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 How far can we go in distributed hydrological modelling?
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Abstract

This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed
modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem o f uniqueness and
the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertain or fuzzy landscape space
to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the form of an application
methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It focuses attention on the prior
evaluation of models in terms of physical realism and on the value of data in model rejection.  Finally, some unresolved questions that distributed
modelling must address in the future are outlined, together with a vision for distributed modelling as a means of learning about places.

The Dalton Lecture
THE 2001 EGS DALTON MEDAL WAS AWARDED TO KEITH JOHN BEVEN FOR HIS OUTSTANDING

CONTRIBUTIONS TO THE UNDERSTANDING OF HYDROLOGICAL PROCESSES AND HYDROLOGICAL

MODELLING

*2001 EGS Dalton medallist K.J. Beven is Professor of Hydrology at Lancaster

University. He has made fundamental and innovative contributions over many years

to model development and modelling technology and has received many prestigious

awards in recognition of his international reputation, including the AGU Horton

Award, 1991, AGU Fellow, 1995, and the International Francqui Chair, 1999-2000.

Realism in the face of adversity
It is almost 30 years since I wrote my first distributed
hydrological model for my PhD thesis, following the Freeze
and Harlan (1969) blueprint but using finite element
methods. My thesis (Beven, 1975) contained an application
of the model to the small East Twin catchment in the UK,
the catchment that had been studied in the field by Weyman
(1970). The model represented a catchment as a number of
variable width, slope following,  hillslope segments, each
represented by a 2D (vertical and downslope directions)
solution of the Richards equation (Fig. 1). Computer
limitations meant that only a coarse finite element mesh

could be used;  even then, on the computers available, it
proved difficult to perform simulations that took less
computer time than real time simulated.

The modelling results were never published. They were
simply not good enough. The model did not reproduce the
stream discharges, it did not reproduce the measured water
table levels, it did not reproduce the observed heterogeneity
of inputs into the stream from the hillslopes (Fig. 2).  It was
far easier at the time to publish the results of hypothetical
simulations (Beven, 1977).  The ideas in what follows are
essentially a distillation of those early experiences and of
thinking hard about how to do distributed modelling in some
sense “properly” since then.

The limitations of that PhD study were in part because of
the crudeness of the representation given the computer
resources available at the time (the model itself actually
existed as two boxes of computer cards).  Just as in numerical
weather forecasting,  the accuracy of numerical algorithms
for solving the partial differential equations and the feasible
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discretisation of the flow domains has improved
dramatically since 1975. However, just as in numerical
weather forecasting, there remain limits to the detail that
can be represented and there remains a problem of
representing or parameterising sub-grid scale processes. As
computer power improves further into the future, the feasible
discretisation will become finer but the problem of sub-grid
parameterisation does not go away. The form of that
parameterisation might become simpler at finer scale but
there is then the problem of knowing what might be the
actual values of parameters for all the different spatial
elements (Beven, 1989, 1996b, 2000a).

There is then an interesting question as to how far such
models, with their necessary approximations of  processes
and parameters at the element scale, can represent reality.
An analysis of this question reveals a number of issues. These
will be summarised here as the problems of nonlinearity; of
scale; of  uniqueness; of equifinality; and of uncertainty.
The aim is, as ever, a “realistic” representation of the
hydrology of a catchment that will be useful in making
predictions in situations that have not yet occurred or where
measurements have yet to be made. Indeed, one argument
for the use of distributed modelling in hydrology has always
been that they might be more “realistic” than simpler models
that are calibrated to historical data in a curve-fitting
exercise, with no guarantee, therefore, that they might do
well in simulating responses in other periods or other

Fig. 1. The East Twin catchment, UK (21 ha), showing the hillslopes
segments for the finite element model of the Lower

Catchment. Triangles show stream gauges.

conditions (e.g. Beven and O’Connell, 1982; Beven, 1985).
That argument continues to be used in discussions of the
problems of parameter estimation (e.g. Smith et al., 1994;
De Marsily, 1994; Beven et al., 2001).

What then does “realism” mean in the context of
distributed hydrological modelling?  At the risk of making
a gross generalisation, I suggest that most practising
environmental scientists have, as a working philosophy, a
pragmatic or heuristic realism; that the quantities that we
deal with exist independently of our perceptions and
empirical studies of them,  that this extends even to quantities
that are not (yet) observable, and that further work will move
the science towards a more realistic description of the world.
Again, at the risk of generalising, I would suggest that most
practising environmental scientists do not worry too much
about the theory-laden nature of their studies, (subsuming
any such worries within the general framework of the critical
rationalist stance that things will get better as studies
progress). As has been pointed out many times, this theory
laden-ness applies very much to experimental work, but it
applies even more pointedly to modelling work where theory
must condition model results very strongly.

This pragmatic realism is a “natural” philosophy in part
because, as environmental scientists, we are often dealing
with phenomena that are close to our day-to-day perceptions
of the world. At  a fundamental level I do a lot of computer
modelling but I think of it as representing real water. If I try
to predict pollutant transport, I think of it as trying to
represent a real pollutant. Environmental chemists measure
the characteristics of real solutions and so on. What I am
calling pragmatic realism naturally combines elements of
objectivism, actualism, empiricism, idealism,
instrumentalism, Bayesianism, relativism and hermeneutics;
of multiple working hypotheses, falsification, and critical
rationalism (but allowing adjustment of auxiliary
conditions); of confirmation and limits of validity; of
methodologies of research programmes while maintaining
an open mind to paradigm shifts; and of the use of “scientific
method” within the context of the politics of grant awarding
programmes and the sociology of the laboratory. Refined
and represented in terms of ideals rather than practice, it
probably comes closest to the transcendental realism of
Bhaskar (1989; see also Collier, 1994). However, in
hydrology at least, the practice often appears to have more
in common with the entertaining relativism of Feyerabend
(1991), not least because theories are applied to systems
that are open which, as Cartwright (1999) has recently
pointed out even makes the application of the equation
force=mass*acceleration difficult to verify or apply in
practice in many situations. Hydrologists also know only
too well the difficulties of verifying or applying the mass
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Fig. 2. Results of finite element simulations of the Lower East Twin catchment. All observed data collected by Darrell
Weyman. (a) Observed and predicted water table levels above a 1m wide throughflow trough. (b) Observed and
predicted discharges from the throughflow trough using only measured soil parameter. (c) Observed and predicted
discharges from the catchment. Dashed line: observed discharge from Upper catchment (not simulated). Dotted line:
observed discharge from upper catchment with simulated discharge from lower catchment added. Full line: observed

discharge measured at outlet from lower catchment.

(a)

(b)

(c)

and energy balance equations in open systems (Beven,
2001b, d). This does not, of course, mean that such principles
or laws should not be applied in practice, only that we should
be careful about the limitations of their domain of validity
(as indeed are engineers in the application of the force
equation).

It is in the critical rationalist idea that the description of
reality will continue to improve that many of the problems
of environmental modelling have been buried for a long
time. This apparent progress is clearly the case in many

areas of environmental science such as weather forecasting
and numerical models of the ocean. It is not nearly so clear
in distributed hydrological modelling even though many
people feel that, by analogy, it should be. This analogy is
critically misguided, for some of the reasons that will be
explored in the sections that follow. It has led to a continuing
but totally unjustified determinism in many applications of
distributed modelling and a lack of recognition of the limits
of distributed hydrological modelling in the face of these
adverse problems.
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The problem of nonlinearity
The problem of nonlinearity is at the heart of many of the
problems faced in the application of distributed modelling
concepts in hydrology, despite the fact that for many years
“linear” models, such as the unit hydrograph and more recent
linear transfer functions, have been shown to work well (see,
for example, Beven 2001a), particularly in larger catchments
(but see Goodrich et al., 1995, for a counter-example in a
semi-arid environment where channel transmission losses
result in greater apparent nonlinearity with increasing
catchment size).  In fact, this apparent linearity is often a
de facto artefact of the analysis. It applies only to the
relationship between some “effective” rainfall inputs and
river discharge (and sometimes only to the “storm runoff”
component of discharge). It does not apply to the relationship
between rainfall inputs and river discharge that is known to
be a nonlinear function of antecedent conditions, rainfall
volume, and the (interacting) surface and subsurface
processes of runoff generation. Hydrological systems are
nonlinear and the implications of this nonlinearity should
be taken into account in the formulation and application of
distributed models.

This we do attempt to do, of course. All distributed models
have nonlinear functional relationships included in their
local element scale process descriptions of surface and
subsurface runoff generation, whether they are based on the
Richards equation or the SCS curve number.  We have not
been so good at taking account of some of the other
implications of dealing with nonlinear dynamical systems,
however. These include, critically, the fact that nonlinear
equations do not average simply and that the extremes of
any distribution of responses in a nonlinear system may be
important in controlling the observed responses. Crudely
interpreted in hydrological terms, this means local subgrid-
scale nonlinear descriptions, such as Richards equation,
should not be used at the model element scale (let alone at
the GCM grid scale) where the heterogeneity of local
parameter variations is expected to be important (Beven,
1989, 1995). The local heterogeneities will mean that the
element scale averaged equations must be different from
the local scale descriptions; that using mean local scale
parameter values will not give the correct results, especially
where there are coupled surface and subsurface flows (Binley
et al., 1989); and that the extremes of the local responses
(infiltration rates, preferential flows, areas of first saturation)
will be important. This suggests, for example, that the use
of pedotransfer functions to estimate a set of average soil
parameters at the element scale of a distributed hydrological
model should not be expected to give accurate results. Note:
this follows purely from considerations of nonlinear

mathematics, even if Richards’ equation is acceptable as a
description of the local flow processes (which could also be
debated, e.g. Beven and Germann, 1982).

These implications are well known, so why have they been
ignored for so long in distributed modelling in hydrology?
Is it simply because there is no “physically based” theory to
put in the place of Richards equation, since alternative sub-
grid parameterisations seem too “conceptual” in nature?  The
recent work by Reggiani et al. (1998, 1999, 2000) is an
attempt to formulate equations at the subcatchment or flow
element scale directly in terms of mass, energy and
momentum equations but has not solved the problem of
parameterising the space and time integrated exchanges
between elements in heterogeneous flow domains.

There are other implications of nonlinearity that are
known to be important. Nonlinear systems are sensitive to
their initial and boundary conditions. Unconstrained they
will often exhibit chaotic behaviour. Initial and boundary
conditions are poorly known in hydrology (see notably
Stephenson and Freeze, 1974), as often are the observed
values with which the model predictions are compared, but
fortunately the responses are necessarily constrained  by mass
and energy balances. It is these constraints that have allowed
hydrological modellers to avoid worrying too much about
the potential for chaos. Essentially, by maintaining
approximately correct mass and energy balances, models
cannot go too far wrong, especially after a bit of calibration
of parameter values. That does not mean, however, that it is
easy to get very good predictions (even allowing for
observation error), especially for extreme events.

This is reinforced by recent work in nonlinear dynamics
looking at stochastically forced systems of simple equations.
This work suggests that where there is even a slight error in
the behaviour or attractor of an approximate model of a
(known) system, the model will not be able to reproduce
correctly the extremes of the distribution of the output
variables either for short time scales or for integrated outputs
over long (e.g. annual) time scales. If this is true for simple
systems, does it imply that the same should be true for flood
prediction and water yield predictions using (always slightly
wrong) distributed models in hydrology?  How can predictive
capability be protected against these effects of nonlinearity?

The problem of scale
The problem of scale is inherently linked to that of
nonlinearity. Scale issues in linear systems are only related
to the problem of assessing adequately the inputs at different
scales with available measurement techniques.   As is well
known by all hydrological modellers, this is a problem even
in the simple assessment of rainfalls over different sizes of
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catchment area, even before trying to make some assessment
of the nature and heterogeneity of the surface and subsurface
processes with the measurement techniques available. It is
clear, for example, that we have kept the Richards equation
approach as a subgrid  scale parameterisation for so long
because it is consistent with the measurement scales of soil
physical measurements. Because we have no measurement
techniques that give information directly at the element grid
scales (say 10 m to 1 km in the case of distributed
hydrological models to 5 to 100 km in the case of land surface
parameterisations for NWP and GCM models) we have not
developed the equivalent, scale consistent, process
descriptions that would then take account implicitly of the
effects of subgrid scale heterogeneity and nonlinearity.

A recent comment by Blöschl (2001) has discussed the
scale problem in hydrology. His analysis has much the same
starting point as that of Beven (1995).  He also recognises
the need to identify the “dominant process controls” at
different scales but comes to a totally different conclusion.
Whereas Beven (1995) suggests that scaling theories will
ultimately prove to be impossible and that is therefore
necessary to recognise the scale dependence of model
structures, Blöschl (2001) suggested that it is in resolving
the scale problem that the real advances will be made in
hydrological theorising and practice in the future. How do
these two viewpoints bear on the application of distributed
hydrological models?

Let us assume for the moment that it might be possible to
develop a scaling theory that would allow the definition of
grid or element scale equations and parameter values on
the basis of knowledge of the parameter values at smaller
scales. Certainly some first attempts have been made to do
so in subsurface flows (e.g. Dagan, 1986, and others) and
surface runoff (e.g. Tayfur and Kavvas, 1998). Attempts are
also being made to describe element scale processes in terms
of more fundamental characteristics of the flow domain,
such as depositional scenarios for sedimentary aquifers.  This
reveals the difference between hydrology and some other
subject areas in this respect. In hydrology, the development
of a scaling theory is not just a matter of the dynamics and
organisation of the flow of the fluid itself. In surface and
subsurface hillslope hydrology, the flow is always responding
to the local pore scale or surface boundary conditions. The
characteristics of the flow domain determine the flow
velocities. Those characteristics must be represented as
parameter values at some scale. Those parameter values must
be estimated in some way. But the characteristics are
impossible to determine everywhere, even for surface runoff
if it occurs. For subsurface flow processes the characteristics
are essentially unknowable with current measurement
techniques. Thus, they must be inferred in some way from

either indirect or large scale measurements.  In both cases,
a theory of inference would be required. This would be the
scaling theory but it is clear from this argument that any
such theory would need to be supported by strong
assumptions about the nature of the characteristics of the
flow domain even if we felt secure about the nonlinearities
of the flow process descriptions. The assumptions would
not, however, be verifiable: it is more likely that they would
be made for mathematical tractability rather than physical
realism and applied without being validated for a particular
flow domain because, again, of the limitations of current
measurement techniques.

Thus, the problem of scale in distributed hydrological
modelling does not arise because we do not know the
principles involved. We do, if we think about it, understand
a lot about the issues raised by nonlinearities of the processes,
heterogeneities of the flow domains, limitations of
measurement techniques, and the problem of knowing
parameter values or structures everywhere.  The principles
are general and we have at least a qualitative understanding
of their implications, but the difficulty comes in the fact
that we are required to apply hydrological models in
particular catchments, all with their own unique
characteristics.

The problem of uniqueness
In the last 30 years of distributed hydrological modelling
there has been an implicit underlying theme of developing
a general theory of hydrological processes. It has been driven
by the pragmatic realist philosophy outlined earlier. The
idea that if we can get the description of the dynamics of
the processes correct then parameter identification problems
will become more tractable is still strongly held. However,
in a recent paper,  I have put forward an alternative view:
that we should take much more account of the particular
characteristics of particular catchment areas, i.e. to consider
the question of uniqueness of place much more explicitly
(Beven, 2000a).

It is useful in this respect to consider the case where we
could define the “perfect” model description. In its equations,
such a model would properly reflect all the effects of local
heterogeneity on the flow dynamics and the nonlinearities
associated with the coupling of different flow processes. Test
simulations with such a model would show how it takes
account of the redistribution of the inputs by a vegetation
cover; the initiation of local overland flows, reinfiltration
on heterogeneous surfaces, initiation and propagation of
preferential flows, the effects of local field drainage and
ditches etc. Such a model clearly has the potential to produce
predictions that are accurate to within the limitations of
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measurement errors. However, such a model must still have
some way of taking account of all the local heterogeneities
of the flow domain in any application to a particular
catchment. In short, even the perfect model has parameters
that have to be estimated.

Presumably, the perfect model will embody within it some
expressions to relate the parameter values it requires to some
measureable characteristics of the flow domain (indeed, the
perfect model seems to require that a scaling theory is, in
fact, feasible). This could be done in either a disaggregation
or aggregation framework. A disaggregation framework
would require making inferences from catchment scale
measurements to smaller scale process parameters. This
would be similar to the type of calibration exercise against
catchment discharges that is often carried out today. It clearly
leaves scope for multiple parameter sets being able to
reproduce the catchment scale behaviour in a way that is
consistent with the model dynamics.

An aggregation process implies that information will be
required on the heterogeneity of parameter values within
the catchment area. We will not, however, be able to
determine those parameters everywhere in a particular
catchment area with its own unique characteristics,
especially because the perfect model would tell us that it is
the extremes of the distribution of characteristics that may
be important in controlling storm runoff generation. It is
always more difficult to estimate the extremes of a
distribution than the first two moments (even where the
distribution can be characterised in simple form). Thus, a
very large number of measurements would be required
without any real guarantee that they are spatially coherent.
Since our current measurement techniques have severe
limitations in assessing spatial variability then it would seem
that the aggregation approach would also result in a large
number of model parameter sets being consistent with the
model dynamics in reproducing the large scale behaviour.

Thus, even if we knew the structure of the perfect model,
uniqueness of place leads to a very important identifiability
problem. In the case of the perfect model, this could be
considered as simply a problem of non-identifiability i.e. a
unique (“optimal”) set of parameters would exist, if only
we had the measurements available to be able to identify it.
In practice, with limited measurements available there would
most probably be a non-uniqueness problem i.e. that there
appear to be several or many different optimal parameter
sets but the measurements do not allow us to distinguish
between them. However, we cannot normally assume that
we are using such a perfect model structure. Thus, Beven
(1993, 1996a,b) has suggested that it is better to approach
the problem of uniqueness of place using a concept of
equifinality of model structures and parameter sets. This

choice of word is intended to indicate an explicit recognition
that, given the limited measurements available in any
application of a distributed  hydrological model, it will not
be possible to identify an “optimal” model. Rather, we should
accept that there may be many different model structures
and parameter sets that will be acceptable in simulating the
available data.

It is worth stressing in this that, even if we believed that
we knew the perfect model structure, it would not be immune
to the problem of equifinality in applications to particular
catchments with their own unique characteristics.  Limited
measurements, and particularly the unknowability of the
subsurface, will result in equifinality, even for the perfect
model.

There has been a commonly expressed hope that, in the
future, remote sensing information would lead to the
possibility of more robust estimates of spatially distributed
parameter values for distributed hydrological modelling in
applications to unique catchment areas. Pixel sizes for
remote sensing are at the same scale, or even sometimes
finer, than distributed model element scales and in many
images we can easily detect visually spatial patterns that
appear to be hydrologically significant (we can include here
ground probing radar and cross-borehole tomography
techniques that give some insight into the local nature of
the subsurface flow domain). However, the potential for
remote sensing to provide the information required would
appear to be limited. The digital numbers stored by the sensor
do not give direct estimates of the hydrogical variables or
parameters required at the pixel scale. They require an
interpretative model.   Such a model will, itself, require
parameter values to reflect the nature of the surface, the
structure and state of the vegetation, the state of the
atmosphere, etc. In fact, the digital numbers received by the
user may already have been processed by an interpretative
model to correct for atmospheric effects etc. in a way that
may not reflect all the processes involved even if the
interpretative model is physically “realistic”. The user may
wish to leave such corrections to the imaging “experts”, but
will then need to apply a further interpretative model for
the hydrological purposes he/she has in mind. The resulting
uncertainties may, at least sometimes, be very significant
(see for example Franks et al., 1997), especially where the
parameters of the interpretative model might also be expect
to change over time, e.g. with vegetation growth or
senescence.

Thus, remote sensing information will also be subject to
equifinality in interpretation and uncertainty in prediction.
This will be compounded by the need to couple interpretative
models for satellite or aircraft images which, except under
unusual circumstances, give only information on near surface
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emissions, to models of the subsurface. However, it is worth
repeating that it is often possible to see hydrologically
significant patterns in some images. Thus, it should be
expected that there is useful information on the distributed
responses of particular hillslopes and catchments to be
gained from remote sensing, but it will certainly not solve
the problem of uniqueness.

The problem of equifinality
The recognition of equifinality arose out of Monte Carlo
experiments in applying models with different parameter
sets in simulating catchment scale discharges (Beven and
Binley, 1992; Duan et al., 1992; Beven, 1993). It resulted
in some interestingly different responses. The University of
Arizona group response was that a better method for
identifying the optimal parameter set was required, leading
to their development of the stochastic complex evolution
methodology, as embodied in the UA-SCE software. Other
experiments in global optimisation have explored simulated
annealing, genetic algorithms and Monte Carlo Markov
Chain methodologies (e.g. Kuczera, 1997, Kuczera and
Parent, 1999). A further recognition that the results of even
a global optimisation depended strongly on the evaluation
measure used has lead to the exploration of multi-objective
optimisation techniques such as the Pareto optimal set
methodology of Yapo et al. (1998) and Gupta et al. (1999),
again from the Arizona group. The underlying aim, however,
has still been to identify parameter sets that are in some
sense optimal.

The response of the Lancaster University group was
different. They were prepared to reject the idea that an
optimal model would ever be identifiable and develop the
concept of equifinality in a more direct way. This lead to
the Generalised Likelihood Uncertainty Estimation (GLUE)
Methodology (Beven and Binley, 1992; Beven et al., 2000,
Beven, 2001a). GLUE is an extension of the Generalised
Sensitivity Analysis of Hornberger, Spear and Young
(Hornberger and Spear, 1981; Spear et al., 1994) in which
many different model parameter sets are chosen randomly,
simulations run, and evaluation measures used to reject some
models (model structure/parameter set combinations) as non-
behavioural while all those considered as behavioural are
retained in prediction. In GLUE the predictions of the
behavioural models are weighted by a likelihood measure
based on past performance to form a cumulative weighted
distribution of any predicted variable of interest. Traditional
statistical likelihood measures can be used in this framework,
in which case the output prediction distributions can be
considered as probabilities of prediction of the variable of
interest. However, the methodology is general in that more

general likelihood measures, including fuzzy measures, can
be used in which case only conditional prediction limits or
possibilities are estimated. Different likelihood measures can
be combined using Bayes equation or a number of other
methods (Beven et al., 2000; Beven, 2001a).

There is one other implication of equifinality that is of
particular importance in distributed modelling. Distributed
models have the potential to use different parameter values
for every different element in the spatial discretisation. In
general this means that many hundreds or thousands of
parameter values must be specified. Clearly it is not possible
to optimise all these parameter values, they must be estimated
on the basis of some other information, such as soil texture,
vegetation type, surface cover etc. Values are available for
different types of soil, vegetation etc in the literature.
However, such values will themselves have been back-
calculated or optimised against observations gathered in
specific (unique) locations under particular sets of forcing
conditions. One of the lessons from GLUE studies is that it
is the parameter set that is important in giving a good fit to
the observations. It is very rarely the case that the simulations
are so sensitive to a particular parameter that only certain
values of that parameter will give good simulations. More
often a particular parameter value will give either good or
bad simulations depending on the other parameter values
in the set. Thus, bringing together different parameter values
from different sources is no guarantee that, even if they were
optimal in the situations where they were determined, they
will give good results as a set in a new set of circumstances.
Be warned!

The problem of uncertainty

The aim of the GLUE methodology is to produce a set of
behavioural models that properly reflect the uncertainties
arising from the modelling process and that reproduce the
observed behaviour of the catchment within the limitations
of measurement error. This is not always easy because of
errors in the input data and errors in the model structure,
both of which may be difficult to assess a priori. This is
demonstrated quite nicely in the simulation results of Freer
et al. (1996) where a timing error in the initiation of
snowmelt in the model results in a long period where the
GLUE model prediction limits parallel but do not bracket
the observations. This could of course be corrected, either
by adding a stochastic error model or, if the interest is in
short term forecasting, by data assimilation.

In principle, the additional uncertainties arising from
estimation errors in input data and other boundary conditions
could also be included in GLUE but this has not normally
been done, for reasons of both computational requirements
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and the problem of defining a model for that type of
uncertainty. Thus, again, the results will be conditional:
conditional on the input sequences used, the model structures
considered, the random parameter sets chosen, and the
likelihood measures chosen for model evaluation.  All these
choices, however, must be made explicit and can be subject
to critical review by end-users (and reviewers).

In simulation, the use of a stochastic error model raises
some interesting issues.  It should be expected that the
structure of the modelling errors should vary over time. This
has long been recognised in terms of the heteroscedasticity
of errors but, in hydrological series, it should also be expected
that the errors will be non-gaussian and changing in skew
between high and low flows. Thus it may be difficult to
formulate a statistical error model (and likelihood function)
that is consistent over both time and, with the GLUE
methodology, for different behavioural parameter sets that
may also vary locally in their bias and error covariance
structures. So much of statistical parameter inference is
predicated on the implicit assumption that the “true” model
is available, that the rejection of that possibility in favour of
a concept of equifinality means that some new approaches
are needed. GLUE is one such approach that can be used
for models for which it is computationally feasible. It has
been used for distributed and semi-distributed models over
limited domains but clearly there are still some distributed
modelling problems for which the parameter dimensionality
and computational times mean that a full Monte Carlo
analysis remains infeasible. However, it is an open question
as to whether the affordable parallel computer power to do
so will arrive before we develop the conceptual and
theoretical developments or measurement techniques that
might make a GLUE-type analysis unnecessary.

One response to the equifinality problem is to suggest
that the problem only arises because we are using poor
models (Beven, 1996a). Again, there is a widespread belief
that if we could get the model dynamics right then perhaps
we would have less parameter identification problems. The
analysis above suggests that this belief is not justified. Even
the perfect model will be subject to the problem of
equifinality in applications and we know very well that we
have not quite attained the perfect model. Clearly, therefore,
we are using poor models in that sense but many modern
modellers, as instrumentalists, will argue that despite their
limitations they are the best models available (often giving
quite acceptable simulations) and they are what we must
make use of in practical prediction. Thus, it is perhaps best
to view the uncertainty arising from equifinality as a question
of decidability. The fact that we have many models that give
acceptable simulations of the available data does not mean
that they are poor models. It only means that they cannot be

rejected (are not decidable) on the basis of the data to hand.
Additional data, or different types of data, might mean that
we could reject more of the models that up to now have
been behavioural in this sense.

In some cases new data might mean that we could reject
all the models we have available, in which case we might
have to revise the model structures or potential parameter
sets considered in the analysis. In this case we could actually
gain understanding. If models continue to work acceptably
well but cannot be distinguished then there is really no way
of deciding between them. If we have to reject models then
we will gain much more information about what might be
an appropriate process description. If we have to reject all
models then we will have to query the model structure itself,
or look more closely at how meaningful are the observations
that we are using to decide on model rejection. However,
rejection of all models will also mean that we have no
predictions, so we might (just possibly) instead choose to
relax our criteria for retaining models as “acceptable”.

Is there a way ahead?  How far can we go?
Looking at the problem of equifinality as a question of
decidability allows an interesting reformulation of the GLUE
approach, to the extent that Beven (2001b) has suggested
that it allows an Alternative Blueprint for distributed model
in hydrology, to replace that of Freeze and Harlan (1969). It
is not, however, an alternative set of descriptive equations.
The discussion above suggests that, although we know that
the Freeze and Harlan description is inadequate, we do not
yet have the measurement techniques that would enable us
to formulate a new scale dependent set of process
descriptions. Thus we will have to resort to the variety of
conceptual formulations that are currently available (this
includes Richards equation which, as applied as a sub-grid
parameterisation in practice, is certainly a conceptual model
that should be expected to have scale dependent parameter
values, Beven, 1989, 1996b).

Within the GLUE framework this is not a problem in
principle, only a problem of computational resources.
Ignoring computational limitations it will be possible in
principle to evaluate different model conceptualisations, and
parameter sets within those conceptualisations, to evaluate
which models are behavioural and which should be rejected,
according to some statistical or more pragmatic criteria.
Further, it will be possible to give some relative ranking to
the different behavioural models in terms of the likelihood
weights to be used in the determination of prediction limits.
It is true that many modellers find that the relativism inherent
in this type of GLUE methodology is totally incompatible
with a view of hydrology as a science. I suspect that many
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end-users of hydrological predictions would take a similar
view.

However, my own view is that there is actually an
opportunity here to put hydrological prediction on a firmer
scientific basis (see Beven, 2000a). Let us pursue the idea
of equifinality as a problem of decidability given the available
data a little further.  The idea of accepting many behavioural
models in prediction because they have all given simulations
that are consistent with the available data does not mean
that those models are indistinguishable, nor that we could
not decide between those models given the right sort of data.
This is perhaps best viewed in terms of a mapping of the
landscape of a catchment into the model space (Beven,
2000a, b, 2001b). Accepting the concept of equifinality, each
landscape unit might be represented by many different
behavioural models in the model space. The mapping will
therefore be an uncertain or fuzzy mapping depending on
what type of evaluation measures are used, with different
landscape units mapping into possibly overlapping areas of
the model space. The differences in predicted behaviour for
the behavioural models for each landscape unit can then be
reflected in mapping the results of simulations in the model
space.

One of the interesting features of this view of the modelling
processes is that, in principle, everything is known about
the simulations in the model space. If the models are run
purely deterministically with a single set of input forcing
data this will be a one to one mapping. But even if the model
is stochastic and the inputs are treated stochastically then
the output statistics could still be mapped in the model space,
subject only to computational constraints. Thus differences
in predicted behaviour in the model space can be identified
and an exploration of the model space might then provide
the basis for setting up some testable hypotheses that might
allow some of the behavioural models to be rejected on the
basis of a new data collection programme within an
underlying falsificationist framework. The approach is then
analogous to that of multiple working hypotheses (the
behavioural models) with an experimental programme
designed to differentiate between them and (hopefully) falsify
or reject some of them. This might then be represented as
hydrological science to the end-user and/or research grant
awarding agency.

It is this process that forms the Alternative Blueprint of
Beven (2001b). The Alternative Blueprint as method can
be summarised by the following six stages:

(i) Define the range of model structures to be considered.
(ii) Reject any model structures that cannot be justified

as physically feasible a priori for the catchment of
interest.

(iii) Define the range for each parameter in each model.
(iv) Reject any parameter combinations that cannot be

justified as physically feasible a priori.
(v) Compare the predictions of each potential model with

the available observed data (which may include both
catchment discharge and internal state measurements,
as well as any qualitative information about catchment
processes) and reject any models which produce
unacceptable predictions, taking account of estimated
error in the observations.

(vi) Make the desired predictions with the remaining
successful models to estimate the risk of possible
outcomes.

In terms of the assessment of physically realistic distributed
models in hydrology the most important steps in this process
are the rejection of models that cannot be considered as
physically feasible, either a priori, or as resulting in
unrealistic predictions.

There is an interesting further stage that might prove to
be useful in the future. If, in principle, a model structure or
set of model structures has an adequate range of hydrological
functionality and that functionality can be mapped in the
model space for a certain set of input conditions then the
areas of different functional response can be mapped out in
the model space. Thus, it may only be necessary to make
representative predictions for these different functionally
similar areas of the feasible model space and not for all
possible models in the feasible space, thereby increasing
the computational efficiency of the methodology, at least in
prediction.  The definition of what constitutes functional
similarity is, of course, an issue and will undoubtedly vary
with the aims of a project.  A first attempt at the application
of such a strategy, in the context of defining land surface to
atmosphere fluxes over a heterogeneous landscape, has been
outlined by Franks et al. (1997; see also Beven and Franks,
1999).

Some unresolved questions……
The approach outlined above provides a way forward for a
scientific approach in distributed hydrological modelling.
It recognises that different functional responses within the
model space may be a guide to hypothesis formulation and
testing. It recognises that the landscape unit to model space
mapping may be uncertain or fuzzy in nature. It recognises
that uniqueness of place is not just a problem of trying to
identify a unique model parameter set (as usually assumed
with most current applications of distributed models). It
recognises the primary importance of data in evaluating and
rejecting models as physically feasible. It recognises that
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new conceptual developments are unlikely to happen quickly
but can incorporate them easily as necessary. Indeed, it may
be that conceptual model developments are most likely to
happen when we are forced to reject all the available models
because of inconsistency with data.

There remain many unresolved questions that must be
addressed in distributed modelling in the future. A collection
of such questions arose out of the Francqui Workshop on
the future of distributed modelling in hydrology held in
Leuven in April 2000 (see Beven, 2000b, Beven and Feyen,
2001). Some of the most important, relevant here, include:
how far do we need to consider the detail in processes
descriptions when there is no way to measure the local detail
necessary to support such descriptions?  Can a model, for
example, based on a hysteretic storage discharge relationship
for a hillslope be just as physically acceptable as the local
hysteresis in soil moisture characteristics required by a full
local application of the Richards equation (or, in the structure
of the Alternative Blueprint would you reject it a priori as
physically infeasible)?

A further question arises in applications requiring
distributed predictions (for example of the extent of  flood
inundation, of the risk of erosion, of potential source areas
for non-point pollution, etc). If it is accepted that accuracy
in local predictions must be necessarily limited, when would
predictions of where rather than how much be acceptable.
In some cases, such as those noted above, a relative
assessment of the spatial distribution of risk, including an
assessment of uncertainty, might be sufficient for risk based
decision making.

There are still relatively few assessments of distributed
models that have included spatially distributed observations
in either calibration or evaluation. Most assessments are
still based on comparisons of observed and predicted
discharges alone. This is perfectly understandable given the
time and effort required in gathering the spatial data sets
necessary but it is really not acceptable (for a fine example
of a study that has made assessments of spatial predictions
see Uhlenbrook and Leibundgut, 2001). As Klemeš (1986)
pointed out, even split record tests of models based on
discharge data alone are not a strong test of model feasibility
for lumped models, let alone distributed models. However,
the intention to test the spatial predictions of a distributed
model raises further questions. What sort of data should be
collected as a useful and cost effective test?  How best to
make use of spatial data that might already be available, for
example from observation wells or soil moisture profiles,
when there may be a mismatch in scales between the
observations and the predicted variables?  What sort of
evaluation or likelihood measures should be used when the
errors may be variable in structure in space and time?  Can

the spatial data be used to suggest different model structures
where predictions of current model structures are shown to
be deficient?   These questions can be posed within the
Alternative Blueprint but will require commitment in
applications of the methodology to detailed data sets.

Finally, there is a real question as to how to develop
distributed models that properly reflect the collective
intelligence of the hydrological community.  At first sight it
would appear that one major store of collective intelligence
is in the model software systems of the current generation
of distributed models. I would venture to suggest, however,
that the continued application of models based on the Freeze
and Harlan blueprint is not an indication of much collective
intelligence (Beven, 2001e). It is a simple response to the
fact that no coherent alternative has been proposed over the
last 30 years. “Progress” in that time has consisted in trying
available distributed models to see if they work with more
or less calibration and little reporting of cases where they
have failed in their spatial predictions (though the graphics
have certainly improved). It remains to be seen if new model
structures will develop out of new measurements (remote
sensing, tomographic imaging, incremental stream
discharges etc.) becoming available, but in the short term
this seems unlikely.  Where then is the collective intelligence
of the hydrological community stored?  There appear to be
two more important depositories.  One is the back issues of
journals relevant to hydrology, including journals in
complementary fields (soil science, plant physiology,
nonlinear dynamics, etc); the other the field data sets that
have been collected from experimental and operational
catchments over the years. It does seem at the current time
that not much is being made of either of these sources of
information and that a fundamental review of what is
necessary information for the development of future
distributed models is needed.

It is, perhaps, opportune at this point to return to my PhD
thesis and the East Twin catchment. In his 1970 paper on
the results of field studies in the East Twin, Darrell Weyman
noted:
“To produce a control section discharge of  12 litres/sec by
throughflow alone from 540 m of bank requires a mean peak
throughflow discharge of 1320 cm3/min/metre. In contrast
the peak discharge from the soil [throughflow] plots was
only 185 cm3/min/metre. On the other hand, measured seeps
from the soil at other locations on the channel gave peak
discharges for this storm of up to 7800 cm3/min. The supply
area for these inputs is indeterminate but in terms of bank
length is certainly not more than one metre as seep spacing
is often less than that distance.” (p.31)

Thirty years on is there a distributed model that could be
said to be able to make use of this information?  Or, within
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the Alternative Blueprint, would the existing models all be
rejected a priori at this site?  Think about it in respect of
both principle and practice (and the naivety of a young
graduate student)!

……and a vision for the future
The Alternative Blueprint, outlined briefly above and in
Beven (2001b), provides a framework for doing distributed
modelling as hydrological science in a consistent way and
in the face of the various adversities faced by the modeller.
It is useful, within the sociology of science, to have such a
methodology as a defence against criticism of the apparently
ad hoc nature of some of the models that are reported,
especially those that use conceptual model elements to
interpret the information available from GIS overlays.
However, distributed models are not only being developed
because the computational resources, object oriented
programming languages, graphical interfaces, and spatial
databases of today make it a relatively easy task to implement
such models, but because there is a demand for practical
prediction of the effects of land use change, of non-point
source pollution, of the risks and impacts of erosion, and so
on. The future of distributed modelling lies, in fact, not so
much in the development of new theories for scaling or
process representation but in the application of models and
their use over a period of time in specific catchments.

This is very important because long term use in specific
catchments implies an increasing potential for model
evaluation, post-simulation audits, and learning about where
the model does not work. This suggests that including an
assessment of predictive uncertainty in modelling studies
will be a good idea for the modeller since it allows a greater
possibility of being “right”, or at least of being wrong
gracefully. It also suggests that, over time, there should be a
greater possibility of learning about the uniqueness of
different places within an application area, building up that
knowledge, both qualitative and quantitative, in a form that
can be used to refine the representation of functional
responses within the framework of the Alternative Blueprint.
This will be one way of making use of the increased computer
power that will be available in the future: to build a system
that will store or re-run the results of past simulations in a
form that can be compared with a current situation; to
identify where there is drift or error in the simulations or
where the model functionality seems inadequate; to act as a
repository for information, knowledge and understanding
about specific catchment areas such that local model
representations of those areas can be improved.

This does not imply that such a system, focussed on the
details of specific catchments, should not take new

developments in modelling into account. Clearly, if some
radical change in modelling concepts is achieved in the
future, perhaps driven by new measurement techniques, then
there should be the potential to include it. The challenge
will be to make a system that is “future proof” in this respect,
not only with respect to such new developments but also to
the change of people who will run it and to changes in the
computer systems on which it might run. Then, gradually,
we will gain more real understanding about how local
hydrological systems really work, including all their local
complexities. It is now possible to model the hydrology of
the globe (albeit with some uncertainty). More modestly and
more importantly it should also now be possible to model
places on that globe in detail: still with uncertainty,  but
gradually learning about their particular characteristics and
particular idiosyncracies in hydrological response.
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