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Abstract

Appropriate representation of hydrological processes within atmospheric General Circulation Models (CGM:s) is important with
respect to internal model dynamics (e.g. surface feedback effects on atmospheric fluxes, continental runoff production) and to sim-
ulation of terrestrial impacts of climate change. However, at the scale of a GCM grid-square, several methodological problems
arise. Spatial disaggregation of grid-square average climatological parameters is required in particular to produce appropriate point
intensities from average precipitation. Conversely, aggregation of land surface heterogeneity is necessary for grid-scale or catch-
ment scale application.

The performance of grid-based hydrological models is evaluated for two large (10*km?) UK catchments. Simple schemes, using
sub-grid average of individual land use at 40 km scale and with no calibration, perform well at the annual time-scale and, with
the addition of a (calibrated) routing component, at the daily and monthly time-scale. Decoupling of hillslope and channel rout-
ing does not necessarily improve performance or identifiability. Scale dependence is investigated through application of distrib-
ution functions for rainfall and soil moisture at 100 km scale. The results depend on climate, but show interdependence of the
representation of sub-grid rainfall and soil moisture distribution.

Rainfall distribution is analysed directly using radar rainfall data from the UK and the Arkansas Red River, USA. Among other
properties, the scale dependence of spatial coverage upon radar pixel resolution and GCM grid-scale, as well as the serial corre-
lation of coverages are investigated. This leads to a revised methodology for GCM application, as a simple extension of current
procedures.

A new location-based approach using an image processing technique is then presented, to allow for the preservation of the spa-
tial memory of the process.

Introduction

Atmospheric General Circulation Models (GCMs) are
important tools in the investigation of global climate and
climate change (Department of the Environment, 1996),
and the role of hydrological processes in determining the
exchange of energy and water vapour at the earth’s surface
has been increasingly recognised. In the early 1960s, a
basic representation of the surface hydrological cycle was
incorporated in GCMs (e.g. Smagorinsky, 1963; Manabe
et al., 1965).This was followed by a number of relatively
simple experiments which nevertheless demonstrated
clearly that simulated climates were sensitive to soil mois-
ture (Manabe, 1975; Walker and Rowntree, 1977,

Rowntree and Bolton, 1978), evaporation efficiency
(Charney ez al., 1977) and albedo (Charney et al., 1977;
Carson and Sangster, 1981). There has, thus, been pro-
gressive development and testing of more complex, phys-
ically based ‘SVATS’ for incorporation in the current
generation of GCMs (e.g. Sellers ez al., 1986, Dickinson ez
al., 1986, Henderson-Sellers, 1991, 1992).

However, the representation of surface hydrology in
GCMs in particular, and in meteorological models in
general, raises a number of methodological issues. The
grid-scales of GCMs (typically of side 200-300 km ) are
large in comparison with hydrological systems, even at
river basin scale. There is, thus, a major question of the
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representation of surface heterogeneity in GCMs, for
example in soil and vegetation characteristics, and of lat-
eral transfers of water within and between grid-squares.
These are the problems of aggregation.

The grid-scale of GCMs is also large in comparison
with the spatial variability of meteorological variables, of
which precipitation is particularly significant for hydrolog-
ical response. Spatially averaged precipitation at these
scales results in low intensity drizzle, which has no phys-
ical relevance to hydrological processes such as intercep-
tion, infiltration and runoff generation. For example, in a
simple hydrological model application of spatially-
averaged meteorological variables at 3.75 X 2.5 degrees to
the Nile basin, no flow was generated (Abourgila, 1992).
Hence, there is the need for disaggregation, to produce
hydrologically-meaningful precipitation and other meteo-
rological fields. These issues of aggregation and disaggre-
gation are compounded by the difficulty of making
relevant process observations at appropriate scales.

Associated with these methodological problems is the
issue of complexity of surface hydrological representation.
Given that it is the effective properties at GCM grid-scale
which are important in terms of atmospheric feedbacks,
concern should not be focussed necessarily on point-
processes, but on aggregated response. This can have
important implications for model structure, since the
extent to which point-process hydrological response can be
integrated to larger scales is still an open question
(Wheater et al., 1993). Related issues include robustness of
performance to uncertainty in physical properties, and
requirements for computational efficiency within the over-
all GCM solution scheme.

This paper is divided into two major sections. In the
first, performance of relatively simple grid-based hydro-
logical models is explored, together with evaluation of sen-
sitivity to sub-grid representation of surface heterogeneity
and meteorological variables, through analysis of catch-
ment-scale response. The objective is to use measurements
of water balance at catchment scale to evaluate large-scale
model performance and, further, to identify the controls of
sub-grid scale heterogeneity on model performance.
Interdependence between representation of sub-grid scale
heterogeneity and rainfall disaggregation is demonstrated,
which points to the need for independent determination of
these effects. Hence, in the second section, data analysis is
used to define procedures for disaggregation of precipita-
tion and their parameterisation. Analysis of large-scale
rainfall radar fields provides a basis for empirical improve-
ment of current simple, distribution-based disaggregation
procedures and shows scale-dependence of coverage prop-
erties. In addition, a new methodology is defined which
preserves the spatial location and spatial memory of disag-
gregated rainfall.
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Performance of a grid-based
hydrological model

The availability of a routine service by the UK
Meteorological Office provided the basis for evaluation of
a relatively simple grid-based SVAT scheme. The
Meteorological Office Rainfall and Evaporation Calcula-
tion System (MORECS) (Thompson et 4l., 1981) uses the
Penman-Monteith equation to estimate daily potential and
actual evapotranspiration rates on a 40 km X 40 km grid
over the UK, published as weekly values. Daily meteoro-
logical variables are interpolated and averaged over each
square. The minimum surface resistance and albedo,
which vary seasonally, are defined for 14 land-cover types.
The model has a single interception store and a two-layer
soil store. Water can evaporate freely from the upper soil
store, which represents 40% of the available soil water
capacity, but evaporation is restricted by the soil moisture
deficit in the lower soil layer. Available water capacity
varies seasonally to allow for crop development. If evapo-
ration exceeds rainfall, a soil moisture deficit develops. If
rainfall exceeds potential evaporation, the soil stores rewet
until ‘hydrologically effective rainfall’ is generated, which
can, in principle, generate runoff or groundwater recharge.
The water balance calculation is carried out separately for
each land-surface type present in a given grid-square, and
the fluxes and soil moisture deficits are areally-averaged
(i.e. a tile-based aggregation).

Results were presented by Jolley and Wheater (1996) for
application of the uncalibrated water balance model to the
Severn and Thames UK river basins, each of area approx-
imately 10,000 km?, but with contrasting rainfall and geol-
ogy (Fig. 1). In the Severn basin, annual precipitation
varies from over 1500mm in the west of the catchment (the
Cambrian mountains) to less than 700 mm in the east.
Catchment average annual precipitation is 824 mm.There
is relatively little variation in potential evapotranspiration
across the basin (average 547 mm). Soils vary from thin
upland peat and podzolic soils in the west and north-west
to poorly-drained clays in the east. Groundwater resources
are relatively limited. In the Thames, there is little vari-
ability in relief and precipitation. Average annual precipi-
tation is 686 mm and average potential evapotranspiration
577 mm. Soils range from well-drained sandy-loams to
poorly-drained clays, and the catchment contains a major
chalk aquifer.

Over a common ten-year period, catchment water bal-
ances were reproduced with an error in (naturalised)
runoff of +1% and —6%, respectively (positive error indi-
cating overestimation of runoff); over 20 years (Severn)
and 30 years (Thames), the errors reduced to +2.3% and
—0.5%, respectively. Additional routing was required to
represent subsurface and network routing effects to repro-
duce monthly hydrograph dynamics. A simple (calibrated)
2-parameter routing model produced R? values of 90%
and 88% respectively.
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Fig. 1. Severn and Thames catchments.

The simple bucket model thus provided extremely good
performance at whole-catchment scale. However, sub-
catchment performance was poorer, with a systematic
trend. Considering the climate ratio of annual precipitation
to potential evaporation, the wetter sub-catchments
showed positive errors in annual runoff, and as climate
ratio decreased, progressively larger negative errors (flow
underestimate) were observed (Fig. 2). It was apparent
that performance degraded for drier climatic conditions.

A more extensive analysis of routing algorithms for the
grid-based modelling was undertaken by Jolley and
Wheater (1997b); this showed that the incorporation of
physics-based channel network routing algorithms did not
prevent the need for calibration to represent subsurface
(hillslope and aquifer) routing effects.

Analysis of aggregation and
disaggregation effects
A further analysis was made, based on a close approxima-

tion to the MORECS model, to investigate the issues of
spatial aggregation and disaggregation with respect to

catchment-scale response. In current GCMs, e.g.
Warrilow ef al., 1986, an attempt is made to represent the
fact that rainfall is expected only over a proportion of a
grid square by arbitrarily assigning a proportion wet
(dependent on rainfall type). A simple exponential distri-
bution function is applied to represent the distribution of
rainfall intensity. There is no spatial memory of rainfall
location between time-steps, nor of soil moisture location.
A distributed soil moisture calculation is averaged at the
end of each time-step.

Performance based on the 40 km X 40 km grid was com-
pared with 100 km x 100 km simulations under various
treatments of spatial aggregation (Jolley and Wheater,
1997a). For example, when meteorological inputs were
averaged at 100 km scale, but land use/soil moisture
response was retained at 40 km resolution, a negative bias
was introduced into the runoff simulation. Annual runoff
decreased by 5.2% for the Severn and 2.3% for the
Thames. Conversely, when meteorological inputs were
retained at 40 km resolution, but soil moisture deficits
were averaged at 100 km scale, a positive bias occurred.
This was small for the wetter Severn catchment (+0.8
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Fig. 2. Error in simulated annual runoff as a function of climate
ratio.

mm/year, +0.0%), but larger for the Thames (+26.3
mm/year, +11.9%). The combined effect of averaging
meteorological inputs, soil moisture deficits and soil mois-
ture capacity at 100 km scale was relatively small, a reduc-
tion of 2.6% and 2.5% for the Severn and Thames
respectively. It was evident that averaging meteorological
inputs and soil moisture response had opposing effects, the
magnitude of which varied according to the catchment cli-
matic characteristics. For the drier Thames, loss of reso-
lution in soil moisture led to a much larger increase in
runoff than for the wetter Severn. For the Severn catch-
ment, which has a marked gradient of annual rainfall, as
noted above, averaging the meteorology produced a
marked reduction in runoff, much more so than for the
Thames, which has much less spatial variability in annual
rainfall. For both catchments, the opposing influences
tended to cancel out when a fully aggregated simulation
was carried out.

In a further extension, a distribution function approach
was applied to represent the sub-grid variability of rainfall
and of the soil moisture upper store capacity, Smaxl1, at
40 km scale. In accordance with previous studies
(Warrilow et al., 1986; Eagleson et al., 1987), it was
assumed that the rainfall depth R is distributed exponen-
tially over a fraction € of a grid square, so that the distri-
bution of rainfall is given by

£ £
R)==exp|-=R
fR) == P( 7 )
where R is the mean grid-square rainfall.
The capacity of the upper soil moisture store Smax1 was
assumed to be distributed according to the two-parameter
gamma distribution
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where x is the random variable (Smax! in this case), I"is
the gamma function and a and b are the scale and shape
parameters, which can be related to the mean and coeffi-
cient of variation (CV) of Smaxl.

The model response is then calculated by integration to
account for zones of hydrological response, as shown by
Jolley and Wheater (1997a). It is, thus, dependent on the
assumed proportion dry € and on the CV of the soil mois-
ture upper store. Results for the Severn (Fig. 3) show
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runoff decreasing with increasing rainfall coverage and
increasing with increasing variability of soil moisture
capacity. Jolley and Wheater (1997a) showed that these
effects are magnified progressively as the climate factor
(rainfall/potential evaporation) decreases.

These results, therefore, confirm the increase in sensi-
tivity of runoff to aggregation and disaggregation proce-
dures, and show that there is an interdependence between
the effects of rainfall disaggregation and soil moisture
aggregation. Hence, parameters of the two distributions
cannot be identified uniquely from model calibration
alone.

Rainfall disaggregation

As noted above, in meteorological models in general and
General Circulation Models (GCM) in particular, a single
value of the rainfall depth is generated at each time-step
for each grid-square, for grid-square sizes of the order of
200-300 km when the models are run on a continental
scale. Clearly, the knowledge of an average over a large
area is not sufficient for hydrological modelling. A disag-
gregation scheme, therefore, is required to downscale large
scale rainfall so as to preserve the observed spatial distrib-
ution.

GCM MODEL

As noted above, GCMs commonly assume that precipita-
tion occurs over a proportion € of the grid-square and that,
where it rains, point rainfall depth is distributed exponen-
tially (Warrilow ez al., 1986) with parameter &/R(w,t),
where (w,t) is the unconditional mean rainfall intensity
over the grid-square of size »? at time #, which is the value
provided by the GCM atmospheric component. The val-
ues of € are chosen equal to values of 0.1, 0.3 or 0.5
depending on the model and the rainfall type (Gregory
and Smith, 1990).

Analyses of UK data have shown that the choice of a
fixed value of the coverage €& dependent solely upon the
rainfall type, does not reflect the spatial structure of real
radar fields (Onof and Wheater, 1996a) and that the time-
series of consecutive coverages is highly correlated at short
time-intervals and has a fairly long memory (Onof and
Wheater, 1996b), a feature which is not reproduced by the
current scheme. Improvements such as a choice of the cov-
erage € as the ratio of R(w,f) and the climatological rain-
fall intensity p (Eltahir and Bras, 1993) have been
proposed and are discussed in Onof and Wheater (1996a).

We shall analyse here ways of improving upon this
scheme by focusing upon the rainfall coverage as it is mea-
surable from radar data and extending the data analyses
presented in the two previous papers.

Analysis of coverage
DATA SETS AND METHODOLOGY

The data used for the analyses and for model calibration
are the fully calibrated Arkansas Red River data (area:
850,000 km?) and the uncalibrated Wardon Hill radar in
the South-West of England (radius 210 km). For the first,
hourly data at a resolution of 4 X 4 km? and for the sec-
ond, 5 minute data at resolutions of 2 X 2 and 5 X 5 km?
are available. The Arkansas data is the product of the inte-
gration of radar data from 17 WSR-88D radars calibrated
using approximately 500 raingauges. Wardon Hill is a
C-band radar with scanner height 255 m above sea-level,
beamwidth 1° and National Grid coordinates (360900,
102300); a comparison with 50 raingauges showed that
there was no systematic bias in this data set.

These data sets are used to estimate &(p,w,t) which is
the coverage measured with a pixel size of p?, of a window
of size w? at time ¢. This estimate is obtained by taking
averages over many non-overlapping and not completely
dry windows of size »? of the proportion of wet pixels on
the radar picture.

DEPENDENCE UPON WINDOW SIZE

Figure 4, for the Arkansas data, shows that the coverage is
a scaling quantity for window sizes larger than a given
threshold, i.e. that there is a gradient o(p,r) on the log-log
plot such that:

E(p,Aw,t) = A2en Epw,t) for w 2wy ¢))

where the threshold may be the consequence of the uncer-
tainty introduced in the estimation of the coverage when
the window size approaches the pixel size. This limit wg
appears to be about 20 km for Arkansas, and at the most,
4 km for Wardon Hill (Onof ez al., 1977).

DEPENDENCE UPON PIXEL SIZE

The variation of E(p,w,t) with p is shown for the Arkansas
data in Fig. 5 (with » maximum, i.e. corresponding to the
whole data range): scaling holds over a range of scales
between pg and p; but there is a smaller dependence upon
scale for smaller and larger pixels sizes:

EQpw,t) = A= Ep,w,t) for po = p = p ()

The double scale dependence exhibited above is charac-
teristic of multi-fractals for which the existence of limits
upon the range of scales over which such a multi-scaling
behaviour holds has already been observed by many
authors (Kumar and Foufoula-Georgiou, 1993).

TEMPORAL DEPENDENCE

There is obviously some long memory dependence in the
time-series of radar rainfall coverages, as shown by the
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Fig. 4. Rainfall coverage as a function of window size.

autocorrelation function for the Arkansas data in Fig. 6a,
which confirms the findings of Onof and Wheater (1996b).
However, the current GCM scheme allows only for vari-
ability of € if the rainfall type varies; constant € is assumed
in the case of a persistent rainfall type.

The mean areal depths exhibit an analogous autocorre-
lation pattern although, on the whole, the autocorrelations
are smaller.

-

Using this analogy, but bearing in mind the lack of any
linear relationship between the two series (since both large
scale drizzles—large € and small R—or intense local
storms—small € and large R are observed), the relation
between the logarithms of the R(p,w,t) and E(p,w,t) is
examined. These show a clear linear dependence which
stretches over the whole range of coverages and mean
intensities (Fig. 6b) and which explains more than 80% of
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Fig. 5. Rainfall coverage as a function of pixel size.
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the variance of the logarithms of &(p,m,f) over a whole
month.

This enables an approximation of the value of &(p,m,?)
by using the following regression:

In{&@,w,)} _ a(p,w) In{R(p,w,1)} + bip,w) (©)

This relationship provides a simple model which repro-
duces much of the observed autocorrelation in the radar

data by estimating the coverage using the mean rainfall
depths (Fig. 6c).

IMPROVED DISAGGREGATION TECHNIQUE!:
METHODOLOGY AND VALIDATION

These results can be brought together into a simple model
to improve current procedures for the selection of the rain-
fall coverage € for a meteorological model with grid-square
size y2. For GCMs, a reasonable assumption consists in
choosing R(w,t) = R(¥,?), which latter is given by the model
at each time-step; more generally, for meteorological mod-
els, this assumption can be applied as a first approximation:

1. E@p,w,t) is obtained as a function of R(w,t), using the
regression relationship (3) for a window size w which is
that of the data analysis (e.g. radar range);

2. E(p,,r) is obtained as a function of E(p,w,?) using the
scaling relationship (1);

3. ¢ is then chosen as considered appropriate in view of
the observed weak dependence upon scale for small pixel
sizes, for instance &(po,%,t) for the smallest available scale
po of measurement.

As validation for this proposed methodology, apart from
the data analyses above, it is interesting to consider the
interaction of the different scaling effects with the log-log
dependence of coverage upon rainfall. By aggregating the
original 4 km Arkansas data to p = 8 km and looking at
this dependence in windows of side w = 40 km, a regres-
sion with parameters a(8,40) and b(8,40) is obtained.

However, it is also possible to obtain these parameters
by using the original a(4,930) and b(4,930) for the whole
Arkansas range and scaling down using the relationships
(1) and (2). The latter change for the pixel size corre-
sponds to a multiplication by 1.2. The parameters shown
in Fig. 7 indicate a good match between the two methods,
which is an important result for the validation of consis-
tency of the proposed disaggregation methodology.

This methodology, for which more detailed results are
presented in Onof et al. (1997), allows for a clear improve-
ment upon the original GCM disaggregation scheme by tak-
ing into account the evidence from extensive data analysis of
rainfall coverages. However, because it is a distributional
approach, it is not adapted to represent the spatial memory
of the precipitation process, the importance of which was
demonstrated in the Severn and Thames analyses. The ques-
tion of how knowledge of the statistical properties of rainfall
in space and time can be used to develop a location-based
disaggregation method is addressed in the next section.
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An algorithm for spatial location

The work described in the previous sections was primar-
ily concerned with improving the representation of cover-
age within existing disaggregation methodology, and did
not seek to address the problem of determining the spatial
location of wet and dry regions within a GCM grid square.
In this section a new approach to the problem is described;
this incorporates spatial location, as the ability to repro-
duce fine-scale spatial pattern may have a major impact
upon the usefulness of GCM output for hydrological pur-
poses. Other approaches include the use of multi-scaling
properties as the basis for a successful disaggregation
approach (Perica and Foufoula-Georgiou, 1996) but this
does not reproduce the spatial memory of the process.
Research is currently ongoing into developing space-time
random cascades which would form the basis for a multi-
scaling disaggregation model (Over and Gupta, 1996,
Marsan ez al. 1996) but questions remain about the limits
of the validity of the multi-scaling hypothesis.

The approach is motivated by the ‘cascade algorithm’,
suggested by Jennison (1986) in the context of statistical
image restoration. This is an area which has much in com-
mon with rainfall disaggregation; in both cases, the objec-
tive is to reconstruct an unknown ‘image’ from imperfect
data. In the case of image restoration, the imperfection is
due to noise added to the original image, whereas in the
disaggregation problem, the imperfection arises because
the data are only available as a very coarse-scale spatial
average. The methodology, as applied to the disaggrega-

Months from July 1994

—— Gradient by Outltined
Method

~——9%— Intercept by outlined
method

< Gradient directly by
regression

—2— intercept directly by
regression

Fig. 7. Model validation by comparison of regression parameters.
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tion problem, is described in detail in Chandler et al.
(1997): here an overview of the main concepts is given.

OVERVIEW OF THEORY

For the development of a scheme incorporating fine-scale
spatial pattern, it is convenient to subdivide each GCM
square into smaller squares (pixels) at the scale of interest.
The main assumption underlying the scheme is that, at
any instant in time, the spatial pattern of the rainfall at the
scale to which we are disaggregating can be modelled as a
Markov Random Field (Besag, 1974; Isham, 1981; Ripley,
1988), which is essentially the spatial equivalent of an
autoregressive time series model. This section concentrates
solely on the wet/dry rainfall pattern, so deals with a
binary random field.

The essence of a Markov Random Field (MRF) model
is the following: for all pairs of pixels in a scene, a sym-
metric neighbourhood relation is defined which states
whether or not the two pixels are neighbours; furthermore,
each pixel is defined to be its own neighbour. A random
field has the Markov property with respect to a particular
neighbourhood structure if the conditional probability that
a pixel is wet or dry, given values at all other pixels,
depends only on the configuration in its neighbourhood.
Following common image reconstruction practice, an auto-
logistic model (Besag, 1974) has been adopted to model the
wet/dry pattern. In this model, the neighbourhood of a
pixel is defined to be the set of all pixels immediately hor-
izontally, vertically and diagonally adjacent. Horizontal
and vertical neighbours are said to be of #ype I, while diag-
onal neighbours are of #ype 2. With this in mind, the MRF
model used in this work may be specified as

Pr{Pixel is wet | rest of scene} _
Pr{Pixel is dry | rest of scene}

2
epr:(x = Z(ﬁk X no. of wet type k neighbours):|

k=1

where o, B and f; are parameters to be estimated. 3; and
B> measure in some sense the dependence between a pixel
and its type 1 and 2 neighbours; ¢ is most intuitively
thought of as the log odds ratio for a pixel being wet when
it is completely surrounded by dry pixels. All three para-
meters can be estimated straightforwardly from radar data
using methods described by, for example, Besag (1974).
In addition to the MRF model, which plays the role of
prior distribution in a Bayesian framework and reflects the
belief as to what a ‘typical’ rainfall field looks like, tempo-
ral dependence is incorporated into the disaggregation pro-
cedure at each time point by conditioning upon the
disaggregated image at the previous timestep. In the
implementation used to date, this requires two parameters:
p11, the probability that a pixel was wet at time ¢ — 1 if it is
known to be wet at time ¢, and pjg, the probability that a
pixel was wet at time ¢ — 1 if it is known to be dry at time ¢.

These are transition probabilities, and they are easily esti-
mated.

Finally, it is advantageous to incorporate information
from the GCM rainfall intensities into the disaggregation
procedure, as there is clearly a relationship between the
mean rainfall intensity over a grid square and the number
of pixels within that square which are wet—this has been
demonstrated empirically in a previous section. To incor-
porate this information into a coherent framework, it is
necessary to specify, for each GCM square, the conditional
distribution of coverage given the mean rainfall intensity.
The linear relationship, noted above, between the loga-
rithms of these quantities, is the most obvious choice given
that mean grid square rainfall is simply the product of the
proportion of wet grid squares and the mean rainfall
within those grid squares. However, this is unsatisfactory
for predicting coverages for a variety of reasons, not least
of which is that it is quite feasible to obtain predicted cov-
erages which are greater than 1; it is therefore necessary to
seek some other form of dependence. For the purposes of
implementation, it is convenient if regression residuals
appear to have the same distribution across the entire
range of observation: from this point of view, the most
promising relationship found is between the empirical logit
(Cox and Snell 1989) of the coverage and the log mean
rainfall. This requires 3 parameters: the regression inter-
cept and slope and the residual standard deviation—again,
these are easily estimated from radar data. From
exploratory data analysis, the residuals appear to have an
approximately symmetrical distribution, which is approxi-
mated by a normal distribution with appropriate continu-
ity corrections.

These various model components may be combined
using Bayes’ Theorem to obtain a joint probability distrib-
ution for the wet/dry configuration at time £, given both the
reconstructed image at time 7 — 1 and the GCM rainfall
intensity information at time # full details of the calcula-
tions are omitted here for reasons of brevity, but may be
found in Chandler er al. (1997). Some assumptions are
made in the process: these are felt to be physically reason-
able, at least as a first approximation. For example, it is
assumed that the fine-scale wet/dry pattern at time 7 — 1 is
conditionally independent of the coarse-scale rainfall inten-
sities at time ¢, if the fine-scale wet/dry pattern at time ¢ is
known—again, see Chandler ez al. (1997) for full details.

Sampling directly from this high-dimensional joint dis-
tribution is non-trivial: however it may be accomplished
indirectly in a straightforward way using the Gibbs sam-
pler (Geman and Geman 1984; Ripley 1988), and this
enables an ensemble of scenarios each of which is consis-
tent with the coarse-scale GCM output.

PARAMETER ESTIMATION

Based upon a 12-month data set (July 1994 — June 1995),
a fixed set of parameters was calculated for each month of
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the year for the Arkansas-Red River Basin assuming grid-
square dimensions of 40 X 40 km and a pixel size of 8x8
km. Parameters were calculated for each image in this
period and over each month a weighted average was cal-
culated (parameters were weighted by the conditional
mean intensity of the rainfall to place emphasis on hydro-
logically significant events).

The parameters thus calculated show obvious seasonal
trends but contain some noise (not unexpected with only
one year’s data). Therefore, the parameter estimates are
smoothed using a 3-point moving average window with
weights (0.25, 0.5, 0.25), with June 1995 and July 1994
considered to be adjacent for this purpose.

The resulting monthly parameter estimates are given in
table 1.

VALIDATION

A 15 hour event was chosen (1700, 14/7/95 to 0700
15/7/95) to test and validate the disaggregation scheme.
This event was selected as it was outside the period over
which the parameters were estimated and was also pre-
ceded by a completely dry hour for which the disaggre-
gated field is trivially known. The data were first
aggregated from 4 X 4 km pixels to 8 X 8 km pixels to
give a ‘true image’, then the 8§ X 8 km pixels were aggre-
gated to 40 X 40 km to give an aggregated image.

The probability of misclassifying a pixel (wet or dry)
using the proposed model and knowing the true state of all
the pixel’s neighbours was calculated for each pixel in the
field and an average misclassification probability calculated
for the whole field. These Perfect Information Mis-
classification Probabilities (PIMPs) provide the upper limit
the model can achieve, as the true state of each pixel’s
neighbours is unknown while the dissagregation is being
performed. This criterion also allows for comparison of the
existing model with other possible model extensions.

However, model extensions incorporating more compre-
hensive neighbourhood relationships showed limited
potential for improvement and were not evaluated further
at this stage.

The aggregated image was given as input to the scheme
and the parameters listed in Table 1 were used in the dis-
aggregation process. 100 realisations of the storm were
generated and statistics of the results are based on these.
A sample image is shown in Fig. 8 along with the real and
aggregated images for visual comparison. This image
appears to reproduce the general sparseness of the
observed rainfall but the obvious deficiencies are the lack
of diagonal banding in the disaggregated rainfall field and
edge effects. The edge effects are probably due to having
a border around each image which is fixed at the start of
the disaggregation procedure and does not change subse-
quently as the field is disaggregated. This is one of the
areas of the model which will be addressed in future work.

Looking at the images quantatively, several features of
the wet/dry disaggregated field can be evaluated. Figs 9a
and b show the proportion of pixels in the disaggregated
rainfall field which are correctly classified, considering
only wet grid-squares. The thick solid line represents the
performance of the disaggregation scheme over 100 reali-
sations. Figure 9a shows the theoretical best performance
for this model, i.e. (1-PIMPs); also shown is a plot of the
model performance using parameters calculated from each
real image in the event instead of the seasonal parameters.
It is evident that little information is lost by using seasonal
parameters for this storm. In Fig. 9b, three representations
of the expected effective performance of the original GCM
scheme with fixed coverages of egcm = 0.1, 0.3 and 0.5
are shown. This is calculated from:

1-PIMPs = egcm % E + (1 — egem X1 — E)

where E is the observed coverage. Additionally, a reference
line is plotted of the proportion of correctly classified

Table 1.
Markov Random Transition Regression Gamma scale
Field Parameters Probabilities Parameters parameter
Month o B B M 10 Intercept slope RSD
January -5.92 2.55 0.48 0.66 0.25 3.14 0.74 1.37 1.478
February -5.79 2.57 0.44 0.60 0.23 2.98 0.73 1.38 1.495
March —5.66 2.52 0.44 0.62 0.24 2.87 073 . 1.37 1.25
April -5.50 2.46 0.41 0.63 0.25 2.63 0.73 1.33 0.772
May -5.22 2.36 0.36 0.60 0.25 2.19 0.71 1.33 0.428
June —4.96 2.25 0.35 0.56 0.22 1.80 0.67 1.37 0.31
July —4.78 221 0.31 0.53 0.20 1.57 0.62 1.42 0.32
August —4.71 2.19 0.29 0.51 0.19 1.68 0.61 1.47 0.475
September ~4.83 2.17 0.36 0.54 0.20 2.04 0.61 1.48 0.59
October -5.17 222 0.46. 0.60 0.24 2.36 0.65 1.40 0.612
November —5.56 2.30 0.56 0.66 0.28 2.68 0.70 1.32 0.86
December —5.86 2.43 0.56 0.69 0.28 3.05 0.73 1.33 1.26
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Real Image

Aggregated Image

Conditional Wet/dry correct (%) =63.97

Disaggregated Image

Arkansas-Red River Basin Date = 14.7.95 Time =2200

Fig. 8 Imperial scheme
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pixels given a completely dry disaggregated rainfall field.
This is shown to highlight that such assessment must be
made in the context of other features of the data. The pro-
posed scheme (referred to as the Imperial disaggregation
scheme) correctly classifies approximately 65-75% of the
pixels, which is a similar performance to the completely
dry scene, slightly better than the egcm = 0.1 version and
significantly better than the other fixed coverage estimates.
Other basic performance criteria include the coverage of
the disaggregated field. Figure 10 shows graphs of the bias
in coverage between the disaggregated rainfall field and the
true rainfall field for the Imperial scheme and the GCM
fixed coverage schemes with coverage egcm = 0.5, 0.3 and
0.1 (plus the zero coverage case). It appears that the
Imperial scheme reproduces the true coverages of the
event very satisfactorily. The only version of the GCM
scheme which comes close to the correct coverage for this
event is that with a coverage of egcm = 0.3, which did not
perform well for the previous classification criterion.

EXTENSION TO INTENSITIES

Having established the wet/dry rainfall field, rainfall
intensities must then be assigned, which sum to the
grid-square total rainfall. Spatial rainfall is generally best
modelled by a gamma distribution (Matsubayashi ez al.
1984). Given a number of gamma distributed variables (n),
a scale parameter (g) for the gamma distribution of the
rainfall across the whole field and a total depth (T), we can
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Model Performance:
Bias In Model Coverage
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Fig. 10 Bias in the disaggregated rainfall coverage

generate n intensities from a gamma distribution with a
scale parameter g which sum to T (the shape parameter of
the gamma distribution is defined by g and 'T).

This leaves the problem of assigning the generated
intensities to the wet pixels. If the valucs of these intensi-
ties and of the distances of each pixel to its nearest dry
neighbour are ranked, over half the pixels analysed are
such that higher ranked intensities have higher ranked dis-
tances. This result may be used to produce a rule of thumb
for the allocation of intensities to wet pixels: these are ran-
domly assigned in descending order by sampling pixels
according to probabilities which are proportional to a
power function of the distance to their nearest dry neigh-
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bour (power 5 is found to be optimal). Other methods for
the assignment of intensities are the subject of ongoing
research.

Figure 11 shows a realisation of the full disaggregation
methodology for the same event as Fig. 9. The image
appears to match the true field quite well but on close
inspection, reveals that the intensities nearer the edges of
each mass of rainfall are too low. When the gamma para-
meter is varied from that calculated for July, a higher rain-
fall level can be achieved round the edges but the
distribution of intensities does not then reflect the true
variation in intensities over the field. This is perhaps a
reflection of the inadequacy of the Gamma distribution for
reproducing rainfall intensities either in general or specif-
ically at this time of year. !

Conclusions

In this paper, the sensitivity of a grid-based hydrological
model to sub-grid variability in soil moisture and precipi-
tation is demonstrated for two large UK catchments.
Performance of a non-calibrated tile-based SVA'T scheme
was excellent in terms of long-term water balance at catch-
ment-scale. Calibrated routing was required to reproduce
catchment flow dynamics at the shorter time-scales. The
use of grid-scale averages for precipitation and soil mois-
ture has climate-dependent opposing effects upon the
resulting runoff. Sub-grid distribution of rainfall tends to
increase runoff; sub-grid distribution of soil moisture
tends to decrease runoff. The sensitivity to aggregation
and disaggregation increases markedly as the ratio of

Real Image

Aggregated Image

Conditional Wet/dry correct (%) =65.35
Conditional RSD=2.5306
Conditional mean=0.5443

Disaggregated Image

Date = 14.7.95 Time = 2200

Fig. 11 Imperial scheme disaggregated rainfall field
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annual precipitation to potential evaporation decreases.
Thus, if a distributional approach is used to represent sub-
grid scale variability, the required parameters cannot be
estimated from model calibration alone.

Data analyses show how the parameter identification in
a widely used rainfall disaggregation model can be
improved by a proper estimation of the rainfall coverage
which takes into account its dependence upon scale and
rainfall intensity. This provides a way of reproducing the
temporal dependence of the coverage.

The issue of the spatial location and memory requires a
new disagregegation scheme. The Imperial model pre-
sented in this paper enables much of the spatial structure
to be reproduced while avoiding excessive complexity
which would impair its applicability as a potential interface
between meteorological and hydrological ~models.
Although the rainfall intensity representation in this model
is being improved, the proposed scheme already provides
a powerful tool for the generation of spatially and tempo-
rally consistent sub-grid scale rainfall fields.

Acknowledgements

The authors wish to acknowledge the support of the Natural
Environment Research Council (NERC) who fund the TIGER
programme within which this research was carried out.

References

Abourgila, A.E., 1992. Large-scale hydrological modelling of the
Nile basin. Unpubl. MSc thesis, Imperial College, London.
Besag, J.E., 1974. Spatial interaction and the statistical analysis

of lattice systems. 7. Roy. Statist. Soc., Series B, 36, 192-236.

Carson, D.J. and Sangster, A.B., 1981. The influence of land-
surface albedo and soil moisture on general circulation model
simulations. In: (Rutherford, 1.D.) GARP/WCRP: Research
Activities in Atmosphere and Oceanic Modelling. Numerical
Experiment Programme, Report no 2, pp 5.14-5.21.

Chandler, R.E., Mackay, N.G., Wheater, H.S. and Onof, C,,
1997. Bayesian image analysis and the disaggregation of rain-
fall. Research Report No. 184, Department. of Statistical Science,
University College London.

Charney, J.G., Quirk, W.J., Chow, S.H. and Kornfield, J.K.
1977. A comparative study on the effects of albedo change
on drought in semi-arid regions. 7. Atmos. Sci., 34,
1366-1385.

Collier, C., 1992. The application of a continental-scale radar
database to hydrological process parameterization within gen-
eral circulation models, J. Hydrol., 142, 301-318.

Cox, D.R. and Snell, E.J., 1989. Analysis of binary data (2nd edi-
tion). Chapman and Hall, London.

Department of Environment, 1996. Review of the Potential Effects
of Climate Change in the United Kingdom. UK Climate Change
Impacts Review Group, March, HMSO, London, pp 247.

Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. and
Wilson, M.F., 1986. Biosphere-atmosphere-transfer scheme
(BATS) for the NCAR community climate model. National
Centre for Atmospheric Research, Boulder, Colorado, Tech.
Note/TN-275+STR.

Eagleson, P.S., 1978. Climate, soil and vegetation, 2. The distri-
bution of annual precipitation derived from observed storm
sequences, Wat. Resour. Res., 14, 713-721.

Eagleson, P.S., Fennessey, N.M., Wang, Q. and Rodriguez-Iturbe,
1., 1987. Application of spatial poisson models to air mass
thunderstorm rainfall. 7. Geophys. Res., 92(D8), 9661-9678.

Eltahir, E.A.B. and Bras, R.L., 1993. Estimation of the fractional
coverage of rainfall in climate models. 7. Climate, 6, 639—-644.

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images. JEEE
Trans. Pattern Anal. Machine Intel. PAMI-6, 721-41.

Gregory, D. and Smith, R.N.B., 1990. Unified Model
Documentation paper 25: Canopy, surface and soil hydrology,
Version 1, Meteorological Office, Bracknell, pp 19.

Henderson-Sellers, A., 1991. ‘Incorporating’ vegetation and soil
schemes into Atmospheric General Circulation Climate
Models. In: Hydrological Interactions between Atmosphere, Soil
and Vegetation (Proc. of the Vienna Symposium, August 1991),
TAHS Publ. No. 204, 11-29.

Henderson-Sellers, A., 1992. Assessing the sensitivity of a land-
surface scheme to parameters used in tropical-deforestation
experiments. Quart. J. Roy. Meteorol. Soc., 118, 1101-1116.

Isham, V., 1981. An introduction to spatial point processes and
Markov Random Fields. Int. Stats. Review, 49, 21-43.

Jennison, C., 1986. Contribution to the discussion of Professor
Besag’s paper. 7. Roy. Statist. Soc., Series B, 148, 288-9.

Jolley, T.J. and Wheater, H.S., 1996. A large-scale grid-based
hydrological model of the Severn and Thames catchments. 7.
Chart. Inst. Wat. Engrs. Managers, 10, 253-262.

Jolley, T.J. and Wheater, H.S., 1997a. An investigation into the
effect of spatial scale on the performance of a one-dimensional
water balance model. Hydrol. Processes, 11, 1927-1944.

Jolley, T.J. and Wheater, H.S., 1997b. The introduction of
runoff routing into large scale hydrological models. Hydrol.
Processes, 11, 1917-1926.

Kumar, P. and Foufoula-Georgiou, E., 1993. A new look at rain-
fall fluctuations and scaling properties of spatial rainfall using
orthogonal wavelets, 7. Appl. Meteorol., 32, 209-222.

Lovejoy, S. and Schertzer, D., 1990. Multifractals, Universality
classes and satellite and radar measurements of cloud and rain
fields, 7. Geophys. Res., 95(D3), 2021-2034.

Manabe, S., Smagorinsky, J. and Strikler, R.F., 1965. Simulated
climatology of a general circulation model with a hydrologic
cycle. Mon. Wea. Rev., 93, 769-798.

Manabe, S., 1975. A study of the interaction between the hydro-
logical cycle and climate using a mathematical model of the
atmosphere. Proc. of the Conference on Weather and Food,
Mass Inst Tech, Cambridge, Mass, pp 10.

Marsan, D., Schertzer, D. and Lovejoy, S., 1996. Causal space-
time multifractal processes: predictability and forecasting of
rain fields. 7. Geophys. Res., 101 (D21), 26333-26346.

Matsubayashi, U., Takagi, F. and Tonomwa, A., 1984. The
probability density function of areal average rainfall, 7.
Hydrosci. Hydraul. Eng., 2, 63-71.

Oh, L., 1993. Analysis of rainfall disaggregation in GCM, MSc
Thesis, Imperial College.

Onof, C. and Wheater, H.S., 1996a. Analysis of the spatial cov-
erage of British rainfall fields, 7. Hydrol, 176, 97-113.

Onof, C. and Wheater, H.S., 1996b. Modelling of the time-series
of spatial coverages of British rainfall fields, 7. Hydrol., 176,
115-131.

107



H.S. Wheater, T.J. Jolley, C. Onof, N. Mackay and R.E. Chandier

Onof, C., Mackay, N., Oh, L. and Wheater, H.S., 1997. An
improved rainfall disaggregation technique for GCMs. 7.
Geophys. Res., 103 (D16), 19577-19586.

Opver, T. and Gupta, V., 1996. A space-time theory of mesoscale
rainfall using random cascades. 7. Geophys. Res., 101 (D21),
26319-26331. :

Perica, S and Foufoula-Georgiou, E., 1996. A model for multi-
scale disaggregation of spatial rainfall based on coupling mete-
orological and scaling descriptions. 7. Geoph. Res., 101 (D21),
26347-26361.

Ripley, B.D., 1988. Statistical Inference for Spatial Processes.
Cambridge University Press.

Rowntree, P.R. and Bolton, J.A., 1978. Experiments with soil
moisture anomalies over Europe. In: (Asselin, R.) The GARP
Programme on Numerical Experiments: Research Activities in
Atmospheric and Oceanic Modelling, GARP, Report no. 178,
August 1978, pp 63.

Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A., 1986. A sim-
ple biosphere model (SiB) for use within general circulation
models. 7. Atmosph. Sci., 43, 505-531.

108

Smagorinsky, J., 1963. General circulation experiments with
primitive equations, I. The basic experiment. Mon. Wea. Rev.,
93, 99-164.

Thompson, N., Barrie, LA. and Ayles, M., 1981. The meteoro-
logical office rainfall and evaporation calculation system:
MORECS (Fuly 1981), Hydrological Memorandum No. 45,
Meteorological Office, Bracknell, pp 72.

Walker, J. and Rowntree, P.R., 1977. The effect of soil moisture
on circulation and rainfall in a tropical model. Quart. J. Roy.
Meteorol. Soc., 103, 29-46.

Warrilow, D.A., Sangster, A.B. and Slingo, A., 1986. Modelling
of land surface processes and their influence on European climate.
Dynamical  Climatology = Technical Note No. 38,
Meteorological Office, Bracknell, UK, pp 92.

Wheater, H.S., Jakeman, A.J. and Beven, K.J., 1993 Progress and
directions in rainfall-runoff modelling. In: (A.J. Jakeman,
M.B. Beck & M.J. McAleer, Eds.) Modelling Change in
Environmental Systems, Wiley, Chichester, UK, pp 101-132.



