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Abstract

Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The
result is that a broad range of parameter values can be identified that will give an equally good calibration to the available obser-
vations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas
water quality issues are more frequently associated with low flow conditions. This paper demonstrates how model distinctions
between surface and sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response.
This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncer-
tainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and
the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, base-
flow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still
cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological
behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is
more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons
of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter

uncertainties with data and model error, if inadequate likelihood measures are defined.

Introduction

One of the main limitations to the successful application
of hydrological models is the uncertainty inherent in para-
meter values that have been calibrated using restricted
information about the system that is being modelled. The
issues that most models are required to address are
increasingly related to aspects of environmental change.
This means that fundamental processes within the models,
such as flow partitioning between the surface and sub-sur-
face, may change. It is, therefore, important that there is a
clear understanding of the relationship between the model
parameters and the physical behaviour of the system. Two
main approaches have been adopted to tackle this issue;
the first aims to minimise the need for parameter calibra-
tion by introducing greater process understanding to mod-
els, whilst the second attempts to identify the levels of
uncertainty in the parameters and to analyse the implica-
tions of the uncertainty.

The first approach has involved the development of
extremely complex physically-based distributed models for
which parameters can theoretically be measured in the
field (Abbott e al., 1986). However, application of this

approach requires intensive spatial data for a large number
of parameters, which still have uncertainty associated with
them. Unless applied using a fine spatial discretisation,
effective values for the parameters may need to be derived
to account for small scale processes not included within
the model, such as those effected by artificial drainage
(Dunn and Mackay, 1996). Application of such models to
large catchments is likely to be excessive in terms of both
data and computational requirements and prohibitive of
any detailed uncertainty analysis (Dunn, 1998).

The approach adopted more frequently now is to use
simpler models, allowing the uncertainties associated with
parameter values to be identified, and to derive an enve-
lope of model predictions that takes into account the
uncertainties in the parameter values. This concept has
been formalised by the Generalized Likelihood Un-
certainty Estimation (GLUE) procedure (Beven and
Binley, 1992). Application of the GLUE procedure to
TOPMODEL indicated that a broad range of values could
be applied to many of the individual parameters to achieve

the same goodness of fit to records of stream flow (Freer
et al., 1996).
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Gupta e al. (1998) suggested that one of the problems
in identifying model parameters lies in the limitation of
using a single objective function for calibration. When
model parameters are calibrated visually to stream flow
records, an attempt is generally made to fit the predictions
to the shape of the hydrograph recession curves and the
levels of baseflow, as well as to the peaks. In doing so, the
predictions are being calibrated to more than the instanta-
neous values of total flow, and are accounting for the
hydrological behaviour in a manner that would not be
achieved using an optimisation procedure blind. In their
paper, Gupta et al. (1998) demonstrated that models can
be better constrained using a multi-objective approach,
based on a range of statistics to describe the agreement
between predicted and observed stream flow.

A complementary approach to this issue is the idea that
information about internal behaviour of catchments could
be used to constrain model parameterisations more effec-
tively. One attempt to achieve this has been described by
Franks ez al. (1998), who used representations of surface
saturation derived from remotely-sensed data to cendition
parameter values and reduce the levels of uncertainty in
model predictions. Similarly, Kuczera and Mroczkowski
(1998) attempted to use groundwater level data and stream
salinity in addition to streamflow to constrain parameters
of a hydrochemical model. The further development of
such techniques may help to provide a better understand-
ing of how model parameters relate to the physical attrib-
utes of the catchment. The models can then be applied
with greater confidence to situations involving environ-
mental change.

However, unless they have been the subject of intensive
research, the only hydrological time-series information
that exists for most catchments is a historical record of
stream flow. Therefore, comparisons of model predictions
with the stream flow record frequently provide the only
means of model calibration and validation. For catchments
that are characterised by a peaky hydrograph, indicative of
rapid runoff and frequent storm events, apparently good
prediction of the hydrograph can be achieved provided
there is a good representation of surface runoff behaviour
(Jakeman and Hornberger, 1993). The baseflow and
dynamics of the sub-surface will have little influence on
many goodness of fit measures, unless specifically tailored
to give added weight to low values by, for example, taking
log values. Yapo er al. (1998) used a multi-objective
approach to model calibration but still identified a prob-
lem in predicting low flows and recession curves using a
combination of two objective functions. However, contri-
butions from the sub-surface may still form a significant
component of the total runoff, and are of particular import-
ance where water quality, as well as quantity, is of interest.

One of the functions intrinsic to most conceptual hydro-
logical models is the distinction between flow paths of
water, represented by a separation into peak surface runoff
and sub-surface (baseflow) components. The. differing
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behaviour of these processes determines the nature of the
hydrograph. Therefore, it would seem appropriate to
analyse the functioning and parameterisation of the model
in terms of two distinct components. The aim of this paper
is to investigate whether additional information about
model behaviour and parameter interpretation can be
obtained from stream flow hydrographs by separating the
baseflow component from the peak flow response. A mod-
ified GLUE procedure is applied using a multi-objective
analysis based on hydrograph separation. Monte-Carlo
simulations of random parameter combinations are per-
formed and acceptable ranges of parameter values identi-
fied. The behaviour of the model is also examined by
comparing results of a sensitivity analysis in terms of both
total streamflow and baseflow response.

The DIY Model
MODEL STRUCTURE

The analysis has been carried out using a conceptual dis-
tributed hydrological model (DIY) described in detail in
Dunn et al. (1998). The DIY model aims to provide an
approach that is simple enough to permit interpretation of
model behaviour and flexible enough to allow different
formulations to be geared towards different applications.
The model uses GIS to assign categories to cells, typically
50 x 50m in size, on the basis of similar topographic,
climatic, soil and land use characteristics. For each cell cat-
egory, a signature of hydrological response in the stream is
determined, using a hillslope routing model. The catch-
ment response is calculated by summation of the different
signatures, factored by the numbers in each category. In
this way, the complexity of the model is controlled by the
number of characteristic categories that are assigned, and
is independent of the catchment area. The definitions of
the catégories can be biased towards particular aspects of
the catchment hydrology to suit the detail required from
the model output.

The model is driven by daily inputs of rainfall and evap-
otranspiration and has seven fundamental parameters; two
of which define the topographic structure of the catchment
and the remaining five relate to the soil and drainage sys-
tem. The parameters are listed in Table 1 together with an
outline of their function. The topographic parameters
(slope to stream and flow path distance to stream) are
derived directly from the GIS, but calibration is necessary
for the five soil and drainage parameters. The saturated
hydraulic conductivity and threshold storage parameters
are described as 'effective', because the technique applied
to disaggregate flow down to individual cell contributions
results in a modified form of sub-surfice routing. When
taken in combination, the effective KSAT and THMAX
parameters generate a more physically realistic transmis-
sivity value. The fast response also uses the KSAT para-
meter, as the response is assumed to be based on-the travel
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Table 1. DIY model parameters.

Parameter Variable Function

Effective saturated KSAT Control rate of slow response runoff

hydraulic conductivity

Soil porosity PORE Define relationship between soil storage and head

Effective threshold THMAX  Soil moisture level at which fast runoff response is initiated and effective depth for

storage for fast response transmissivity

Fast response FASTD Define density of localised drainage network for fast flow routing (related to macrop-
ores, artificial drainage or rill generation)

Minimum soil VMIN Set lower limit on sub-surface flow

storage—slope

Slope to stream SLOPE Define the hydraulic gradient for hill-slope model

Flow path distance to stream  DIST Define the hill-slope routing distance for each cell

times to reach the drainage network, the density of which
is defined by the fast response distance. The equations
governing these flow processes are set out in Dunn ez al.

(1998).

MODEL BEHAVIOUR

The function of the various model parameters can be
demonstrated in a simplified manner through model sen-
sitivity analysis. A basic sensitivity analysis of the model
has been carried out by varying each parameter, individu-
ally, from values defined by a baseline parameter set for a
catchment model. This allows the relative significance of
each parameter to be evaluated and the nature of its influ-
ence to be identified in terms of its effect on different flows
across the hydrograph. The observed behaviour will be
affected to a certain extent by the choice of the baseline
parameter set and, therefore, this analysis does not give the
full picture. A more comprehensive sensitivity analysis
using the results of Monte-Carlo simulations is presented
later in the paper. However, the results of the Monte-
Carlo simulations are presented in terms of an objective
function measure that summarises the overall behaviour of
a simulation, but does not demonstrate the nature of the
behaviour in terms of changes to different levels of flow.

The baseline parameter set for the basic sensitivity
analysis was selected on the basis that it gave a good sim-
ulation of streamflow, and individual parameter values lay
towards the centre of identified acceptable ranges. Factors
ranging from 0.1 to 10 were applied to the baseline values.
The structure of the DIY flow code permits the total
catchment runoff to be separated into two components,
representing the slow sub-surface response (or baseflow)
and the fast storm response. The sensitivity has, therefore,
been analysed in terms of both total streamflow and base-
flow.

Some results from this analysis are presented in Figs. 1
and 2, for the case where each baseline parameter was
modified by a factor of 0.2. The results for modifications
by different factors showed similar behaviour. Figure 1
shows scatter plots of the predicted total flow for the base-
line simulation, against the predicted total flow for the
modified simulation, for each parameter individually.
Figure 2 shows a similar set of plots but, in this case, for
predictions of baseflow.

It is clear from these figures that the influence of para-
meters on baseflows is much stronger, in relative terms,
than on total flows. The porosity parameter (PORE) has
the greatest affect on the total flow, reducing the average
flow by 30%, but all other parameters affect the average
flow by less than 10%, and show relatively little scatter
about the average. By contrast, the saturated hydraulic
conductivity (KSAT), threshold storage (THMAX) and
slope parameters (SLOPE) all reduce the average baseflow
by a factor of 5, with considerable scatter caused by the
changes to saturated hydraulic conductivity and slope. The
same predicted baseline flow for these two parameters can
vary by a factor of 3 in the modified simulation. The min~
imum storage (VMIN), flow path distance (DIST) and fast
response distance (FASTD) parameters are quite insensi-
tive in terms of their average baseflow prediction, although
the flow path distance affects the behaviour of the baseflow
significantly. The porosity parameter (PORE), increases
average baseflows by a factor of 2.3 and also has a very sig-
nificant affect on behaviour.

These results demonstrate the increased utility of sepa-
rating off the baseflow for analysis. Taking only the total
flow, it is hard to interpret the behaviour of the model,
because flows are dominated by the storm response com-
ponent. In practice, most of the model parameters have
greater influence on the baseflow. This should not be too
surprising, as recession and baseflow behaviour is much
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Fig. 1. Effect of modifying individual DIY parameters by a factor of 0.2 on total flow prediction.

more dependent on soil conditions and physical structure,
whilst storm responses are dominated by the structure of
a particular rainfall event.

This simple sensitivity analysis also demonstrates that
several of the soil and drainage parameters are equally as
significant as the more identifiable topographic parameters
in determining model behaviour. Therefore, it is impor-
tant that the uncertainty in these parameters is identified.
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Uncertainty Analysis Approach

Having demonstrated the utility of separating off baseflow
for interpretation of parameter functions, the next step is
to investigate whether the same technique can be used to
reduce uncertainty in predictions and constrain the values
of parameters more effectively. The individual parameter
sensitivities do not define .integral model behaviour,
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Fig. 2. Effect of modifying individual DIY parameters by a factor of 0.2 on baseflow prediction.

because it is clear that several parameters affect the model
behaviour in a similar manner. Therefore, it is highly
likely that completely different combinations of parameter
values could be equally good predictors of stream flow.
This is the logic behind the GLUE approach developed by
Beven and Binley (1992). The extension to the approach
investigated here is to use the model distinction between
surface and sub-surface runoff, in a similar manner to the

sensitivity analysis, to define a second likelihood measure
for stream flow prediction.

Following the approach adopted by GLUE, multiple
simulations of the model are performed using random
combinations of parameter values, which are set within
specified ranges believed to represent their practical limits.
A likelihood measure, in this case defined by the Nash and
Sutcliffe efficiency (Nash and Sutcliffe, 1970) for predic-
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Table 2. Characteristics of the Carron Valley and Ythan catchments

Catchment Area (km?®) Mean ann. Dominant Mean slope Mean flow
rainfall (mm) land cover (m/m) (eq. mm/d)

Carron Valley 120 1450 Moorland 0.076 3.0

Ythan 548 750 Arable land 0.050 1.1

tion of total stream flow, 7;, is calculated for each simula-
tion, as a measure of the performance of that particular
combination of parameter values:

C (qm' ~ om )2 - (qm' - qpi)z
= 2 2
m =1 (qm' - qvm)z ( )

where ¢, is the measured stream flow, g, is the calculated
stream flow and other subscripts are defined by i for each
time point, and m for the mean value averaged over » time
points.

The approach is extended by using the model predic-
tions to identify days on which the catchment runoff is
dominated by baseflow. Calibration of the flow record
using only these days will bias the model towards accurate
prediction of baseflow response rather than peak flow
response. In this way, the behaviour of the baseflow runoff
component may be analysed independently from the total
runoff and used to provide additional information about
acceptable parameter ranges. A second likelihood measure,
based on the Nash and Sutcliffe efficiency for prediction
of baseflow, 73, can be calculated for each simulation:

_ X (boi - bam)2 - (boi
= 2 (b — )

where subscripts are as above and 4 refers to the flow only
for time points where predicted flows are identified as base-
flow dominated. The identification of baseflow dominated
days has been performed using a prior set of 100 test sim-
ulations. For each of these simulations each day has been
classified as either baseflow or stormflow dominated, where
baseflow dominated days satisfy the criterion, baseflow =
0.95 x zoral flow. A fixed set of baseflow dominated days
was then identified for calculation of the second likelihood
measure, using the criterion that 85% of the test simula-
tions identified a day as baseflow dominated. This was
found to give a visually acceptable definition of baseflow
dominated periods on examination of the hydrographs.
The value of the approach has been investigated through
application of the DIY model to two contrasting catch-
ments; the Ythan above Ellon (NGR 3947 8303) in NE
Scotland and the Carron Valley above Headswood (NGR
2832 6820) in Central Scotland. Both catchments have
been the subject of previous modelling studies, described
in Dunn ef 4l. (1998) and Dunn and Ferrier (1999). Flow
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duration curves for the two catchments are illustrated in

Fig. 3 and physical characteristics of the catchments are

summarised in Table 2. The Ythan catchment has a high

baseflow index of around 0.75. The 5% exceedance flow of
16.4 m3/s is only 2.4 times the mean daily flow of 6.8

m3/s. The Carron Valley catchment, despite being heav-

ily managed as a water resource, is much flashier and has

a similar 5% exceedance flow of 16.5 m3/s, but this is

almost 4 times the mean daily flow. Bearing this in mind,-
it would be expected that the added value gained by con-

ditioning parameter values on baseflow response would be

less for the Ythan than for the Carron, because the behav-

iour of the total flow will be closer to that of the baseflow

in this catchment.
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Fig. 3. Flow duration curves for the Ythan and the Carron
plotted relative to mean daily flow

Ranges for the DIY model parameters were defined, tak-
ing as broad limits as was considered practical. Table 3
lists the values for the Carron and Ythan respectively. The
slope and flow path distance are spatially variable.
Therefore, a range of factors (FSLOP and FDIST) has
been defined to apply to the baseline values (SLOPE and
DIST), which were derived from the GIS analysis of the
topography. It would not be anticipated that the topo-
graphic parameters ‘would be modified, but the- analysis
will permit the acceptability of their values to be checked
and their sensitivity to be evaluated relative to the soil
parameters.
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Table 3. Parameter ranges and constraints for efficiency criteria for the Carron Valley and Ythan

Parameter Parameter Total flow Baseflow Combined
range efficiency efficiency efficiencies

Carron Valley > 0.75 >0.3

KSAT (m/day) 10-200 10-200 40-200 90-190

PORE (-) 0.1-0.4 0.1-0.4 0.1-0.37 0.1-0.37

THMAX (m) 0.0001-0.03 0.0001-0.03 0.0001-0.013 0.0001-0.0015

FASTD (m) 1-15 1-12 1.2-13 1.8-6.2

VMIN (m) 0.000002-0.00001  0.000002—-0.00001  0.000002-0.000009  0.000002—0.000009

FSLOP (-) 0.2-2 0.2-2 0.3-2 0.8-1.9

FDIST (-) 0.2-2 0.2-2 0.7-2 1.2-2

Ythan > 0.7 > 0.6

KSAT (m/day) 10-150 10-150 35-145 35-120

PORE (-) 0.3-0.8 0.3-0.8 0.25-0.8 0.34-0.78

THMAX (m) 0.0025-0.04 0.0025-0.04 0.008-0.027 0.008-0.018

FASTD (m) 2-50 5-50 448 12-37

VMIN (m) 0.00002—0.00008 0.00002-0.00008 0.00002-0.00008 0.00002-0.00006

FSLOP (-) 0.2-2 0.2-2 0.2-2 0.4-1.6

FDIST (-) 0.2-2 0.2-2 0.3-1.4 0.25-1.3

For each catchment 2500 model simulations were per-
formed. For each model run, a random number generator
was used to select a parameter set that falls within the
defined limits. The predictions of flow were then com-
pared with observed data to calculate the Nash and
Sutcliffe efficiencies for both total stream flow and base-
flow.

Results of Uncertainty Analysis

The results of the multiple simulations for both catchments
demonstrated that, in general, a wide range of values for
each parameter can be found to give an acceptable predic-
tion of total stream flow. In Fig. 4 the efficiency for total
flow is plotted against the parameter values for each of the
Carron simulations, for four different parameters. Only the
fast response distance shows any clear relationship, with a
gradual reduction in efficiency for all values greater than
5m. The threshold storage and slope factor parameters
both show that there were fewer simulations with low effi-
ciencies for parameter values at the lower end of the
defined range but that acceptable combinations could be
found throughout the parameter space. The saturated con-
ductivity parameter appeared largely unconstrained, as did
the remaining parameters not shown.

For prediction of baseflow, the results of the multiple
simulations are quite different. Figure 5 shows an equiva-
lent set of plots to Fig. 4, with the efficiency calculated
using predictions only from those periods that are baseflow

dominated. In general, the efficiencies for the model pre-
dictions are much lower and reflect the fact that small
absolute errors in prediction are much more significant
during low flow periods. The number of simulations
achieving good efficiencies is also fewer and the behaviour
over the parameter space differs from the total flow com-
parisons. By contrast to the results for total flow efficiency,
the baseflow efficiencies for threshold storage are clearly
highest for low values of the parameter. Only one simula-
tion with a threshold storage, THMAX > 0.003m had a
baseflow efficiency, 7); > 0.3. Saturated conductivity is
slightly better constrained by the baseflow efficiency, with
a lower value of 40 m day! necessary to achieve 1, > 0.3.
It should be emphasised that this parameter has a con-
ceptual function within the model structure and also
represents catchment scale behaviour; thus, it includes
macro-pore and drainage effects as well as basic soil
hydraulics. For other parameters, the best simulations are
again spread across the parameter ranges, although there is
an indication that the best flow path distance and slope fac-
tors lie in the upper half of the range.

The results for the Ythan simulations were very similar.
The analysis based on total flow efficiencies placed a lower
limit on the fast response distance of 5m, but other para-
meters were largely unconstrained. The baseflow analysis
provided lower limits to the values of saturated conduc-
tivity and threshold storage and an upper limit to the
threshold storage and flow path distance factors, but again
other parameters appeared largely unconstrained.
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However, the key to identifying acceptable parameter
ranges lies in combining the results from the predictions
for total flow with those for baseflow. This can be achieved
by defining criteria for an acceptable simulation, on the
basis of both total flow and baseflow. From the results, for
the Carron, these criteria were set as a Nash and Sutcliffe
efficiency for total flow, 1, > 0.75 and for baseflow, n; >
0.3, and for the Ythan, 1, > 0.7 and 71, > 0.6. This elim-
inates all simulations that were good at predicting either
total flow or baseflow, but not both. The resulting accept-
able parameter space is significantly better constrained
than either of the two components individually. Table 3
summarises the parameter ranges that satisfy the individ-
val and combined efficiency criteria for the Carron and
Ythan respectively.

The method has had slightly greater success in defining
parameter values for the Carron Valley catchment than for
the Ythan. This was expected because the distinction
between the total flow and baseflow response is much
stronger in the Carron, making the parameters more iden-
tifiable. In both catchments, the minimum storage para-
meter appears unconstrained. Again this was expected,
because the parameter effectively takes account of a deep
groundwater contribution, by ensuring that a certain min-
imum flow is maintained during exceptionally dry spells
and, at other times, the parameter has no function. A value
for the parameter could be determined by focusing on the
dry periods when it is operational. The porosity is also
poorly constrained by the method, although the conceptual
baseline range is narrower than for other parameters in any
case.

Generalised Sensitivity Analysis

The results from the Monte-Carlo analysis also permit a
more comprehensive sensitivity analysis to be performed,
following the procedure of Spear and Hornberger (1980).
The sensitivity analysis here is carried out in a form very
similar to that presented by Freer et al. (1996). The first
step in this analysis requires a subjective distinction to be
made between behavioural and non-behavioural parameter
sets from the Monte-Carlo simulations. In order to com-
pare the parameter sensitivities in terms of both the total
flow and baseflow efficiency measures, the same number of
simulations was assumed to be behavioural for both mea-
sures. For the Carron Valley model, taking all simulations
with a positive baseflow efficiency (i.e. better predictors
than taking the mean), this gave a criterion of n; = 0.64 for
total flow efficiency and included one third of the simula-
tions. Only around 65% of the simulations identified as
behavioural in terms of baseflow were coincident with the
behavioural simulations for total flow.

The behavioural simulations were then separated into 10
sets, according to the efficiency values, and are plotted as
cumulative distributions for each individual parameter
value, and for the two objective functions, in Figs. 6 and 7.

Only 40% of the top set of simulations were the same for
both objective functions. Figures 6 and 7 show how sensi-
tive the model predictions are to each parameter across
their defined range. A large difference in the cumulative
distribution curves between sets indicates high sensitivity.
Curves lying close to each other indicate low sensitivity. In
addition, the gradients of the curves indicate areas of the
parameter ranges where changes in parameter values have
a strong or weak effect. The importance of the value of
THMAX on baseflow efficiency is shown clearly by the
sharp gradient at the lower end of the range for the best
set in Fig. 7.

The results presented in Figs. 6 and 7 reinforce the
findings of the simple sensitivity analysis by demonstrat-
ing how the total flow and baseflow efficiencies provide
different information about the model behaviour. In gen-
eral, the baseflow efficiency measure is seen to be more
sensitive to parameter values.

Flow Predictions Including
Parameter Uncertainties

The results of the uncertainty analysis have illustrated how
baseflow can be used to define a second likelihood measure
that helps to constrain flow predictions. One of the main
purposes of the uncertainty analysis is to enable an enve-
lope of flow predictions to be derived. The value in achiev-
ing greater parameter constraints is that the width of this
envelope will be narrowed. The effect of the constraints
defined by setting criteria for total flow efficiency, baseflow
efficiency and the combined efficiencies has been investi-
gated by extracting, from the simulations, the most
extreme values at each time step that satisfy the different
efficiency criteria. Figures 8 and 9 compare the envelopes
of prediction for one year of the Carron and Ythan pre-
dictions, for each case. These have been derived using the
efficiency value as the likelihood measure, and do not
include accentuated - weightings for better simulations,
such as those described by Freer er al. (1996).

It is clear that using a single efficiency criterion based
on total flow (Figs. 8(a), 9(a)), the envelope of flow pre-
dictions is very broad, and the uncertainty in low flow pre-
dictions is very high, particularly for the Carron. Using
only the baseflow efficiency criterion for the Carron (Fig.
8(b)), the envelope is much narrower for the low flow pre-
dictions and only slightly broader for the peak flows.
However, there is less improvement for the Ythan using
the baseflow efficiency alone (Fig. 9(b)). Taking the com-
bined efficiency criterion for total flow and baseflow, the
envelope of flow is narrowed further for both catchments
(Figs. 8(c), 9(c)). The resulting hydrograph prediction for
the Carron is very good, with the measured flow hydro-
graph falling within a narrow envelope of predictions for
the majority of the simulation. The results for the Ythan
are not so good. Although the envelope is narrower and
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Fig. 6. Sensitivity of individual parameters expressed as cumulative distributions of values, in 10 equal sets of retained simulations with
total flow efficiency >= 0.64 (set 1 highest efficiencies, set 10 lowest efficiencies)

the model is better constrained when combined efficiency
criteria are used, the measured flow lies outside the enve-
lope during periods in spring and autumn, although parts
of these periods were used to define the baseflow effi-
ciency. This suggests that the model is not capable of pre-
dicting behaviour correctly during these periods and,
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hence, that there are either data or model errors in addition
to the parameter uncertainties. Taking the broader enve-
lope based on total flow efficiency, these errors are less
obvious, demonstrating that there is a danger of masking
model and data errors, by using a poor likelihood measure
for defining parameter uncertainties. Similar observations
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about model error were also made by Gupta ez al. (1998)

in their multi-objective analysis.

Discussion and Conclusions

The analysis carried out in this paper has demonstrated
how hydrograph separation can be used to derive addi-

tional information about catchment behaviour from stream
flow records. From the Monte-Carlo simulations, it is clear
that acceptable combinations of values can be found
throughout the parameter space that will give an equally
good prediction of total stream flow, using the Nash and
Sutcliffe efficiency as a likelihood measure. However, the
introduction of an efficiency criterion for baseflow helps to
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constrain the acceptable parameter ranges. Taking both
likelihood measures, in combination, to provide a multi-
objective framework, constrains the parameters further.

The sensitivity analysis showed that the baseflow com-
ponent is generally more sensitive to parameter values than
the total flow, and that the greatest sensitivities lie in dif-
ferent regions of the parameter space. As such, the base-
flow efficiency provides additional information about the
model. The sensitivity analysis also demonstrated that sev-
eral of the calibrated model parameters, relating to the soil
and drainage system, are of equal importance to the topo-
graphic parameters. An understanding of the constraints
on the parameter values is therefore important, if methods
of relating the parameters to physical properties are to be
developed.
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The constrained parameter ranges that are generated by
the method are only moderately well defined for the
Carron Valley catchment. However, the levels of variabil-
ity inherent in soil water transport properties at a small
scale are similar in magnitude (Corwin ez 4l., 1997), and
this is, perhaps, the best level of information that can be
achieved at the catchment scale. The values in the cali-
brated range for effective saturated conductivity are high
but, as discussed, this is a function of the conceptual
model structure including the method by which spatially
disaggregated flows are calculated using the hill-slope
routing model. When taken in conjunction with the effec-
tive threshold storage, the range for a maximum transmis-
sivity parameter, defined by KSAT x THMAX, is from
0.03 m? day! to 0.3 m? day!, which would appear to be
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physically realistic. The most surprising result from these
simulations was the lack of constraint on the porosity para-
meter, although the conceptual values assigned initially
were more tightly constrained than most of the other
parameters.

The more damped hydrological behaviour of the Ythan
resulted in poorer constraints on the parameter ranges.
None the less, an improvement was achieved by using the
baseflow analysis in conjunction with the total flow.
Relative to the Carron Valley, the constrained parameter
ranges for the Ythan reflect the conceptual physical dif-
ferences between the two catchments; the higher threshold
storage for the Ythan corresponds to deeper soils and the
greater fast response distance reflects a slower reaction to

storm events. The transmissivity range is from 0.28 m?
day! to 2.2 m? day!, which is an order of magnitude
higher than for the Carron Valley.

Thus, although the results are not successful in defining
individual parameter values, they do constrain parameter
ranges sufficiently that it should be possible to relate the
ranges for the conceptual soil and drainage parameters to
physical properties of the catchment. In this application,
the slope and flow path distance parameters were allowed
to vary but, in practice, these would be set according to
the topographically derived values. The effect of this
would be further to improve constraints on the soil and
drainage parameters. Additional applications of the model
to different catchments should also provide greater insight
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into the physical interpretation of the parameters. The
next stage would be to develop relationships between the
parameter ranges and catchment attributes such as the
Hydrology of Soil Types (HOST) classification (Boorman
et al., 1995). This would enable greater spatial variability
to be included in the models and greater confidence to be
placed on their application to address issues involving
environmental change. However, the modelling would still
be reliant on a similar form of uncertainty analysis to that
performed in this paper, to identify the combinations of
parameters within ranges that generate an acceptable
model.

The predicted envelopes of flow reinforce how the base-
flow analysis reduces uncertainty and highlight how data
error and model error can be hidden, if the bands are too
wide. In the case of the Ythan simulations, the error dur-
ing the spring period is probably caused by data error, as
there is a fairly significant water balance error for this
period, whilst in the autumn the error would appear to be
more related to model structure. Model enhancements,
such as a more sophisticated groundwater representation,
should target this period for improvements in prediction.

Overall, the analysis has demonstrated that apparent
uncertainties in parameter values are partly due to the lim-
itations of objective functions, as well as reflecting the
acceptable parameter ranges. Hydrograph separation has
been shown to be an extremely useful technique for
extracting additional information from standard stream-
flow records, particularly in catchments that are charac-
terised by flashy surface runoff responses. Even with a well
constrained set of flow predictions, there is not a unique
set of parameter values, but the ranges are sufficiently nar-
rowed that, given a diverse set of model applications, it
should prove possible to relate parameter sets to physical
attributes of a catchment. Clearly, in this context, catch-
ments that have been monitored in greater detail could be
of value in extending the multi-objective analysis to pre-
dict other parts of the system and internal behaviour, such
as soil moisture or streamflow in different locations. This
should help to further constrain parameter values and pro-
vide greater insight into their physical interpretation.
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