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Abstract

It has previously been argued that current Soil Vegetation Atmosphere Transfer (SVAT) models are over-parameterised given
the calibration data typically available. Using the Generalised Likelihood Uncertainty Estimation (GLUE) methodology, multi-
ple feasible model parameter sets are here conditioned on latent heat fluxes and then additionally on the sensible and ground
heat fluxes at a single site in Amazonia. The model conditioning schemes were then evaluated with a further data set collected
at the same site according to their ability to reproduce the latent, sensible and ground heat fluxes. The results indicate that con-
ditioning the model on only the latent heat flux component of the energy balance does not constrain satisfactorily the predic-
tions of the other components of the energy balance. When conditioning on all heat flux objectives, significant additional
constraint of the feasible parameter space is achieved with a consequent reduction in the predictive uncertainty. There are still,
however, many parameter sets that adequately reproduce the calibration/validation data, leading to significant predictive uncer-
tainty. Surface temperature measurements, whilst also subject to uncertainty, may be employed usefully in a multi-objective cal-

ibration of SVAT models.

Introduction

It is becoming increasingly widely recognised that complex
environmental models are generally over-parameterised
with respect to typically available calibration data (see, for
example, Beven, 1989; Duan et al., 1992; Franks et al.,
1997a,b; Yapo et al., 1998; Beven, 1999). Even for rela-
tively well defined problems such as predicting the com-
ponents of the surface energy balance, any attempt to
represent the wide range of physical processes involved
introduces too many degrees of freedom in the form of an
excessive number of physical and physiological parameters
to be specified. One consequence is that time series of cal-
ibration/validation variables are reproduced to acceptable
accuracy by parameter sets from many parts of the feasi-
ble parameter space (e.g. Franks and Beven, 1997a; Franks
et al., 1997a,b) and it has been argued that the perceived
necessity of incorporating ever increasing complexity into

models may necessitate an explicit recognition that many -

different parameter sets will provide an acceptable fit to
available observations (the equifinality problem of Beven,
1993).

One way of reducing the possibility of non-uniqueness
or equifinality of parameter sets in the calibration of com-
plex models with high dimensional parameter spaces is to

increase the information of content of the calibration data.
This may be achieved with longer periods of calibration
data, but perhaps more importantly, by using observations
of different, independently measured variables (see for
example, Franks and Beven, 1997a; Klepper, 1997;
Mroczkowski et al., 1997; Gupta et al., 1998; Kuczera and
Mroczkowski, 1998; Yapo et al., 1998; Lamb ez al., 1998).
Such data may usefully provide further objective functions
for model evaluation and hence constraint on the feasible
parameterisations and resulting model predictive uncer-
tainty.

In the context of rainfall-runoff modelling a number of
studies have demonstrated the utility of conditioning on
additional objectives (Chappell et al., 1998; Franks et al.,
1997 a,b; Gupta et al., 1998; Mroczkowski ez al., 1997). As
such, multi-objective conditioning offers greater power in
terms of discriminating between model structures and fea-
sible parameter sets within any SVAT model structure.

In modelling the surface energy balance using a Soil
Vegetation—Atmosphere Transfer (SVAT) model, Franks
and Beven (1997a) demonstrated significant uncertainty
associated with SVAT predictions following calibration of
a simple SVAT model to latent heat fluxes alone. There
is, however, the potential to use measurements of all heat
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flux components in the surface energy balance in a multi-
objective conditioning scheme to constrain the feasible
parameter space. During the daytime period, incoming net
radiation may be partitioned into the two dominant fluxes
of latent and sensible heat, and a further smaller compo-
nent, the ground heat flux. Typically, SVAT models are
calibrated on measured latent heat flux alone. Multi-
objective calibration to all heat flux variables should, in
principle, increase the calibration information content and
hence reduce the parametric and predictive uncertainty.
Other variables may also be included in multi-objective
conditioning schemes such as sub-surface hydrological
variables and appropriate surface temperature measure-
ments. ‘

This present study represents an extension of that by
Franks and Beven (1997a) to evaluate the utility of condi-
tioning a SVAT model on multiple objectives. In this
paper, a relatively simple SVAT model is tested within the
Generalised Likelihood Uncertainty Estimation (GLUE)
framework. Multiple parameterisations are selected from
feasible ranges and their ability to reproduce time series of
surface fluxes is evaluated. After calibrating the SVAT
model against latent heat fluxes alone, feasible parameter
distributions are assessed. Prediction bounds for a differ-
ent period of data collected at the same site are then
derived and evaluated. Multi-objective conditioning is
then performed using all the observed components of the
surface energy balance and the derived prediction bounds
for the evaluation period are compared with those derived
by single objective calibration.

This study therefore seeks to investigate the utility of
conditioning a simple SVAT model on additional heat
fluxes, in terms of increasing the constraints on the feasi-
ble parameter sets and the consequent predictive uncer-
tainty. Additionally, model-output aerodynamic surface
temperatures are then examined to indicate the potential
utility of radiative temperature measurements in reducing
uncertainty associated with SVAT model parameterisa-
tions.

Adaptation of the TOPUP-SVAT
model

The TOPUP-SVAT model (Beven and Quinn, 1994;
Franks et al., 1997b) is an attempt to represent some of the
key physical processes in a realistic but parametrically par-
simonious way (Fig. 1) at the scale of a landscape patch. A
novel feature of the model is that it includes a representa-
tion of the lateral redistribution of moisture provided by a
dynamic water table following the basic concepts in TOP-
MODEL (Beven et al., 1995). In previous applications, the
TOPUP-SVAT model has utilised the Penman-Monteith
equation (Monteith, 1981) to predict latent heat fluxes (see
Franks et al., 1997b for more details). As the aim of this
study is to assess the utility of additional conditioning
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Fig. 1. Schematic of the TOPUP SVAT. Note that in this applica-
tion no water table is specified.

afforded by all measured heat fluxes, the TOPUP-SVAT
model was adapted so as to provide predictions of each
component of the energy balance. Additionally, the
Penman-Monteith equation eliminates the surface temper-
ature from the calculation of latent heat fluxes through the
use of the gradient of the saturation vapour pressure ver-

- sus temperature function (the ‘del’ function, see for exam-

ple Calder, 1990). To achieve closure of the energy
balance, retaining the surface temperature as a predicted
variable, the following equations were used;

R -G=AE+H (1)
AE = ”TC”Q";—”) @)
E = % (esmi—m .
H= pCPmT_thl 4)

where R, is the net radiation, G is the ground heat flux,
AE is the latent heat flux, H is the sensible heat flux, all in
units of Wm2; T} is surface temperature, ef7y), ¢, ¢ are
the vapour pressures within the leaf stomata, at the leaf
surface, and of the bulk atmosphere, respectively, p is the
density of air, and Cp is the specific heat of air. Given a
reliable measure of R, — G, the partitioning of this incom-
ing energy flux into latent and sensible heat fluxes may be
achieved through the use of the above equations, describ-



ing aerodynamic evaporation, plant physiological evapora-
tion, and sensible heat flux, respectively. The solution to
the above equations is achieved through a robust iterative
scheme.

Previous studies have investigated the soil heat flux as a
function of net radiation, R, (e.g. Clothier ez al., 1986;
Kustas and Daughtry, 1987; amongst others). The study
by Clothier ez a/l. (1986) revealed that the fraction of the
net radiation contributing to the soil heat flux followed a
diurnal cycle varying with the net radiation. Similar
dynamics were also observed in the measured field data. In
this study, a simple model was used to calculate the soil
heat flux providing the dynamics observed by Clothier ez
al. (1986);

G = aR, )
o= b ©)

where 4 is the fraction of net radiation that is partitioned
into soil heat flux at any instant, which is defined by a
maximum fraction, 4, and the ratio of instantaneous net
radiation to the maximum net radiation, R;*** (Eqn. 6).
Note that this sub-model component has deliberately been
kept as simple as possible (only one additional parameter)
S0 as to restrict any increase in the dimensions of the
parameter space. The number of parameters would not be
a problem if additional effective parameter values required
by the model could be uniquely measured in the field.
However, for a patch scale’SVAT model, this will not be
the case even for physical parameters such as the soil
thermal diffusivity.

The GLUE methodology

The GLUE methodology was developed as an extension
of the Generalised Sensitivity Analysis of Spear and
Hornberger (1980) to provide a means of assessing the pre-
dictive uncertainty of complex nonlinear models based on

generalised likelihood measures. Its application so far has

been predominantly in rainfall-runoff modelling (Beven
and Binley, 1992; Beven, 1993; Romanowicz et al., 1996;
Freer et al., 1996; Franks et al., 1998; Lamb et al., 1998;
Cameron et a/., 1999) but has also been previously applied
to the TOPUP-SVAT model (Franks and Beven, 1997a,
b, 1999; Franks et al., 1997b), in the prediction of critical
loads (Zak et al., 1997; Zak and Beven, 1999) and model-
ling soil nitrate fluxes (Schulz ez 4l., 1999). The sampling
procedure used in this application of GLUE is based upon
Monte Carlo simulation; a large number of model runs are
made, each parameterised with independently chosen ran-
dom values of the parameters selected from uniform dis-
tributions across the range of each parameter. The
acceptability of each run is assessed by some chosen like-
lihood measure, calculated from a comparison of observed
and simulated responses. The likelihood weights of the
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runs are rescaled so that their cumulative total is 1.0. At
each time step, the predicted output from the retained
runs are likelihood weighted and ranked to form a cumu-
lative distribution of the output variable from which cho-
sen quantiles can be selected to represent the model
uncertainty.

Whilst GLUE contains a number of subjective elements
(for example, the prior choice of parameter ranges and in
the choice of the likelihood measure employed) it forces
those choices to be made explicit. A large number of com-
puter runs is also required, particularly for models with a
large number of parameters. The uniform sampling gen-
erally used will in some cases be inefficient in comparison
with the type of importance sampling of Monte Carlo
Markov Chain methods but ensures the orthogonality of
the chosen parameter sets in terms of sampling the para-
meter space. In practice, sampling efficiency has not
proven to be a particular constraint, especially since Monte
Carlo simulation is well suited to parallel computer sys-
tems. Against the disadvantage of computer run times is
the considerable advantage that the approach is conceptu-
ally very easy to understand and easy to implement.

Meteorological Forcing Data

Meteorological forcing data and flux measurements were
employed for an Amazonian, post-deforestation pasture
site, collected as part of the ABRACOS UK-Brazilian col-
laboration (Shuttleworth ez al., 1991; Gash et al., 1996;
Gash and Nobre, 1997). This site is located at Fazenda
Dimona, central Amazonia. The data set employed covers
the period 29th June—10th September, 1991, (Wright et
al., 1995). This data set was divided to provide calibration
and evaluation data sets, to test the ability of model cali-
bration schemes (e.g. Franks and Beven, 1997a). The
latent, sensible and ground heat flux records were mea-
sured independently. Details of the instrumentation
employed at the site are given in Wright ez al. (1992).

Selection of Parameter Ranges and
Sampling Strategy

Parameter ranges may be selected for each parameter based
on physical argument and experience. The a prior:
definition of parameter ranges to be considered already
discounts parameter values outside these ranges, in effect,
specifying values outside these ranges as having a likeli-
hood of zero. The specification of the sampling ranges
used in this application of the GLUE method follows the
previous study of TOPUP SVAT model behaviour by
Franks et al. (1997b). The parameter ranges used in this
study are shown in Table 1. To sample the parameter
space, 10,000 individual parameter sets were constructed
with each constituent parameter value being randomly
chosen from uniform distributions from each parameter
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residual series (even after allowing for heteroscedasticity
and autocorrelation effects).

In this study, an appropriate measure must be selected
that can treat the multi-variate problem at hand. A num-
ber of earlier studies have employed least-squares based
likelihood measures under the assumption of an error
model based on zero-bias, normally-distributed errors (e.g-
Kuczera, 1983).

The multi-variate problem can be expressed as below;

LE/| 1/6,Y)| |«
H;, | =8¢0, |+|B &)
G ne,Y) | |
where, LE;, H; and G; are the latent, sensible and ground
heat fluxes observed at time, i, ©; is a given parameter set,
Y is the set of forcing observations, f{ ), g( ), #( ), &, B,
and y represent the model structure and prediction errors
for the prediction of latent, sensible and ground heat
fluxes, respectively.

Box and Tiao (1973) define a simple likelihood measure
as;

LO,|Y) = (S3)™" (10)

where Sg? represents the sum of squared errors ¢ for a
given parameter set, 6, and # is the number of indepen-
dent measures of a variable. Franks and Beven (1997a)
used a similar likelihood measure in conjunction with the
TOPUP-SVAT model with the addition that the variance

of the errors was raised to a power of —N, where N is a-

subjectively chosen shaping parameter to accentuate the
form of the response surface -

In this study, as multiple objectives are to be used, then
there is the additional requirement that each variable is
treated a priori equally. To achieve this, the variance of the
errors may be normalised by the minimum estimate of the
variance of the errors for each of the different objectives
(heat fluxes). A simple single objective likelihood measure
may therefore be defined as;

2 -n/2
L©, |Y,07%) e (;’) ’ (11)

2
o

where 8 is the parameter set, Y is the set of forcing data,
0,7, is the variance of the errors for the variable of inter-
est, and G,? represents the maximum likelihood estimate
of the variance of the errors of the variable. In terms of the
multi-objective problem, the normalised measures for each
individual variable may be combined through Bayes
Equation, thus;

L,

2 2 2
X,O-a)o-ﬂyo-x) o<

L©,)Y,0)L(O,Y,0)LO,Y,0;)  (12)
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The normalisation of the error variance for the three vari-
ables ensures that the derived likelihood measure treats
each of the variables @ priori equally. The developed like-
lihood measure therefore explicitly accounts for the inher-
ently different ability of the model to simulate the
different objectives. This is particularly important in the
calibration of a patch (or plot) scale SVAT model as
numerous sources of error may exist in the different data
sets. Both latent and sensible heat flux measurements are
made at a point in space at some measurement height.
However, the measured fluxes are representative of are-
ally-integrated flux variability, where the area sampled is a
function of fetch and wind direction (and hence, the vari-
able micro-meteorological data). Such measurements can-
not, therefore, be treated as precise point measures. In
contrast, the measures of ground heat fluxes are made with
heat plates that are set in fixed point locations. Because of
the mis-match of scales at which the various fluxes are
made, an inherent residual in the total energy balance must
be expected at any point in time. In contrast to the inher-
ent residual in the observed energy balance, the model
must always balance these energy components. By nor-
malising the error variances of each of the fluxes by the
minimum error variance in the likelihood measure, we
have explicitly acknowledged the variable degree to which
the different heat fluxes can be reproduced by the model.

At this point it is worthwhile noting that a traditional
statistical likelihood function in terms of Eqn. 10 requires
raising the error variance term to the power of
—n/2, where n is the equivalent number of independent
observations. Equation 12 also implicitly assumes inde-
pendence of the three residual series. In general, » will be
less than the number of observations because of serial cor-
relation and cross-correlation in the residuals but, for the
number of time steps used in this study, will still be
expected to be large. Such a function therefore tends to
provide an overly stringent measure of the acceptability of
a given parameter set, especially given an expectation that
even the best model parameterisation will not simulate all
aspects of the observations. A power transformation can,
however, be used as an empirical shaping function to con-
trol the stringency/leniency of the required objective
function. Whilst the choice of this scaling parameter is
necessarily subjective, once assigned, prediction bounds
can be derived representing a consistent test of the model’s
ability to reproduce further evaluation data sets. The final
likelihood measure used in this study is therefore derived
as;

2 2 2 -N
Y,0%,05,0%) = [‘f‘; % a3)
0, Op 0,
where N represents the empirical scaling factor. For
constant error terms, increasing the value of N effectively
increases the number of time steps and hence the assumed

informative content of the data (i.e. towards fully
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independent observations). This has the effect of adding
more weight to the parameter sets that produce the small-
est residuals. The effect of this parameter on the derived
prediction bounds will be assessed below.

As the derived likelihood measure requires the
specification of the minimum estimated variance of errors
for each modelling objective, then an iterative procedure is
required. Initially, the optimal variance of the errors for
each of the variables of interest is calculated according to
the best reproduction from any parameter set. These opti-
mal error variances are then applied in Eqn. 13 to identify
the minimum error variance (optimal) sét (i.e. the para-
meter set with minimum error variances for all fluxes).
The final stage requires the re-application of Eqn. 13 using
the identified minimum error variance (optimal) set.

Results

Following the methodology outlined above, 10000 para-
meter sets were selected from the feasible parameter space
(Table 1) and the model was run for each parameter set,
forced with the ABRACOS data set. This data set was
divided into sections of equal length. The first period of
data was used as the conditioning period, hereafter
referred to as the calibration data set. Using these data,
likelihood values were derived for each parameter set fol-
lowing the reproduction of the latent, sensible and ground
heat fluxes records, for both single and multiple objective
conditioning. The second period of data was used as an
evaluation data set whereby predictive uncertairity, associ-
ated with the conditioning on the latent heat fluxes, and
then all fluxes, could be assessed.

Assessing the effect of the shaping
parameter, /N, on derived prediction
bounds |

Figure 2 shows the prediction bounds associated with the
prediction of all heat fluxes for a section of the calibration
data set following conditioning on the latent heat flux
alone. For clarity these have been scaled by subtracting the
observed data value for each time step so that zero repre-
sents a zero error. Figure 2 shows that the effect of
increasing N is to narrow or constrain the uncertainty
envelope. Figure 3 shows the 95% prediction bounds lim-
its for the evaluation data period, conditioned on the latent
heat flux measurements alone. As such, for a ‘validated’
model structure and calibration, then the residual predic-
tion bounds should centre on zero for the diurnal predic-
tions, if the prediction bounds encompass the observed
flux.

As can be seen, as the value of N is increased, for val-
ues of N = 5 and 7.5, then the prediction bounds do not
enclose the observed data (as indicated by the residual pre-
diction bounds not being centred on zero). This indicates
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Fig. 2. Derived prediction bounds for a section of the calibration data
set of (a) latent heat flux, (b) the residual differences between the
observed and the prediction bounds, (c) the sensible heat flux and (d)
the ground heat flux. Note that successively consirained prediction
bounds correspond to N = 1, 2.5, 5, and 7.5.

that the observed data is outside the uncertainty envelope
and hence that the model is apparently biased in its pre-
dictions during some of the simulation period.

By increasing the value of N, the likelihood measure is
made more stringent in that ‘better’ simulations are given
higher likelihoods than those performing less well. As
stated earlier, the N shaping parameter is used in this
study to reflect the degree of belief in the information con-
tent of the data, relative to the limitations of the model and
the observations. Use of a high value of N is only really
justified where it can be assumed that a true model of the

process exists, otherwise it will result in an over-condi-

tioning of the parameter space towards a single optimum
parameter set. The limitations of any SVAT model sug-
gest that more leniency is required in the definition of the
likelihood measure. Therefore, for the rest of this study a
value of N-= 2.5 is adopted representing a reasonable com-
promise between constraining the prediction limits of the
simulations and encompassing of the observed data. As
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such, the N parameter has not been arbitrarily prescribed
but assigned on the basis of the implicit effects of limita-
tions of the data and the simplified model structure.

Assessing the constraint of the
feasible parameter space

To assess the effect of conditioning on the different heat
flux variables on the feasible parameter space, cumulative
likelihood plots for each parameter may be used (see
Franks et al., 1997a). As the a priori parameter sets were
selected from uniform distributions, then the prior cumu-
lative likelihood plots should show a straight line. If, after
conditioning, there exists a tendency towards a particular
sub-range of that parameter from the initial distribution,
then the reproduction of the single or multiple flux vari-
ables is revealed as showing some sensitivity to that para-
meter (remembering that it is the parameter set that gives
a good or bad fit to the data). A posterior straight line
cumulative distribution therefore represents a lack of
effective conditioning of a particular parameter, whilst a
significant deviation from a straight line demonstrates that
the feasible values of that parameter have been constrained

Multi-objective conditioning of a simple SVAT model

despite potential parameter interactions. Such plots may
therefore be used to infer significant conditioning of the
parameters.

Figure 4 shows such cumulative likelihood plots for four
of the TOPUP-SVAT model parameters related to the
moisture stores and surface resistances. These parameters
are SRMAX, the root zone store, MAXINT, the inter-
ception canopy store, RSMIN, the minimum surface resis-
tance, and RSMAX, the maximum surface resistance.
These plots present the posterior parameter distributions
after conditioning on latent heat fluxes alone, multi-objec-
tive conditioning on the latent and sensible heat fluxes, and
finally the multi-objective conditioning on all heat fluxes.

Figure 5 shows the cumulative likelihood plots for four
of the TOPUP-SVAT model parameters relating to the
aerodynamic characteristics and the ground heat flux para-
meterisation. These parameters are 2, the roughness
length for momentum, In(2,/z,), the natural log of the
ratio of the roughness lengths for momentum and heat, 4,
the displacement height, and 4, the ground heat flux para-
meter (Eqn. 6). From Fig. 4, it can be seen that only the
RSMIN parameter remains uniform in each of the poste-
rior cumulative distributions following each of the condi-
tioning schemes. As such, it can be stated that the results
are insensitive to this parameter.

As can be seen, the SRMAX and RSMAX parameter
distributions following the additional constraint on the
sensible heat flux record are significantly different to those
derived by calibration to latent heat fluxes alone. Figures
5a,b also show the same effect for the aerodynamic para-
meters [2,, In(2,,2,4)]. It can therefore be stated that con-
ditioning on the sensible heat flux improves the constraint
of these parameters—this is due to the greater sensitivity
of the sensible heat fluxes to the aerodynamic parameters
that produce appropriate aerodynamic resistances for solu-
tion of Eqn. 4.

As the aerodynamic resistance term is common to both
calculations of sensible heat flux (Eqn. 4) and latent heat
flux (Eqn. 2), then the constrained aerodynamic resistances
produce a commensurate refinement of the distributions of
those parameters which most strongly control the surface
resistance terms (SRMAX and RSMAX; Franks er al,
1997b). It is therefore apparent that additional condition-
ing of the TOPUP-SVAT model on the sensible heat
fluxes produces a significant reduction in the parameter
uncertainty. It should however be noted that whilst the
parameter distributions are constrained, the feasible para-
meter ranges are still wide indicating non-uniqueness of
parameter sets in reproducing the calibration data.

Figure 5c shows the distributions of the ground heat
flux parameter, 4. It can be seen that for the reproduction
of the latent heat flux alone, the results show relative
insensitivity. This is in marked contrast to the distribution
of this parameter following multi-objective conditioning
which displays a significant constraint on the range of
values associated with high likelihood parameter sets. This
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Fig. 4. Cumulative likelihood plots for four of the model parameters related to the model moisture stores.

can be interpreted as follows. The reproduction of the
latent heat flux alone does not significantly constrain the
ground heat flux; good reproduction of the latent heat flux
can be achieved with any parameter value from the chosen
a priori range (conditional on values of the other parame-
ters). It is only when the model is required to reproduce
additional heat fluxes (i.e. multi-objective conditioning)
that this parameter displays significant conditioning . The
ground heat flux parameter is therefore markedly con-
strained by the multi-objective conditioning. It should be
noted that this is due partly to the fact that the energy bal-
ance is a ‘bounded’ problem in the sense that there is a
strong dependence between each of the predicted fluxes as
they must sum to equal the input net radiation. Without
the additional observations, many different partitionings of
modelled fluxes between sensible heat and ground heat
flux could result in the similar predicted latent heat fluxes.

Assessing predictive uncertainty fol-
lowing multi-objective conditioning
To evaluate the potential constraint of the uncertainty

associated with the prediction of the heat fluxes following
multi-objective conditioning, prediction bounds were
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determined for the simulation of the evaluation data set.
Figure 6 shows the derived prediction bounds propagated
for the latent heat flux. In this plot, the solid lines repre-
sent conditioning on the latent heat flux alone whilst the
dashes represent multi-objective conditioning on all heat
fluxes. From this plot, it can be seen that significant
improvement in the predictive uncertainty is attained
through multi-objective conditioning. Indeed, the differ-
ent prediction bounds can be visually differentiated on the
upper bounds of the second diurnal response. Figures 7
and 8 show the prediction bounds propagated for the sen-
sible and ground heat fluxes. In these plots, the solid lines
represent the conditioning on latent heat flux alone and the
dashes represent the multi-objective conditioning. As can
be seen, the magnitude of the uncertainty envelopes show
significant differences whilst largely encompassing the
observed data. As such, it can be stated that multi-objec-
tive conditioning has been shown to be beneficial in terms
of reducing the space of feasible models, and that this
reduction in parametric uncertainty translates into
significant reductions in the predictive uncertainty associ-
ated with the reproduction of the latent, sensible and
ground heat fluxes.



Assessing the constraint of the pre-
dicted aerodynamic surface temper-
atures

The results presented above indicate that conditioning
SVAT models on additional objectives leads to some
improvement in the prediction uncertainty associated with
feasible model parameterisations. Additional sources of
data should therefore yield increasingly constrained feasi-
ble parameter sets, through the rejection of further para-
meter sets (in terms of reproducing the additional
observations).

Additional sources of data that might prove useful in
this respect include surface temperature measurements.
Figure 9 shows the prediction bounds of the surface tem-
perature derived by multi-objective conditioning for a sec-
tion of the evaluation data set. As can be seen, the resultant
uncertainty envelopes are typically approximately 5
degrees wide, with one diurnal peak uncertainty at approx-
imately 10 degrees. This figure therefore indicates that if
appropriate measurements can be achieved with an accu-
racy of better than 5 degrees, then further constraint of the
parameter space can be achieved and hence possible reduc-
tions in the predictive uncertainty associated with the
model.
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However, it must be remembered that additional com-
plications may be introduced because thermal infra-red
thermometry measures the radiative surface temperature at
the effective scale of a particular instrument, whereas the
model predicted variable is the effective (patch scale) aero-
dynamic temperature. A conceptual SVAT model effective
temperature conditional on a particular ‘big leaf’ model
structure and a conceptual radiative temperature after pro-
cessing with the interpretative model of the digital num-
bers in the imager, are different quantities. This issue of
commensurability means that we must expect the informa-
tion content of the measured variable to contain inherent
uncertainty.

One method of approaching such data to extract perti-
nent information is to use a ‘temperature change’
approach. The change of radiative temperature over a fixed
period may be compared to model predicted changes in the
aerodynamic surface temperature over the same fixed
period, due to the approximately constant relationship
between radiometric and aerodynamic temperatures (as
observed by Huband and Monteith, 1985).

The actual conversion of radiometric to aerodynamic
surface temperature requires the specification of the sur-
face emissivity. Humes et a/. (1994) have shown that for
low emissivities (e.g. € = 0.96), the required correction is

08 |

0.6 |-

cumulative liketihood

0.2

parameter value

cumulative likelihood

0.15 0.2 0.25 0.3 0.35
parameter value (m)

Fig. 5. As figure 4, but for four model parameters relating to aerodynamic characteristics and the ground heat flux parameter ( B).
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Fig. 6. Comparison of uncertainty bound residuals for latent heat flux
Jfollowing multi-objective conditioning. The solid line represents single
objective conditioning, whilst dashes represent multi-objective condi-
tioning.

1K at a radiometric temperature of 15 degrees celsius,
increasing to 2K at approximately 50 degrees celsius,
though this also depends to a lesser extent upon longwave
radiation. The required correction is lower for higher
emissivities (e.g. € > 0.96), and less variable for the range
of radiometric temperatures. Hence an approximately con-
stant relationship may be assumed between radiometric
and. aerodynamic temperatures with limited uncertainty.
The acknowledgement of intrinsic uncertainty in such data
necessitates the employment of a Bayesian uncertainty
framework such as GLUE to evaluate the potential worth
of such data sources. Given the wide range of uncertainty
associated with the posterior multiple-objective surface
temperatures, shown in Fig. 9, it can be expected that
measured temperatures will provide some additional
information to constrain the feasible model space further.

Discussion

The results presented here indicate that conditioning on
the measured latent fluxes alone can yield reasonable sim-
ulations of that variable when the retained models are used
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to simulate an additional evaluation period. It has been
shown that multiple parameter sets can reproduce ade-
quately the calibration and evaluation data sets used in this
study. ’

It has also been found that the additional requirement
to simulate the sensible heat flux produces significant addi-
tional constraint of some of the parameters to which model
output is sensitive (Franks er al., 1997b). Parameters
SRMAX, RSMAX, z,, and In(z,/z,;) are all significantly
constrained when the observed sensible heat fluxes are
used to condition the model. The results also demonstrate
that ground heat flux parameter is not sufficiently con-
strained through calibration to the latent heat flux and/or
both dominant heat fluxes. As indicated by Fig. 5, condi-
tioning on the latent or both latent and sensible heat fluxes
does not identify, adequately, suitably robust parameter
values for the ground heat flux component. By condition-
ing the model on the latent, sensible and ground heat
fluxes, it was found that a markedly constrained range of
the ground heat flux parameter was achieved.
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Fig. 7. Comparison of uncertainty bound residuals for the sensible
heat flux following single and multi-objective conditioning. The solid
line represents single objective conditioning, whilst dashes represent
multi-objective conditioning.
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Fig. 8. Comparison of uncertainty bound residuals for the ground
heat flux following single and multi-objective conditioning. The solid
line represents single objective conditioning, whilst dashes represent
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The utility of multi-objective conditioning has therefore
been demonstrated through demonstrably constrained
parameter ranges representing a significant reduction in
the parametric uncertainty associated with the application
of the TOPUP SVAT model. More significantly, however,

Multi-objective conditioning of a simple SVAT model

this reduction in the parametric uncertainty has been
shown to lead to a significant reduction in the uncertainty
for all of the predicted fluxes.

These results have a number of implications for the
application and calibration of SVAT models; they indicate
that such SVAT models are over-parameterised with
respect to the data typically available for their calibration.
However, the additional constraint provided by the condi-
tioning to the sensible heat flux results in a more con-
strained acceptable parameter space, with a consequent
reduction of the predictive uncertainty associated with the
reproduction of the heat fluxes. It therefore follows that
calibration of a SVAT model can be more robustly
achieved through such multi-objective conditioning. This
is particularly important for applications of SVAT as a
lower boundary for atmospheric modelling, as SVAT
models will simulate more accurately all aspects of the
energy balance if the model is conditioned on indepen-
dently measured heat fluxes (though note that the problem
of the uncertainty associated with the spatial heterogene-
ity of the energy budget components is not addressed here,
but see Franks and Beven, 1997b, 1999).

However, it remains unclear how such a SVAT model
may be applied at the large scales required for atmos-
pheric modelling. As has been shown, SVAT models can-
not be calibrated uniquely at the local patch (or plot) scale
where a single parameterisation is appropriate.
Consideration of the variability of pertinent land sur-
face—atmosphere parameters and land surface fluxes at
the typical resolution scales of atmospheric models indi-
cates that such large-scale calibration/validation exercises
are not currently feasible. Large-scale measurements of
fluxes such as are achievable from airborne or satellite
platforms may be representative over larger areas but then
only provide a few measurements in time (Franks and
Beven, 1999). Scintillometry offers some potential to pro-
vide continuous, large-scale measures of fluxes; however
this technique is still under development (de Bruin et al.,
1995; Lagouarde e al., 1997). The utility of evaluating
SVAT models at local scales with regard to their large-
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Fig. 9. Prediction bounds propagated for the modelled aerodynamic surface temperature following multi-objective conditioning.
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scale application in such atmospheric models must there-
fore be questionable.

In all cases, it is clear that the complexity of current
SVAT models inhibits their robust calibration and that
significant uncertainty must be associated with their pre-
dictions. SVAT models need to be simplified to a level that
is commensurate with the data available for their calibra-
tion. Ways must be sought to simplify the complexity of
model structures and these models must be tested with
additional sources of data to constrain their parameterisa-
tions.

A methodology to test the utility of such data through
multi-objective conditioning has been presented. This
methodology tests the achieved conditioning through the
evaluation of the consequent parameter and predictive
uncertainty, through the use of the Bayesian GLUE
uncertainty framework. It may be inferred that the
equifinality of parameter sets demonstrated here will also
apply to multiple model structures (Beven, 1999). The
GLUE approach can be extended easily to multiple SVAT
model structures subject only to the limitation that each
model simulates the variables that are compared with the
available observations.
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