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nearest-neighbour resampling

Theo Brandsma and T. Adri Buishand

Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bitt, The Netherlands

Abstract

The use of the nonparametric nearest-neighbour resampling technique is studied for generating time series of daily rainfall and
temperature for seven stations in the German part of the Rhine basin. The emphasis is on the reproduction of extreme N-day
precipitation amounts. The daily temperatures are used to determine snow accumulation and melt in winter. Two versions of the
resampling method, conditional on the atmospheric circulation and unconditional, show comparable results. For precipitation, the
autocorrelation properties are well reproduced, whereas for temperature the autocorrelation coefficients are systematically under-
predicted. The distributions of the N-day annual maximum precipitation amounts are adequately preserved. Despite the system-
atic underprediction of the temperature autocorrelation, the distributions of N-day maximum snowmelt are well reproduced. A
1000-year simulation for the seven stations shows that unprecedented rainfall situations can be generated.

Introduction

There is a growing interest in the simulation of synthetic
time series of weather variables like precipitation and tem-
perature. Part of the interest stems from dissatisfaction
with current methods of estimating floods, like frequency
analysis of observed peak river discharges or running a
design storm through a catchment model. Improved flood
estimates are expected from the use of synthetic sequences
of weather variables, in combination with a physically-
based model of the river basin. A stochastic weather gen-
erator can also be a powerful tool to translate the
large-scale information of General Circulation Models
(GCMs) into representative local time series data (‘down-
scaling’) in order to assess the hydrologic impacts of pos-
sible future changes in climate.

Several types of model have been used to generate syn-
thetic sequences of daily rainfall. The most popular
approach is to describe the occurrence of wet and dry days
by a two-state Markov chain or an alternating renewal
process and to represent the distribution of the precipita-
tion amounts on the wet days by a gamma distribution or
an other positively skewed distribution; see Woolhiser
(1992) for a review. A recent development is to link model
parameters to properties of the atmospheric circulation in
order to improve the reproduction of persistence of daily
rainfall or to assess the effects of systematic changes in the
atmospheric circulation, e.g. resulting from increased

\

greenhouse gas concentrations (Bardossy and Plate, 1991;
Katz and Parlange, 1993).

The majority of the literature is on the generation of
single rainfall sequences. However, hydrologic studies gen-
erally require more meteorological input, e.g. temperature
or rainfall at several sites in a river basin. Methods for gen-
erating such multivariate data generally assume an under-
lying normal distribution, because its multivariate
extension is straightforward and well-known. Richardson
(1981) used a multivariate normal first-order autoregres-
sive process to generate maximum and minimum temper-
ature and solar radiation conditional on a synthetic
sequence of daily rainfall. The same type of model has
been explored for a stochastic description of multi-site
daily rainfall (Richardson, 1977; Bardossy and Plate, 1992;
Hutchinson, 1995). Unfortunately, the assumption of an
underlying multivariate normal distribution is a question-
able one. Although transformations can be useful to obtain
the ‘marginal distributions that are more or less normal,
this does not ensure that the dependence structure corre-
sponds to that of a multivariate normal distribution. The
latter requires that the relations between (transformed)
variables are linear with constant variance.

" Recently, nonparametric resampling procedures have
been proposed to avoid the specification of multivariate
distributions (Hughes ez al., 1993; Lall and Sharma, 1996,
Zorita et al., 1995). For the joint simulation of daily
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precipitation and other weather variables, resampling from
nearest-neighbours or analogues is perhaps the most
promising technique. The method does not require the
partitioning of continuous variables into discrete. states.
Furthermore, nearest-neighbour resampling easily allows
for linkage with the atmospheric circulation.

Resampling from analogues or nearest-neighbours is
rather new in hydrological and meteorological literature.
Zorita et al. (1995) used the analogue method to generate
multi-site daily precipitation in a climate-change study.
The generated amounts for a given day were set equal to
the observed amounts for the day in the historical record
with the most similar sea-level pressure field. In a later
paper (Cubasch et al., 1996), the conditioning was done on
both sea-level pressure and 700 hPa temperature. Lall and
Sharma (1996) discussed a nearest-neighbour bootstrap for
generating hydrologic time series. Resampling was done
from the successors to the historical £ nearest-neighbours
of the values generated for the previous day, rather than
taking the observed precipitation for the closest neighbour,
in terms of the atmospheric circulation, as in Zorita et al.
(1995) and Cubasch et al. (1996). For a high-elevation site
in Utah, Rajagopalan and Lall (1995) compared nearest-
neighbour resampling with Richardson’s (1981) method for
generating multivariate weather data (precipitation, maxi-
mum and minimum temperature, solar radiation, dew point
temperature and wind speed). Various properties of the
daily values (quartiles and skewness of their distributions,
lag 0 and lag 1 cross-correlation coefficients, and lag 1 auto-
correlation coefficients) were best reproduced by nearest-
neighbour resampling.

Different variables have been used to find the analogues
in the historical data. In contrast to the papers in the mete-
orological literature, Rajagopalan and Lall (1995) did not
consider the atmospheric circulation. It is also not known
how far nearest-neighbour resampling can reproduce
properties of extreme rainfall, which is important for
hydrologic design. In this paper, the nearest-neighbour
resampling technique of Rajagopalan and Lall is studied
for generating single-site values of precipitation and tem-
perature in the German part of the Rhine basin. Four dif-
ferent sets of variables are compared for the selection of
analogues. The emphasis in this comparison is on the
reproduction of the autocorrelation structure and the dis-
. tribution of multi-day maximum precipitation amounts.
Snow accumulation and melt are also dealt with.

The paper is organised as follows. Firstly, the necessary
background of the nearest-neighbour method is presented.
Secondly, the results for seven German stations are dis-
cussed. Finally, some overall conclusions are given.

Methodology
NEAREST;NEIGHBDUR RESAMPLING

The principle of nearest-neighbour resampling is pre-
sented in Rajagopalan and Lall (1995) and Lall and
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Sharma (1996). The main points are repeated here. A dis-
tinction is made between unconditional simulation of
weather variables and conditional simulation of weather
variables given the atmospheric circulation.

The generation of precipitation P and temperature T
for day ¢ requires a feature vector D; to find analogue sit-
uations in the historical data. In the method of Rajagopalan
and Lall (1995) for generating multivariate daily weather
data, D; would contain the values of P and 7, generated
for day ¢ — 1. The # nearest-neighbours of D, in terms of
Euclidean distance, are abstracted from the historical
record. Let #(5), 7 = 1, . . ., k, be the times associated with
these nearest-neighbours, such that the distance of Dy to
D; increases with increasing j. The vector of weather vari-
ables following Dy(;), the successor to Dy, is denoted as
x(j)- One of the successors to the # nearest-neighbours is
sampled using a discrete probability distribution or kernel
{#;}. In Lall and Sharma (1996) the following decreasing
kernel was recommended:

__1/j

7Tk ’
Y1/
j=1

In this paper # = 20 is used for resampling from
observed records of 30 years. A sensitivity study showed
that a reasonable reproduction of extreme-value properties
could be obtained with a rather broad range of %k values
(Brandsma and Buishand, 1997).

Figure 1 presents four methods to find analogues in the
historical record. Methods 1 to 3 are examples of condi-
tional simulation of weather variables given the atmos-
pheric circulation. The vector C in Fig. 1 consists of
indices that characterise the atmospheric circulation. In
method 1 there are only observed circulation indices for
day ¢ in the feature vector D,. Analogues of the observed
circulation for the day of interest form also the starting
point in the study of Zorita et al (1995). In order to
improve the reproduction of persistence of daily rainfall,
method 2 also considers the wet/dry status generated for
the previous day. The search for analogues is here
restricted to days with the same wet/dry status as day
¢t ~ 1. The same restriction is imposed in the resampling
procedure of Hughes et al. (1993) and Conway et al.
(1996). In this paper, methods 1 and 2 are extended by
including the observed circulation indices on day ¢ — 1 and
the values of P and T that were generated for day ¢ — 1
(method 3). Resampling occurs from the observed precip-
itation and temperatures on the days #(j) in the nearest
neighbourhood.

Method 4 is an example of unconditional simulation.
This method extends the method of Rajagopalan and Lall
(1995) by adding atmospheric circulation indices to the
weather variables in D,.

To account for the systematic annual cycle in the
various weather variables, the search for the % nearest-
neighbours of the feature vector is restricted to days in a

i=hok )
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Fig. 1. Four methods for the generation of new variables (solid
squares) using different sets of known variables (open squares). P
refers to precipitation, T to temperature, C is a vector of circulation
indices and w/d indicates whether the day concerned is wet or dry.
The asterisks indicate that the corresponding variables are resampled
values of the previous time step.

specified moving window of width W, days, centred at
the day of interest (Fig. 2). The use of a moving window,
instead of fixed seasons, prevents sharp transitions
between seasons. Here Wy, = 61 days is used (Brandsma
and Buishand, 1997). For a historical time series of 30
years, the Euclidean distances for a specific day are then
calculated for 61 X 30 = 1830 days.

A further reduction of seasonal variation can be achieved
by working with standardised variables. In Rajagopalan
and Lall (1995) standardisation was done by subtracting
the calendar day’s mean m, and dividing by the calendar
day’s sample standard deviation sz

o= (tr—m/sgy t = 1,y m; d = (¢ — 1) mod365 + 1 (2)

where x; and %, are the original and standardised variable
for day ¢, respectively, and # is the total number of days
in the time series. For variables with a normal or almost

Wow
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Fig. 2. Moving window.

normal distribution, ¥; usually takes values between —3 and
+3. However, for daily precipitation the range of %, is quite
different. For a dry day, %; = —my/s; @® —0.5 at a lowland
station in the Rhine basin, whereas for days with heavy
precipitation %; @ 10. After resampling a vector of stan-
dardised values for day #, the inverse of Eqn. (2) is applied
to each element to get the simulated weather variables

Xt.sim:
Xrsim = mg + 57 %y(j) 3

where %y;) is the corresponding resampled value.

For daily precipitation, #; sim can be negative because the
mean and standard deviation for day ¢ generally differ
from those for day #(j). Therefore, instead of using Eqn.
(2), the observed daily precipitation was in this study stan-
dardised by:

=/ M4 wet “4)

where mg e is the calendar day’s mean precipitation for
wet days. Such a division by the mean is popular in
hydrology to standardise non-negative variables. For dry
days %; = 0 and for the most extreme wet days ¥, @ 10.

To reduce the effect of sampling variability, smooth
approximations of mg, mjwe and s; were used instead of
the raw values. Smoothing was done with the so-called
supersmoother (Hirdle, 1990).

Through the standardisation, the elements v;; of the fea-
ture vector D; are dimensionless quantities. The weighted
Euclidean distance between two vectors D, and D, is given

by:
i=1

where g is the number of variables in D, and D,, and w; is
the weight associated with the sth variable. Table 1 lists the
weights used in this paper.

The full resampling procedure comprises the following
steps:

. Determine the composition of the feature vector.

. Standardise observed variables using Eqns. (2) and (4).

. Generate data for z = 1.

. Form a feature vector from the most recent generated
variables (method 4) and standardised observed circula-
tion indices (method 3). In methods 1 and 2, the fea-
ture vector only contains the standardised observed
circulation indices for the day of interest.

5. Determine the k£ nearest-neighbours of the feature vec-
tor within a specified window, using the weighted
Euclidean distance in Eqn. (5).

6. Sample one of the £ nearest-neighbours (conditional
methods 1-3) or one of their successors (method 4), and
return to step 4 if more simulated values are needed.

7. Retransform the resampled standardised variables to

their original scale, using Eqn. (3) or x;s5im = mywer %

for precipitation.

B T N
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Table 1. Weights applied to the components of the feature vec-
tor D;. The w; values for the circulation apply to all three com-
ponents Z, W and S of the vector C. The asterisks in D,, indicate
that the corresponding variables are resampled values from the
previous time step and the tilde refers to standardised values.

Method D, w;
1,2 (€ (1)

3 (C,, €, Py, T10) (1/2,1/2,1,1)
4 (Co, PL1, T1) (1,1,1)

The initialisation in step 3 can be done by random sam-
pling a day within the window for 1 January (method 4)
or by resampling a day from the £ nearest-neighbours of
the observed circulation on the first day (conditional
methods). Alternative initialisations are also possible, e.g.
starting with the observed weather for ¢ = 1.

In the unconditional method 4, the closest neighbour in
step 5 (with &, = 0) is always the day in the historical
record from which the most recent values were resampled.
The probability is therefore quite high (€0.28 for the ker-
nel used here) that the next day in the historical record is
resampled in step 6. Resampling of pairs of successive days
in the historical record occurs less frequently in the con-
ditional methods, in particular in method 3.

An important characteristic of a resampling technique is
its inability to generate larger 1-day precipitation amounts
than the largest historical value (small deviations may
occur due to the standardisation of the variables and the
subsequent inversion). Multi-day precipitation amounts
larger than those observed are a result of other sequences
of the historical observations.

From the presentation above, it is clear that there are
various options in the nearest-neighbour method. The
most important of these is the construction of the feature
vector D,. Once D, is constructed, the model can be tuned
using the following factors: (1) the number £ of nearest-
neighbours used for resampling; (2) the width Wy of the
running window; (3) the type of kernel used for attaching
probabilities p; to the £ nearest-neighbours; (4) the weights
w; in the calculation of distances; and (5) the method used

to standardise the variables in the feature vector.
Brandsma and Buishand (1997) studied the sensitivity to
these factors. This paper focuses on the comparison of fea-
ture vectors.

DATA DESCRIPTION

For the research described in this paper, precipitation and
temperature data for Essen, Kahler Asten, Trier,
Frankfurt, Bamberg, Freudenstadt and Stuttgart were
analysed for the period 1961-1990. The stations are situ-
ated in the German part of the Rhine basin (Fig. 3 ). The
data were made available by the Deutscher Wetterdienst
via the ‘International Commission for the Hydrology of
the Rhine Basin’ (CHR/KHR). Table 2 presents the mean
annual temperature and precipitation of these stations,
together with the station elevation.

To incorporate atmospheric flow characteristics, daily
mean sea level pressure (MSLP) data from the UK
Meteorological Office were considered on a 5° latitude by
10° longitude grid. These data extend back to December
1880. For a grid centred at the Rhine basin (see Fig. 4),
the following three daily air-flow indices are calculated: (1)
total shear vorticity Z; (2) strength of the westerly flow 17
and (3) strength of the southerly flow S (see also Jones ez
al., 1993). These three indices form the elements of the
vector C in Fig. 1.

Before resampling, the data were standardised using the

* smoothed values of the calendar day’s mean, my or m  we:
y ] yWety

and standard deviation, s;. Figure 5 presents m; and s, for
the relevant variables together with their smooth approxi-
mations. Before calculating the smooths, the values for
d = 336, . . . ,365 were inserted for 4 < 1 and the values
ford=1,...,30 for 4 > 365 to harmonise the smoothed
values at the beginning and end of the year. Smoothing is
essential here, because most daily statistics show large
sampling variability. Note further that the largest standard
deviations of the flow indices (vorticity, strength of the
flow) are found in winter. The mean westerly flow is also
relatively large in that season. The largest mean wet-day
precipitation amounts are found in summer, which is due
to the influence of convection (summer showers).

Table 2. Characteristics of the stations that have been used in the study (mean annual values for the period 1961-1990).

Station Altitude (m above m.s.l.) Mean annual temperature (°C) Mean annual precipitation (mm)
Essen 152 9.6 931
Kahler Asten 839 4.9 1476
Trier 265 9.2 784
Frankfurt 112 9.7 658
Bamberg 239 8.5 634
Freudenstadt 797 6.7 1681
Stuttgart 373 8.8 719
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Fig. 3. Location of the seven German stations used in this study in the drainage basin of the river Rhine.

Results

For all four methods in Fig. 1, ten 30-year simulations
were carried out. For the unconditional simulation, these
30-year runs are independent through the use of different

random number seeds. For the conditional methods, there:

is some correlation because each run is related to the
observed circulation. Unless specified otherwise, the
results in this section apply to all ten simulations.

The results for Stuttgart are used to show that methods
1 and 2 are inferior to methods 3 and 4 with respect to the
reproduction of the autocorrelation coefficients and the
extreme-value distributions. The results for the other sta-
tions are, therefore, presented only for methods 3 and 4.
The reproduction of autocorrelation properties is dis-

cussed first. Then, the N-day maximum precipitation and
snowmelt amounts are addressed. Finally, simulated long-
duration series of 1000 years are considered.

AUTOCORRELATION AND VARIABILITY OF
MONTHLY VALUES

The reproduction of the occurrence of extreme multi-day
precipitation amounts requires that not only the lag 1 auto-
correlation coefficient is preserved, but also the higher
order autocorrelation coefficients. Figure 6 compares for
Stuttgart the lag 1, 2 and 3 autocorrelation coefficients of
daily precipitation and temperature for the historical data,
with those for methods 1 to 4 (Fig. 1). For the historical
data the standard error se is also presented. The autocor-
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Fig. 4. Grid points of mean sea-level pressure used for the calcula-
tion of the air-flow indices over the Rhine basin.

relation estimates for the simulated data have a much
smaller se because they are based on ten 30-year simula-
tions rather than a single 30-year record. Both the auto-
correlation coefficients and their se were estimated with
the jackknife method of Buishand and Beersma (1993). For
precipitation, the figure shows a clear seasonal cycle of the
autocorrelation coefficients. In winter, precipitation is
dominated by widespread frontal rainfall resulting in rela-
tively large autocorrelation coefficients. In contrast, the
large contribution of convective precipitation (showers) to
summer rainfall results in a relatively weak autocorrelation
of the daily values in that season. For temperature (all 3
lags) and precipitation (lag 1), it is immediately seen that
the autocorrelation is seriously underestimated in methods
1 and 2. Making allowance for the wet/dry status of the
previous day in the search for analogues, gives only a small
improvement in the lag 1 precipitation autocorrelation.

The reproduction of the autocorrelation is much improved
by using Priand T7,in D, (methods 3 and 4). Although
D, does not contain circulation indices of day 7 in case of
unconditional simulation of P and T (method 4), it gives
similar results as the most advanced method of conditional
simulation (method 3).

For the historical and simulated data of Stuttgart,
Table 3 presents the mean lag 1, 2 and 3 autocorrelation
coefficients

12
A=Y /12, 1=123 6)
m=1
with 7,(/) the estimated lag / autocorrelation coefficient for
month m as shown in Fig. 6. The table also lists the mean
standard deviation of the monthly precipitation totals and
monthly mean temperatures

12
i=Y 5, /12 )
m=1

For the simulated data, the monthly standard deviations
tend to be too small if their autocorrelation is not ade-
quately reproduced. In contrast to the comparisons for
each individual lag, a test on the monthly standard devia-
tion considers all lags simultaneously. This test is useful to
discover a too rapid decay of the autocorrelation coeffi-
cients with increasing lag in the simulated data. Such a
departure has often been observed with unconditional sim-
ulation of daily rainfall using simple parametric models
(Buishand, 1978; Katz and Parlange, 1996).

In order to judge the statistical significance of the dif-
ferences between the historical and simulated values, the
standard errors of 7#(/) and § were calculated for the 30-year
historical record. The sampling variability of these esti-
mates would be the main source of differences between the
historical and simulated values, if the resampling method
preserves the autocorrelation structure. The se of #/) was
obtained by the jackknife method of Buishand and
Beersma (1993) and se(5) was obtained by a bootstrap tech-
nique (Appendix A). A criterion of 2 X se is used in
Table 3 to indicate significant differences between histor-
ical and simulated values. Neglecting sampling variability

Table 3. Mean lag 1, 2 and 3 autocorrelation coefficients of daily values and mean standard deviation of monthly values for the his-
torical record of Stuttgart (1961-1990) and simulated data (ten runs of 30 years for each method). Estimates in italics for the simu-
lated data indicate that they differ more than 2 X se from the corresponding estimate for the historical data.

Precipitation Temperature
7(1) 7(2) 7(3) § (mm) 1) 7(2) 7(3) 5(°C)
Stuttgart 0.205 0.066 0.032 30.4 0.789 0.571 0.434 1.74
method 1 0.043 0.025 0.018 253 0.288 0.190 0.146 1.02
method 2 0.102 0.045 0.022 26.7 0.307 0.183 0.136 1.01
method 3 0.181 0.062 0.024 28.9 0.721 0.506 0.368 1.45
method 4 0.187 0.061 0.018 27.8 0.750 0.531 0.373 1.51
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Fig. 5. Values of my and sy for vorticity (Z), westerly flow (W), southerly flow (S), temperature (T) and my e for precipitation (P) together
with their smooth approximations (P and T values apply to Stuttgart) as a function of calendar day d for the period 1961-1990. Vorticity
and flow units are geostrophic, expressed as hPa per 10° latitude at S0°N (1 unit is equivalent to 0.73 x 10~°s and 0.65 ms™ for vorticity
and flow, respecively). The smooth curves are based on the supersmoother (Hirdle, 1990).
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Fig. 6. Lag 1, 2 and 3 autocorrelation coefficients of observed daily precipitation and temperature (dots plus 1 X se bars) at Stuttgart and
simulated precipitation and temperature (average estimates for ten runs for each method) for each month of the year.

of the average estimates for the simulated data, this crite-
rion corresponds to a two-sided test at the 5% level
because #(J) and § are approximately normally distributed.

Table 3 confirms what was observed in Fig. 6. For pre-
cipitation, methods 1 and 2 are unable to reproduce #J)
(lag 1 and 2) and 5, whereas for temperature all methods
fail. Though the absolute differences between the histori-
cal and simulated temperature autocorrelation coefficients
for methods 3 and 4 are small, the differences are statisti-
cally significant because of the small standard errors. The
differences can be reduced by leaving out the circulation
indices in D, that is by unconditional joint simulation of
P and T. However, in this case, the reproduction of the
autocorrelation properties of daily rainfall deteriorates
(Brandsma and Buishand, 1997), in agreement with expe-
riences with simple parametric stochastic rainfall models.
It should further be noted, that the autocorrelation coeffi-
cients of the vorticity indices appear to be too low in the
case of unconditional simulation (method 4). The system-
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atic departure from the observed lag 1 autocorrelation
coefficient is about 0.05, which is comparable to that for
the simulated daily temperatures. The autocorrelation
coefficients of the simulated vorticity indices also show a
too rapid decay with increasing lag.

Table 4 presents values of #(/) and § for all seven sta-
tions for methods 3 and 4. For temperature there is a
small, but significant, underprediction of #/) and § for all
stations. The results are better for precipitation, where
only a weak tendency for underprediction of #/), in par-
ticular for method 3, and § is found. The better reproduc-
tion of the lower-order autocorrelation coefficients of daily
precipitation in method 4, can partly be ascribed to the fact
that this method often selects successive days in the his-
torical record. If the day from which the most recent val-
ues were sampled is excluded in the search for
nearest-neighbours, method 4 still performs slightly better
than method 3 with respect to these autocorrelation coef-
ficients.
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Table 4. Mean lag 1, 2 and 3 autocorrelation coefficients of daily values and mean standard deviation of monthly values for the his-
torical records of seven stations (1961-1990) and simulated data (ten runs of 30 years for each method). Estimates in italics for the
simulated data indicate that they differ more than 2 X se from the corresponding estimate for the historical data.

Station Precipitation Temperature

A1) #2) #3) § (mm) A1) 72) 7(3) 5(°C)
Essen 0.222 0.113 0.074 36.9 0.796 0.580 0.443 1.76
method 3 0.193 0.090 0.059 353 0.718 0.501 0.360 1.44
method 4 0.216 0.122 0.069 35.0 0.753 0.533 0.376 1.47
Kahler Asten 0.359 0.192 0.104 61.8 0.790 0.563 0.420 1.81
method 3 0.309 0.145 0.089 55.4 0.723 0.502 0.356 1.50
method 4 0.338 0.182 0.102 57.4 0.747 0.519 0.359 1.54
Trier 0.235 0.101 0.062 33.2 0.800 0.585 0.447 1.74
method 3 0.216 0.088 0.057 32.0 0.726 0.511 0.370 1.39
method 4 0.229 0.109 0.054 314 0.761 0.545 0.389 1.54
Frankfurt 0.221 0.087 0.051 31.2 0.792 0.579 0.446 1.73
method 3 0.187 0.075 0.041 27.9 0.725 0.514 0.373 1.39
method 4 0.202 0.085 0.042 27.9 0.749 0.533 0.380 1.43
Bamberg 0.198 0.080 0.065 28.3 0.784 0.576 0.445 1.80
method 3 0.175 0.068 0.036 26.0 0.722 0.510 0.368 1.42
method 4 0.196 0.076 0.044 25.8 0.740 0.524 0.372 1.48
Freudenstadt 0.339 0.168 0.079 80.3 0.781 0.551 0.411 1.84
method 3 0.296 0.129 0.070 70.7 0.717 0.495 0.352 1.58
method 4 0.322 0.164 0.090 76.1 0.743 0.507 0.342 1.48
Stuttgart 0.205 0.066 0.032 304 0.789 0.571 0.434 1.74
method 3 0.181 0.062 0.024 , 28.9 0.721 0.506 0.368 1.45
method 4 0.187 0.061 0.018 27.8 0.750 0.531 0.373 1.51

N-DAY ANNUAL MAXIMUM PRECIPITATION
AMOUNTS

For the seven stations, the N-day (N = 1,4,10,20) annual
maximum precipitation amounts were abstracted from the
historical record and all simulated cases. As an example,
Fig. 7 compares for Stuttgart the Gumbel plots of the
observed 10-day annual maxima with those of a 30-year
simulation for each of the methods 1 to 4. Figure 7 gives,
of course, only a rough indication of the differences
between the four methods, because it applies to only one of
the ten 30-year runs. For methods 3 and 4 the figure shows
no systematic differences between the observed and simu-
lated values. The other nine 30-year simulations exhibit
similar behaviour. In contrast, for methods 1 and 2 the 10-
day annual maxima distribution is only reasonably repro-
duced in about half of the ten runs, the other runs display
systematic underprediction similar to that shown in Fig. 7.

For an objective verification of the reproduction of the
N-day annual maxima distributions for N = 1,4,10 and 20,
the following three quantities are considered:

1. The maximum of the N-day annual maxima (highest
N-day amount in the record).

2. The upper quintile mean QM5 of the N-day annual
maxima. For 30 years of data this is the mean of the 6
largest annual maxima. This mean value has an average
return period of 12.5 years (Appendix B).

3. The median M of the N-day annual maxima.

Expressions for the standard errors of these quantities are
given in Appendix B.

For Stuttgart, a comparison between observed and sim-
ulated quantities (methods 1 to 4) is given in Table 5.
Although the observed quantities differ not more than
twice their se from the average values in the simulated
data, methods 1 and 2 exhibit a marked tendency of under-
estimation for N > 1. This is related to the underestima-
tion of the autocorrelation coefficients in these methods. It
is obvious from Table 5 that methods 3 and 4 perform
much better. This becomes more apparent if the same
quantities are compared for the maxima in the winter
half-year (October-March), because the most serious
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Fig. 7. Gumbel plots of 10-day annual maxima for observed precipitation ar Stutigart (solid dots, solid lines) and simulated precipitation for
each of the methods 1 to 4 (open triangles, dashed lines). The solid and dashed lines are probability-weighted moment fits (Landwehr et al.,
1979) to the historical and simulated data, respectively. The annual maxima are plotted using the median plotting position.

underestimation of the autocorrelation occurs in that part
of the year (Fig. 6).

For methods 3 and 4, Table 6 presents the results for
all seven stations. There is no obvious preference for one
of these two methods. The maximum, the upper quintile
mean and the median are all well reproduced. The average
percentage difference is small for these quantities and the
magnitude of the differences between the observed and
simulated values for the individual stations is generally not
more than that expected from the standard errors.

N-DAY MAXIMUM SNOWMELT

Large river discharges may be partly caused by snowmelt.
Therefore, the reproduction of snowmelt is also considered.

Historical estimates and simulated values of snowmelt
were derived from daily precipitation and temperature. It
was assumed that for T <0 precipitation accumulates on
the surface as snow. To calculate the N-day maximum
snowmelt, snow was transformed into snowmelt using the
degree days method. In that method, the amount of
snowmelt on a certain day is proportional to the tempera-
ture excess (number of degrees Celsius above freezing
point on that day), as long as there is solid precipitation
stored on the surface. The constant of proportionality is
known as the degree days factor (mm/°C). This factor was
set equal to 4, which is an average of the valués found in
the literature (Linsley ez al., 1988; Gray and Prowse,
1993).

Analogous to Table 6, Table 7 shows the results for the

Table 5. Maximum, upper quintile mean and median of the N-day annual precipitation maxima for the historical record of Stuttgart
(1961-1990) and simulated data (averages for ten runs of 30 years each).

Station Maximum (mm) Upper quintile mean (mm) Median (mm)

N=1 N=4 N=10N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20
Stuttgart 68.3 1192 149.7 209.1 563 942 1215 1612  36.2 59.6 734 1115
method 1 63.3 925 1332 1833 533 783 1099 1540 351 53.8 76.6  109.7
method 2 65.4 93.9 1302 1751 56.0 773 1079 146.8  36.1 51.3 743 107.3
method 3 625 110.8 1584 2168 55.7 879 1233 1639 371 57.1 789 1122
method 4 628 1089 151.0 1945 53.8 86.0 116.1 1588 373 56.2 789  109.6
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Table 6. Maximum, upper quintile mean and median of the N-day annual precipitation maxima for the historical records of seven sta-
tions (1961-1990) and simulated data (averages for ten runs of 30 years each). The two bottom lines give the percentage difference
between the values for the historical and simulated data, averaged over all stations. Estimates in italics for the simulated data indicate
that they differ more than 2 X se from the corresponding estimate for the historical data.

Station Maximum (mm) Upper quintile mean (mm) Median (mm)
N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20

Essen 81.7 133.5 159.8 192.7 51.5 88.3 125.6 178.2 30.4 56.9 84.8 128.4
method 3 65.0 113.2 151.5 2023 48.9 84.8 120.4 166.6 33.2 56.1 86.8 125.9
method 4 51.9 95.7 1370 194.1 4.1 80.1 117.8 167.5 332 56.6 85.2 125.7
Kahler Asten  68.8 147.0 2329 3523 63.1 129.4 2079  306.8 46.2 96.2 1427 2148
method 3 68.3 1445 2328 345.1 60.5 125.5 199.3 2955 44.2 92.7 1450  213.0
method 4 68.6 1582 2476 3483 60.3 129.6  204.1 290.5 44.8 93.7 149.8  215.6
Trier 57.8 95.9 113.5 144.7 50.9 80.3 109.3 137.9 334 61.4 88.3 123.4
method 3 61.9 98.9 1386 1832 51.1 81.6 1148  154.7 32.5 55.4 80.4 1109
method 4 57.9 92.7 126.6 176.0 50.8 75.9 107.7 147.6 337 55.2 8.0 1124
Frankfurt 109.7 159.8 164.6 191.5 66.4  109.6 128.5 158.6 30.8 50.0 78.8 117.2
method 3 85.7 128.1 152.1 186.6 59.0 92.7 115.8 148.8 30.0 51.0 71.9 9.1
method 4 81.3 132.7 154.4 182.2 57.0 89.8 112.8 146.7 329 514 72.2 100.7
Bamberg 75.3 93.4 126.2 182.9 57.8 77.0 102.3 145.7 315 53.0 69.4 98.7
method 3 69.0 100.6 130.1 163.7 55.2 779 104.6 138.6 322 50.0 69.9 97.2
method 4 67.6 89.5 118.4 159.9 54.6 76.3 100.9 134.0 31.8 48.3 67.7 95.9
Freudenstadt 112.6 2464 2957 4439 1040 2133 2765  403.2 72.0 1439 2133 303.4
method 3 1150  246.6 3353  453.8 96.9 196.5  279.0  376.9 69.0 128.1 188.2  256.6
method 4 1149 2582 3706 5304 101.0 2064  309.1 425.4 67.0 1352 205.5  280.8
Stuttgart 68.3 119.2 149.7  209.1 56.3 94.2 121.5 161.2 36.2 59.6 73.4 111.5
method 3 62.5 110.8 1584  216.8 55.7 87.9 123.3 163.9 37.1 57.1 78.9 112.2
method 4 62.8 108.9 151.0 194.5 53.8 86.0 116.1 158.8 37.3 56.2 78.9 109.6
% diff (3) -7.3 —4.7 4.5 32 —4.6 -4.8 -1.2 -2.0 0.0 -4.8 -2.5 —6.4
% diff (4) -11.3 -7.0 2.5 23 —6.6 6.5 -2.3 -2.3 1.5 —4.4 -1.5 -5.3

N-day maximum snowmelt in the winter half-year
(October—March). The contrast between the two highest
stations, Kahler Asten and Freudenstadt, and the other
stations is striking. For Kahler Asten and Freudenstadt,
the maximum of the 10-day snowmelt is of the same order
of magnitude as the corresponding maximum precipitation
amount in Table 6, whereas for the other stations it is less
than a third of that value. Despite the systematic under-
. prediction of the autocorrelation of daily temperatures, the
correspondence between the historical and simulated val-
ues is quite good in Table 7.

LONG-DURATION SIMULATION

Simulation of synthetic rainfall sequences can be useful to
study the effect of unprecedented extreme rainfall on river
discharges. An interesting question is, therefore, how far
nearest-neighbour resampling can provide higher N-day
amounts than those observed. The average maxima of the
ten 30-year runs in Table 6 are already sometimes larger

than those observed in the historical record. To investigate
this further, a 1000-year simulation for all seven stations
was carried out. Simulation was restricted to method 4
only, because the conditional methods would need an addi-
tional model for generating circulation indices for that
purpose.

Figure 8 compares for Kahler Asten and Stuttgart the
Gumbel plots of the 1-day and 10-day annual maximum
precipitation amounts in the historical record with those in
the 1000-year simulation. Because the resampled 1-day
values are bounded by the observed daily amounts, the
plots of the simulated 1-day annual maxima suddenly flat-
tens near the position of the largest historical values. For
the peak discharges of large river basins, like the Rhine
basin, the 1-day precipitation maxima are of less impor-
tance than e.g. the 10-day maxima. The Gumbel plot of
the 10-day annual maxima in the 1000-year simulation for
Kahler Asten shows values up to 74 mm larger (@ 32%)
than the largest historical value. A similar exceedance of
the largest 10-day values (58 mm, 39%) is found for
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Table 7. Maximum, upper quintile mean and median of the N-day maximum snowmelt for the historical records of seven stations
(1961-1990) and simulated data (averages for ten runs of 30 years each). The two bottom lines give the percentage difference between
the values for the historical and simulated data, averaged over all stations. Estimates in italics for the simulated data indicate that they
differ more than 2 X se from the corresponding estimate for the historical data.

Station Maximum (mm) Upper quintile mean (mm) Median (mm)
N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20
Essen 204 30.6 322 38.7 17.0 22.1 25.3 28.7 6.9 8.7 10.1 12.3

method 3 212 251 31.0 379 15.9 20.1 24.1 29.1 83 10.5 12.4 14.0
method 4 209 32.7 378 43.3 15.4 223 25.8 30.7 8.4 11.1 12.5 13.9

Kahler Asten 51.2 1640 2872  314.0 355 107.7 1916 2415 22.3 63.0 90.2 135.8
method 3 45.8 139.6 2432 3204 378 108.6 179.7 2458 25.3 65.1 99.3 140.3
method 4 46.2 1428 2356  297.6 38.0 112.2 180.3 246.2 253 67.2 98.8 136.6

Trier 21.6 30.3 348 37.2 15.8 25.8 31.7 328 7.7 10.6 12.5 14.8
method 3 20.5 30.8 36.0 42.8 15.0 21.7 25.0 29.0 8.0 9.9 11.6 13.5
method 4 24.1 41.0 44.8 48.3 17.3 26.2 29.5 33.3 8.1 10.5 11.8 14.0

Frankfurt 18.7 24.6 24.6 24.6 115 17.6 18.8 19.9 5.2 6.2 7.1 7.2
method 3 17.9 24.3 26.5 29.8 12.3 15.7 17.9 20.7 5.7 6.7 7.5 8.5
method 4 16.5 20.8 22.8 28.2 12.2 16.3 17.8 20.8 6.0 7.0 8.2 9.2

Bamberg 214 30.9 309 339 154 23.7 25.5 29.2 7.8 9.7 12.2 14.1
method 3 18.7 28.0 323 40.1 14.4 20.9 24.3 289 7.3 10.4 11.7 13.9
method 4 21.3 31.7 34.6 39.3 16.1 23.8 26.5 30.5 8.5 11.5 13.4 15.6

Freudenstadt 42.4 126.8 2347  243.1 36.8 111.1 184.6  216.6 26.2 68.0 93.7 119.4
method 3 43.5 113.3 1656  214.7 36.0 920 1320 167.6 25.2 58.6 76.7 94.8
method 4 47.0 127.9 191.0 2383 38.1 103.6 146.1 183.6 252 58.4 79.9 104.7

Stuttgart 26.4 42.7 42.7 51.8 20.6 32.6 354 389 10.8 16.6 19.8 218
method 3 235 38.4 46.7 54.9 19.0 28.9 333 39.3 10.2 14.2 16.3 18.9
method 4 28.1 47.8 51.3 56.8 20.7 328 36.8 42.6 10.7 14.8 16.6 20.0

% diff 3) 5.3 -89 33 70  -23  -107 -109 40 46 07  -L1 1.1
% diff (4) 14 42 49 107 30 10 42 2.0 8.8 57 31 3.6

Stuttgart. The simulated 10-day maxima nicely follow the
Gumbel distribution. For the other stations similar results
were obtained.

duced. For the simulated daily temperatures a small, but
significant, underprediction of -the autocorrelation coeffi-
cients remained. Nevertheless, the distributions of N-day
maximum snowmelt derived from these temperatures and
the simulated precipitation data were very close to those

Discussion and conclusions

In this paper the joint simulation of daily precipitation and
temperature by nearest-neighbour resampling was
explored. Seven stations in the German part of the Rhine
basin were considered. Both the precipitation and temper-
ature autocorrelation coefficients were seriously underesti-
mated, if the search for nearest-neighbours was only based
on circulation indices for the day of interest or circulation
indices extended with the wet/dry status of the previous
day. The poor reproduction of the daily precipitation auto-
correlation resulted in an underestimation of the quantiles
of the multi-day annual maxima distributions. A major
improvement was achieved by incorporating the simulated
precipitation and temperature for the previous day in the
feature vector. The distributions of the multi-day annual
precipitation maxima could then be. satisfactorily repro-
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derived from observed data.

With respect to the reproduction of autocorrelation
coefficients and extreme-value distributions, unconditional
simulation of precipitation, temperature and circulation
indices (method 4) turned out to be at least as good as con-
ditional simulation of precipitation and temperature on
circulation indices (method 3). In the case of conditional
simulation, the length of a simulation run cannot exceed
that of the MSLP-data set (about 120 years). Longer sim-
ulation runs need a separate stochastic model for generat-
ing circulation indices. It is likely that such a model
reproduces better the autocorrelation properties of these
indices than the unconditional method presented here. In
particular, a significant improvement is expected for vor-
ticity. Furthermore, conditional simulation has potential
applications for downscaling GCM results.
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Fig. 8. Gumbel plots of 1-day and 10-day annual maxima Sor observed precipitation ar Kahler Asten and Stutrgart (solid dots, solid lines)

and precipitation in a 1000-year run from resampling method 4 (open

triangles, dashed lines). The solid and dashed lines are probability-

weighted moment fits (Landwehr et al., 1979) to the historical and simulated data, respectively. The annual maxima are plotted using the

median plotting position.

A difficult question is, how far the length of the
observed record puts limitations on the length of a simu-
lation run. For N = 4, 10 and 20 a repetition of large N-
day precipitation amounts was not found in the 1000-year
simulations in this paper. The distributions of their annual
maxima were close to the Gumbel distribution. The most
extreme simulated values were generally found to be well
above the observed annual maxima.

The application of nearest-neighbour resampling to
large river basins requires a multi-site extension. The com-
position of the feature vector needs further study for such
an extension. Although a resampling technique preserves
the spatial dependence of the 1-day amounts, this is not
necessarily true for the multi-day amounts. The reproduc-
tion of the spatial association of large multi-day amounts
should therefore be tested.

Large river discharges of the river Rhine in the
Netherlands generally occur only during the winter season.
The reproduction of extremes during that season is then
of particular interest. Methods 3 and 4 are not entirely
successful concerning this point (Brandsma and Buishand,
1997). This is related to the weak tendency to underesti-
mate the autocorrelation coefficients and the standard
deviation of the monthly totals.

Appendix A: Bootstrap standard
errors

The bootstrap estimate of the standard error of a statistic
0 is obtained by recomputing 6 for a large number of inde-
pendent bootstrap samples. Each bootstrap sample X7,X3,
.« . ,X7 is a random sample of size 7, drawn with replace-
ment from the original sample X1,X5, . . . ,X, (Efron and
Tibshirani, 1993). Let 6"(5) denote the value of the statis-
tic for the th bootstrap sample, 4 = 1...,B. Then the boot-
strap estimate of the standard error is the sample standard
deviation of the 8*(5) values:

§et = {i [é*(b) - é“‘(o)]2 /(B ~ 1)}2 (Al)
b=1

where 6%(0) is the mean of the 8*(4) values.

Bootstrap estimation of the standard error of the annual
mean 6 = § of monthly standard deviations requires a slight
extension of this concept, because each element of the
sample is a vector of the twelve monthly precipitation
totals of a given year. A bootstrap sample of size # is then
obtained by choosing years randomly with replacement, cf.
Zwiers and Ross (1991). Every time a particular year is
selected the twelve monthly precipitation totals are added
to the bootstrap sample.
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For each bootstrap sample, the standard deviations
sm(), m = 1,.. .. ,12 of the monthly precipitation totals
and their annual average 8"(5) are calculated. The latter is
used in Eqn. (Al) to obtain the bootstrap standard error
of 5. In this study B = 500 bootstrap samples were gener-
ated.

Appendix B: Properties of statistics
used to compare extreme-value
distributions
In this appendix it is assumed that the annual maxima X;
are independent random variables with a Gumbel distrib-
ution:
Pr(X;” x) =exp{-e*9/8} —o<y<ow (Bl)

The mean of X; depends both on & and &

E(X) = &+ 6y (B2)
where y= 0.5772... is Euler’s constant. The variance of X;
is given by:

var X; = n28%/6 (B3)

The special case & = 0 and 6 = 1 is known as the standard
or reduced variable Y.

The upper quintile mean QM5 and the median M are
simple linear functions of the order statistics X(1) 7 X(2) ”
.7 X(n):

n

L= aX,

=1

(B4)

For QM35 the coefficients are 41 ==a4 = 0 and ay;
=--=q390 = %, and for the sample median 415 = 216 = %,
whereas a; = 0 for the other values of i. Writing X(; = &
+ 8Y(;, where Y{; is the ith order statistic in a random
sample of size n from the reduced variable, and using the
fact that for the two statistics considered here, the sum of
the coefficients 4; equals 1, the mean of L becomes:

E(L)=£+8) aE(Y,,) (BS)
i=1
The variance of L can be written as:
var L = Z Z aa; cov(X), X(j)
i=1 j=1
= 522 2 aa; cov(Y, ;) (B6)

i=l j=1

The means and covariances of the order statistics of the
reduced variable can be obtained from tables in
Balakrishnan and Chan (1992). For the estimation of
var(QMS5) and var(M), the scale parameter  in Eqn. (B6)
was replaced by its probability-weighted moment estimate.

For the upper quintile mean QMS5, Eqns. (B5) and (B6)
reduce to:
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. E(QMS5) = & + 2.48406 (B7)
var(QMS5) = 0.313062 (BS)

The return period 7, associated with E(QMS5) can be
obtained as:

T = 1 = 1
" Pr{X, > E(QM5)}  1-exp(—e ")

For the sample median M, Eqns. (B5) and (B6) reduce
to:

~12.5 (BY)

E(M) = & + 0.37745 (B10)
var(M) = 0.067152 (B11)

For the return period associated with E(M) it follows T, =
2.02 years. Due to the positive bias of the sample median,
this return period slightly differs from the value 7, = 2
years for the true median.

A well-known result for the Gumbel variable is that the
maximum Xmayx = X(s) has also a Gumbel distribution with
the same scale parameter & but with location parameter &
+ Olnn. Eqn. (B3) therefore also applies to the variance of
Xmax.- This result, however, strongly relies on the validity
of the Gumbel distribution. Regional analyses of long-
duration series of N-day annual maximum precipitation
amounts in the United Kingdom and the Low Countries
(Dupriez and Demarée, 1988; Dales and Reed, 1989;
Buishand, 1991) show that for N = 1 the upper tail of the
distribution tends to be longer than that of the Gumbel
distribution, whereas for large N (N = 10 or N = 20) the
upper tail tends to be shorter. The former implies that the
variance of X, increases with increasing » and will be
underestimated if a Gumbel distribution is assumed. The
opposite holds if the distribution has a shorter upper tail
than the Gumbel distribution. For the German stations
used in this study there are, however, no indications of
systematic departures from the Gumbel distribution in the
upper tail. It should further be noted that the 2 X se cri-
terion should be used with care for the Gumbel distribu-
tion. For the Gumbel variable X, it follows from Eqns.
(B1), (B2) and (B3) that Pr{X > E(X) + 20(X)} © 0.042
(compared with 0.023 for the normal distribution) and
Pr{X < E(X) - 20(X)} @ 0.001.
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