce
higher peak flows than the regional modal behaviour; why
do some catchments tend on average to produce lower peak
flows, even after taking account of either catchment
characteristics (in so far as they can be represented by the
available indices) or network scale transformations (see
Acreman and Sinclair, 1986 for a sub-regional examination
of this type)? Uniqueness of individual catchments may be
one reason, but the phrase “as measured” is also important
here, since there may also be effects associated with error in
the measurements, particularly for peak flows, the spatial
variability of rainfalls in individual events, and the length
and period of the record for different catchments which may
not be consistent across the set of catchments analysed.
Perhaps because of the implicit assumptions of traditional
statistical analysis, there appéar to have been few detailed
studies of the information content of such model residuals.
A detailed examination of the original historical data sources
and catchment responses would clearly be far more time
consuming than the simple piecewise regression of available
variables traditionally undertaken, but it may be in the
evidence of differences between catchments due to different
initial conditions and trajectories of development, rather
than in their similarities, that the hope for improving
predictability may lie. The uniqueness of individual catch-
ments lies in these differences. It may be possible to learn
from studies of similarity in structure and behaviour at the
catchment scale: it may be possible to learn more from the
deviations or residuals of individual catchments away from
some ideal self-organised structure and behaviour at the
catchment scale. -
Investigation of these residuals requires some degree of
reductionism in the sense that an explanation must be
sought in the intra-catchment characteristics and processes
of a study basin. This is where the limitations of the
available measurement techniques in hydrology become

critical, since there is then a jump in what can be prdperly ™

quantified down to the point scale, as discussed above. The
proper characterisation of intra-catchment hydrological
response units remains an open problem, especially when
each is itself unique. It seems clear to me that characterising
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this uniqueness will not be possible by the aggregation of
small scale process descriptions (though other authors
might disagree, e.g. Becker and Braun, 1999).

Uniqueness as model parameters

Another widespread use of models as a means of extra-
polating understanding from catchment to catchment is in
the form of simulation models. A model structure, found to
be acceptable in one catchment, is applied to another
catchment. This, however, usually requires the calibration
of parameter values for each application site. The unique-
ness of the catchment will then be reflected in the parameter
values that represent it, whether those parameters be
specified by measurement, estimation & priors, or calibration
against some variables observed at the site. In some studies,
attempts have been made to combine parameter estimation
with regionalisation of calibrated parameter values for
gauged sites by regression against indices of catchment
characteristics, with the aim of predicting parameter values
for ungauged sites (e.g NERC, 1975; Post and Jakeman,
1994). Such an approach is fraught with difficulties, not
least because (again) there may be no single model structure,
or parameter set within a model structure, that is an
optimum representation of a catchment. Most models have
sufficient degrees of freedom that they can be calibrated to
give acceptable simulations of the discharge responses of
gauged catchments at the catchment scale, at least if
acceptable is not defined too tightly! Indeed, there is
evidence that many different parameter sets might be
considered acceptable if the concept of finding an optimum
is relaxed in favour of a concept of equifinality of models
(see discussions in Beven, 1993, 1996). Thus, there is an
implication that the uniqueness of a particular catchment
may not be unequivocally represented by a set of calibrated
parameters.

Interpretation of the values of individual parameters must
also be made very carefully; the values may have meaning
only in the context of a particular model structure and
values of the other parameters within that structure.
Extrapolation of parameter values to other catchments
may then be highly uncertain. Note that in what follows the
word model will be used to indicate a particular combination
of model structure and set of parameter values within that
model structure.

Dealing with uniqueness in the face
of uncertainty: beyond a reductionist
approach

The discussion above has suggested that:

®  As a result of measurement constraints, there may be
limitations to the possibility of dealing with uniqueness



Uniqueness of place and process representations in hydrological modelling

of individual catchment areas through a fully reduc-
tionist approach and it may be necessary to distinguish
between the representation of the effects of small scale
heterogeneity for understanding and the description of
uniqueness at larger scales for the purposes of
prediction.

e It may be as yet very difficult, if not impossible, to
describe the uniqueness of individual catchment areas
by the aggregation of descriptions of small scale process
behaviour.

® There may be information in the interpretation of the
uniqueness of individual catchments areas as residuals
from regionalised structural relationships or regres-
sions, but there may also be significant residual
uncertainty in such relationships and potential in-
formation in the residuals.

e It may not be possible to represent the uniqueness of
individual catchment areas unambiguously by the
calibration of model parameters.

Thus, if a description on the basis of small scale
parameterisations is currently impossible, and large scale
representations are uncertain, how to proceed in the future
to address the requirement of prediction of the process
controls and hydrological responses of unique areas? One
suggestion is to do so within a framework of model
conditioning and rejection. Assume that one or more models
have been chosen as potential predictors for an application.
The type of model(s) chosen will depend on the aims of the
application but might include, for example, empirical
regionalisation models for the case of estimating the
response of an ungauged catchment, or a more physically-
based structure for predicting the response of an area to
significant changes. In each case, there will be some
parameters involved, but it may be possible to estimate
values of those parameters only within some limits of
uncertainty. Those limits might specify only some feasible
range of parameter values; some estimators might allow the
definition of joint prior distributions for parameter values.
Running the model or models, taking account of such

uncertainty in the parameter values will then give a range of

predictions that should reflect the possible effects of
uniqueness of a catchment on any variation from an
expectation or mean prediction.

It is, of course, possible to stop at that point. The range of
predictions, conditioned on the prior knowledge embodied
in the prediction methodology, can be used directly in any
risk based decision analysis associated with the application.
The range of predictions may be expected to be quite wide;
however, it might be possible to represent the unique
response of the area being studied more closely by further
conditioning based on data collected at the site. Different
types of data might have different values in such a
conditioning process and this focuses attention on what
type of data might best be used for conditioning for different
types of application or desired predictive capability. It will

be demonstrated below that this problem can be posed
within a scientific hypothesis testing framework.

Uniqueness as a mapping from the
landscape into a model space

If the idea of a single model representation of a unique
hydrological system is rejected (the logical consequence of
the arguments presented above), then an acceptance of
uncertainty in the representation of that system must follow.
Traditionally, such uncertainty has been assessed by
exploring the sensitivity of predictions to parameter
variations around some “optimal” model. The type of
conditioning discussed in the previous section is, however, a
more flexible and realistic representation of such uncer-
tainty. It also has an interesting interpretation as a mapping
of the landscape into a specified model space.

This interpretation follows in a straightforward way from
the explicit recognition of the problem of equifinality in
representing the uniqueness of individual sites. Accept, for
the moment, that the limitations of hydrological process
theory are such that it is not possible to identify a single
model (model structure or set of parameter values) as a
unique representation of a unique catchment area. This may
be regarded as a fundamental limitation or as only a
temporary limitation resulting from the inadequate means of
investigation today that will be overcome in the future: it
does not matter to the discussion below.

If, then, it is accepted that it is impossible to identify a
single model of the catchment of interest, there must be
many models (or parameter sets) that must necessarily be
considered the “behavioural” in that they are compatible
with the (limited) observations available for that catchment
and the perceptions of the processes controlling the
response of that catchment. These “behavioural” models
will occupy part of what might be called the “model space”.
The model space will be a high-dimensional space with
dimensions for different parameters and, possibly, for
different model structures. Behavioural models will not fill
the model space (in that some and, perhaps, the majority of
models, will be considered as non-behavioural) but may be
scattered widely throughout the space rather than restricted
to some local region of the model space (see for example,
Duan ez al., 1992; Beven, 1993; Freer et al., 1996; Franks
and Beven, 1997a). The feature that behavioural models
have in common is similarity in function; function that is, in
some sense, also similar to the real catchment. It is
important to note that the fact that there may be many
models of similar function, is not only a product of
limitations of current knowledge. Even if a perfect model
structure that would be an ideal representation of hydro-
logical reality could be defined, that model structure would
still have parameters that would need to be specified to
represent a particular unique catchment area. For the
perfect model structure, the number of parameter values
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might, indeed, be semi-infinite. There will then be plenty of
opportunity for interactions between parameter values such
that many different parameter sets will produce similar
(perhaps behavioural) functions and predictions within
some limit of acceptability. Thus, unless those parameter
values can be identified accurately by some independent
means, there may be many behavioural models even for the
perfect model structure.

Thus, the cloud (or many clouds) of models that are
behavioural in representing a catchment under study in
effect represents a mapping of the catchment into the model
space (Fig. 1). Such a mapping, using fuzzy weights, has
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Fig. 1. A. A landscape space represented as pixels or patches. B.
Representation of the pixels or patches in a model space with N
parameter dimensions (here N = 3). Each dot represents a model with

a set of parameter values for which the simulated variables are__
consistent with the data available for the pixel. C. Grouping of models
into functional classes according to similarity of predictions for some
variable of interest. Note that models compatible with the data for a
pixel may map into different functional classes (see, for example,
Franks and Beven, 1997b).
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been demonstrated for the case of predicting landscape scale
latent heat fluxes by Franks and Beven (1997b). The unique
catchment or landscape now no longer occupies a unique
location in the model space but a fuzzy set of locations. The
mapping can, however, be used in predicting the responses
under different conditions or for different periods, since the
predictions of individual models within the behavioural set
can be used to form a cumulative distribution function of
predictions from which any quantiles can be extracted to
calculate prediction bounds in a way similar to the Monte
Carlo sampling of the Generalised Likelihood Uncertainty
Estimation (GLUE) methodology of Beven and Binley
(1992).

Different (unique) catchments will generally map into
different fuzzy sets in the model space. The intersection of
the sets associated with different catchments will reflect
their similarities or differences in function in a far more
realistic way than an assessment. based on “optimal”
parameter values.

The concept of such a mapping is not difficult to grasp
but requires a recognition that the ultimate realist goal of a
“true” representation of hydrological processes and catch-
ment responses may not be achievable. The hydrologist may
have a good qualitative perception of the physics of the
processes involved, but the heterogeneities and complexities
of the flow domain and the resulting process interactions are
such that a fully realist mathematical description seems
likely to remain elusive for the foreseeable future (see
discussions in Morton, 1993; Oreskes et al., 1994; Beven,
1995, 1996). The proposed approach is not inconsistent
with a realist philosophy or with the ultimate aim of a “true”
representation of hydrological processes. In fact, despite the
fuzziness of the mapping being advocated here, the
approach can be formulated within a fully scientific
hypothesis testing framework (see below).

Mapping into a model space by
monte carlo simulation

It might be accepted that, in principle, there are many
models within the model space that are compatible with the
available knowledge and observations of a particular
hydrological system, but there is still then a problem of
identifying where in the model space those models lie. A
general, if not always practical, approach te this problem is
the type of uniform Monte Carlo simulation approach used
in the GLUE methodology of Beven and Binley (1992). For
each parameter (within each model structure if more than
one is considered) a range of feasible values for that
parameter is specified. Random sets of parameters are
generated uniformly within the model space and run within
the appropriate model structure. The results are assessed to
see whether that model will be accepted as behavioural.
This type of sampling of the model space is easy to
implement and requires minimal prior assumptions about
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the distribution and covariation of the parameters. The

practical difficulty of this simple approach is that, as the
complexity of the model and number of parameter
dimensions increases, very large numbers of simulations
are required to achieve more than a very coarse sampling of
the model space. Ideally, the most efficient sampling
strategy would be to sample only where behavioural
simulations would be expected in the model space, but this
may be very difficult to achieve in practice since experience
suggests that behavioural simulations may be scattered
through the model space as a result of local parameter
interactions.

If there is some prior knowledge about the nature of
parameter interactions, or combinations of parameter values
that should not be considered feasible, it can be used to
guide the sampling but in general this will not be the case.
Methods of importance sampling, such the various methods
of Monte Carlo Markov Chain (MC?) sampling, can be used
to refine the sampling as more is learned about the nature of
the model space (see, for example, Sen and Stoffa, 1996).
Most MC? methods, however, require restrictive assump-
tions about the nature of the space (such as multivariate
normal parameter distributions) that may not be borne out
by a detailed exploration of the space that often shows
highly complex variations in the behavioural measures.
There are other methods of refining the sampling strategy,
such as the Tree Structured Density Estimation approach of
Spear et al. (1994) that are essentially assumption free.
These use an initial exploration of the pattern of behavioural
simulations in model space to guide later sampling iterations
to increase the density of sampling in the areas where there
is the greatest probability of finding behavioural simula-
tions. In this way, the number of simulations run that are
found to be non-behavioural may be greatly reduced (but at
the risk of leaving some areas of behavioural simulations
undetected). Such methods require further exploration.

However, with simple models it is now possible to make
many thousands of simulations runs, particularly using
distributed memory parallel computers. Providing a single
run of the model will fit on a single processor, these systems
are ideally suited to Monte Carlo simulation. At Lancaster, a
20 processor parallel PC system running under Linux, uses
Pentium II processors each with 64 Mbyte of memory
linked by a fast 100 MHz Ethernet network. This system is
capable of running at speeds of 2.5 Gflops. At less than
£1000 stg. per node, such a system is highly cost effective
for this type of calculation. It does, however, produce a very
large volume of results to be analysed!!

Fuzzy mapping into the model space
and prediction uncertainty -
Once such a mapping has been achieved it can be used for

prediction. Interestingly, if the chosen model is determi-
nistic, the deterministic nature of the model predictions is

retained i.e. for any input sequence, the outputs from any
parameter set in the model space are known precisely. This
has been used by Franks and Beven (1997b) to reduce the
number of model prediction runs required by analysing the
model space to identify different functional behaviours
(Beven and Franks, 1999). It is, after all, the prediction of
the functioning of a particular unique part of the landscape
that we are trying to represent and it may be possible to
define similarity in function within the model space. The
fuzzy weights can then be used in a manner analogous to
that of the GLUE methodology of Beven and Binley (1992)
to weight the predictions of the associated models, forming a
cumulative weight distribution function of the predicted
variables of interest. Modal and quantile values from this
distribution can then be used to represent the uncertainty in
the predictions.

Uniqueness, process representations,
data collection and hypothesis
testing in hydrology

It will generally be found in any such exploration of the
model space that there are many different behavioural
models that are, in some sense, acceptable in describing and
predicting the responses of the hydrological systems in
which we are interested. We have noted that the set of
behavioural models is necessarily defined in terms of
describing a particular hydrological system and conse-
quently must share a similarity in function to that real
system (as defined in some practically useful way). The
many behavioural models may, however, produce similar
functionality in different ways, for example with different
proportions of surface and subsurface flow pathways in
predicting stream discharges. Thus, there is the opportunity
to examine the collection of behavioural models and propose
testable hypotheses based on process implications. The
behavioural models could, in this sense, be considered as
multiple working hypotheses. A critical test, involving the
collection of additional data or additional types of data,
might then, at least for well formulated tests, eliminate some
of those possibilities as incompatible with the new knowl-
edge of the processes.

The key, then, is the collection of data. Data that will
allow some of the potential responses to be eliminated as
unlikely and will condition the possibility or probability
weights associated with others in the model space mapping.
Either Bayesian or Fuzzy conditioning procedures could be
used at this point (e.g. Freer et al., 1996; Franks et al,
1997a; Franks ez al., 1998). The value of additional data in
conditioning the feasible responses can be evaluated using
different uncertainty measures (see for example Beven and
Binley, 1992). Different types of data may be more or less
effective in such conditioning and, in particular, in the
rejection of different models. Indeed, this could be formu-
lated as an interactive process, where the range of model
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predictions is used to decide the most cost-effective data
collection/hypothesis testing strategy for conditioning the
prior predictions to a particular site. This would be
expected to lead to some of the models considered
behavioural until the new data are available being rejected
or falsified.

It is not often, however, such a controlled process. More
usually opportunist use will be made of whatever data are
available within the time and financial constraints available.
Only rarely is it possible to plan experiments with such
hypothesis testing in mind and, even then, the measurement
techniques available may not support the critical tests
needed. However, there is some evidence that much might
be gained from looking at different types of data. Franks ez
al. (1998), for example, in an application of TOPMODEL
to the Naizin catchment in Brittany were able to use the
capability of TOPMODEL to predict saturated contribut-
ing areas in conjunction with some very imprecise data on
contributing areas obtained from multiple ERS-1 radar data
together with some local ground observations. The result of
using this additional data was to reject many of the models
considered behavioural only on the basis of a comparison of
observed and predicted discharges. A transmissivity par-
ameter, in particular, was dramatically constrained in its
behavioural range in the model space.

Thus, it would appear that there is value in gaining
additional information from more detailed process studies in
constraining the possible behavioural models. There are,
however, two further considerations that make such
constraints within a hypothesis testing framework difficult.
The first is again concerned with the uniqueness of
catchments and of locations within catchments. Collecting
data about processes generally means restricting measure-
ments to a number of locations that may not have the same
characteristics as other similar locations within a catchment.
Thus, if the interest is in testing the feasible range of a
particular parameter, such as transmissivity, at a site then it
does not follow that the same range will apply at other sites.
There is the potential for local variations in such values (as is
expected from our perceptual model of the catchment
system). Local variations in parameter values, however,
essentially add dimensions (and the potential for additional
interactions between parameters) to the model space. Thus,
although information is being added, the value of that data
~ will not necessarily have other than local value. The use of
the remotely sensed contributing area information by
Franks et al. (1998) was successful in this respect because
it provided a global constraint, despite the limited accuracy
in estimating the catchment scale contributing areas.

The second problem is that testing of models with respect
to more detailed process information might lead to the
rejection of all the available models as non-behavioural. The ™
point has been made many times in the literature that the
calibration of catchment rainfall-runoff models to repro-
duce catchment discharges to some level of acceptability is
generally not a difficult problem. Even lumped models with
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3 or 4 parameters can often achieve this. Reproduction of

catchment discharges does not imply an adequate reproduc-
tion of flow processes, however, even in terms of a gross
differentiation between surface and subsurface runoff
generation (which is, after all, not always necessarily easy
to observe in the field). One example is provided by the
attempts by Lamb ez a/. (1998) to model the behaviour of the
small Saeternbekken catchment in Norway, again using a
variant on TOPMODEL. This catchment has observations
on over 100 piezometers made at a number of different flow
stages. The model does well in reproducing the catchment
discharges using catchment scale effective parameters but
not so well in reproducing the spatial patterns of water table
measurements. Using one of the sets of piezometer
measurements to derive local transmissivity parameters for
those points, helps improve the predictions at many of those
points but there are still some points that are not well
predicted, and there is still a significant part of the
catchment for which no measurements were made and
where there will remain significant uncertainty in transmis-
sivity. The additional conditioning on the local water table
measurements in this catchment in fact makes little
difference to the uncertainty in predicting the catchment
discharges. Thus, while the model has important predictive
capability and, while allowing for local transmissivity values
gives an important improvement in predicting the pattern of
water table variations, all the models still fail to reproduce all
the available data satisfactorily. In one sense, therefore all
the models are non-behavioural.

In fact, we would surely expect that a catchment scale
model is unlikely to predict the hydrology at all points in the
catchment precisely. In the Saeternbekken study,
TOPMODEL is recognised as representing only an
approximate description of the flow processes but it is
difficult to envisage even the most detailed physically based
models faring any better in this respect. Even our most
detailed models, when applied at the catchment scale, have
limitations in their process descriptions. The retention of
some models will, however, be necessary to retain some
predictive capability. The definition of a behavioural model
will often, therefore, be a compromise between the success
of the model in reproducing some observations and the
failure to reproduce other observations, where different
observations might have different degrees of importance
depending on measurement accuracy or local rather than
global scope or relevance. This implies that hypothesis
testing might be used as a methodology, but that a
declaration of success in such tests may be based on a
relative rather than absolute measure of acceptability and
might not always be as rigorous as would be liked. The
question of what constitutes a behavioural model has, as yet,
not been addressed in a satisfactorily rigorous way. There
are some analogies here with some of the philosophical
debate over the issue of falsification in theory testing. There
is no doubt that in any environmental modelling exercise, if
a single false prediction were to be grounds for falsification,
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then no predictive models would be left. Some more relaxed
criteria for acceptability are necessary. The type of
hypothesis testing approach outlined here at least represents
a framework for addressing this type of problem.

Implications for process studies

Some rather important implications for process studies arise
from this discussion. Field process studies are by their
nature unique in both space and time; they cannot be
repeated under exactly the same boundary and initial
conditions. Much may be learned from process studies in
terms of the qualitative nature of hydrological responses.
The difficulty comes in using that knowledge in quantitative
predictions under different conditions or for different sites.
The usual route for doing so involves the intermediate step
of a model with its parameters to be determined for the
study site and estimated for any other site.

In the past, however, the reporting of field process
studies in the literature has generally involved the reporting
of single values of parameters. These will have been inferred
from some calibration process, either by back-calculation
directly from observations (such as the calculation of a
hydraulic conductivity from a known flux and two hydraulic
potential measurements to calculate a gradient) or inferred
from the optimisation of a model structure. The former can
be used only in very simple cases and, when applied in the
field rather than the laboratory, can be fraught with diffi-
culties (such as the not uncommon case of apparent negative
hydraulic conductivities where a downwards vertical flux is
expected following rainfall but two tensiometers are still
recording an upward potential gradient). The latter will be
subject to the type of equifinality of parameter sets that has
been discussed in this paper. An optimum value of each
parameter can always be found, but they may not be very
robust with respect to either different data sets, changes in
the values of other parameters or variations on the model
structure.

The result is some doubt about the physical meaning of
parameter values, if they are depending on model structure,
model scale, observational period or the values of other
parameters. The implication is that great care needs to be
taken in adopting values of individual parameters from other
sources without assessing their means of derivation. One
good example of this is the type of pedotransfer function
regressions that are now being used to provide estimates of
soil hydraulic characteristics on the basis of more easily
measured textural information (e.g. Rawls and Brakensiek,
1989). The data on which these regressions are based were
originally collected on small samples, with hydraulic con-
ductivity measurements being made on “fist-sized frag-
ments” in the laboratory. Usually, only one measurement
was recorded for each depth in the profile at a measurement
site. Thus, the values derived may not be appropriate to be
used as the “hydraulic conductivities” required in dis-

tributed hydrological models that have an element scale of
metres or more since the resulting values cannot reflect the
effects of larger scale flow pathways. In some soils, this may
not be important, in others, it will be critical to a proper
prediction of the flow processes. Similar considerations
apply to other “physical” hydrological or hydraulic par-
ameters such as roughness, porosity and dispersivity.

Some types of process predictions require parameter
values to be taken from a wide variety of published and
other sources to be used in a model structure that may be
different from that in which the parameter values were
originally determined. The type example is a land surface to
atmosphere transfer parameterisation for use within atmo-
spheric circulation models. These models have become
more and more complex as computing constraints have
become less limiting. The more complex models have
introduced more and more parameters that must be
specified before the model can be run. Computer limitations
are still such that for each grid square in the atmospheric
model, not all the variations in the land surface can be
represented. Typically, the current generation of models
will represent the variability of the surface in terms of a
small number of tiles or patches of different vegetation types
(parameter sets) but for each vegetation type a single
parameter set must be specified. Estimates of parameter
values come from many different sources and, in general,
there will be no observations available with which to check
the success of the model over each patch in each (very large)
grid square. There are no practical measuring techniques
for doing so.

Even if the model is a reasonable (or perfect) representa-
tion of the physics involved, putting together a parameter
set from many different sources is analogous to choosing a
single point in the model space. Monte Carlo explorations of
the parameter space suggest that for any single parameter
value, there will be good simulations and there will be poor
simulations depending on the values of other interacting
parameter values. There s, therefore, in using parameter
estimates taken from different studies at different sites
under different conditions and applying them at a larger
scale, a distinct possibility that a non-behavioural model will
result. This expectation is confirmed by the results of the
series of PILPS intercomparisons of many different land
surface parameterisations. Running each parameterisation
(model structure) with estimated parameter values results in
a very wide range of predictions; some “behavioural”, some
not. In this case, the parameterisations vary in structure as
well as parameter values but the same effect should be
expected once a “Community Land Model” par-
ameterisation is available (as has been proposed by the
NCAR CLM working group in the USA).

We are, of course, in a transitory phase here, gradually
learning more about appropriate model structures and
appropriate model parameter values as more studies are
made. The general feeling is still that with hard won
experience there will be a gradual improvement in the
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realism of model parameterisations, in the choice of
parameter values and in predictive capability. The estima-
tion of a “good” set of parameter values will then gradually
become less problematic. A science of hydrology is
otherwise impossible. But is this really true, or is the
problem of equifinality and multiple behavioural models
endemic to hydrological and other types of environmental
modelling? It has already been stressed that even a perfect
model which has parameter values that must be specified for
each unique location, will be subject to equifinality and
uncertainty of parameter values arising from the uniqueness
of place, scale effects and measurement errors. In short,
uniqueness of place would appear to impose limitations on
realism; not on the principle but on the possibility of an
unambiguous realistic representation. The major question
for the future is then how far data and new measurement
techniques to investigate the characteristics and responses of
a particular place can overcome this problem.
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