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Abstract

In this study, it is shown that the complexity of Soil Vegetation Atmosphere Transfer (SVAT) models leads to an equifinality of
functional behaviour—many parameterizations from many areas of the parameter space lead to very similar responses. Individual
parameters derived by calibration (i.e. model inversion) against limited measurements are, therefore, highly uncertain. Due to the
non-linear internal behaviour of SVAT models, aggregation of uncertainly known parameter fields to parameterize landscape scale
variability in surface fluxes will yield highly uncertain predictions. A disaggregation approach suggested by Beven (1995) requires
that the land surface be represented by a linear sum of a number of representative parameterizations or functional types. This
study explores the nature of the parameter space in terms of a simple definition of functional behaviour. Parameter interactions
producing similar predicted behaviours are investigated through application of Principal Component Analyses. These reveal the
lack of a dominant global interaction indicating the presence of highly complex parameter interactions throughout the feasible

parameter space.

Introduction

There are many problems in estimating fluxes between the
land surface and the atmosphere at the landscape scale
(taken here to indicate the scale of a mesoscale or global
circulation model grid element). Much of the discussion
and theoretical development in the past has centred on the
possibility of using ‘effective’ parameter values in a land-
scape scale SVAT (soil vegetation atmosphere transfer)
model; values that are effective in the sense of taking
account of all the local scale heterogeneities of soil and
vegetation type, topographic position, surface roughness,
water stress, and meteorological variables that influence
the landscape scale integrated fluxes. Until recently, all of
the SVAT models that have been linked to atmospheric
circulation models have been of this type in which a one-
dimensional (vertical) SVAT representation has been used,
with effective parameter values, to represent the surface of
a whole grid element. Some of these models show consid-
erable complexity in vertical structure (e.g. SiB, Sellers et
al., 1986; and BATS, Dickinson and Kennedy, 1991) but
no variation in space.

The derivation of effective parameters, given the spatial
variability across the landscape, can be viewed in two ways.
One is an aggregation framework in which knowledge of
the local scale parameter values is used within a theoreti-
cal scaling framework to derive the landscape scale effec-
tive values. Examples of such a framework are given by

Blyth et al. (1996) and Claussen (1996). Beven (1995) has
argued that such an aggregation approach will ultimately
prove impossible and that it might be better to view the
problem of predicting landscape scale fluxes within a dis-
aggregation framework, in which the landscape scale
model is viewed as a parameterization of the heterogeneity
of fluxes within the landscape. The effective parameter
approach would then be one parameterization that
attempts to deal with the problem of heterogeneity in a
particularly simple way based on a certain consistent lin-
earity of fluxes. Beven (1995) points out that even a sim-
ple weighted average of a small number of models, that
reflect the strong causes of heterogeneity of function (i.e.
evapotranspiration flux), might be a better model when
viewed from a disaggregation framework. This paper takes
that approach further by exploring the responses of a rel-
atively simple local or patch scale SVAT model in terms
of the range of flux behaviours arising from the feasible
ranges of the model parameter values.

Beven (1995) suggested the following form of landscape
scale model:

Y(0) = 3 WdO,U,1)

where the Y values are some predicted variables, the I¥; are
linear weights chosen such that ZW; = 1, the ¥ @,, U, 1)
represents the predicted response of the ith model with
parameters @; and input variables U at time # and N is an
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appropriate number of models to reflect the essential
aspects of variability at the landscape scale. It is worth not-
ing that some aggregation models reflecting variability in
terms of fractional areas of vegetation types or distribution
functions of important parameters are essentially of this
type (e.g. Avissar, 1992; Dolman, 1992; Famiglietti and
Wood, 1994) but require that both model parameters and
weighting coefficients be specified a priori.

In this study, the behaviour of a SVAT model when
parameterised with many different feasible parameter sets
is investigated. Similarity of response is observed and
defined according to the cumulative evapotranspiration
flux for each model simulation. Simulations are then
grouped according to their functional behaviour and the
posterior parameter distributions of these sets are investi-
gated with the aim of identifying the relative sensitivity of
the model parameters. This also demonstrates the poten-
tial range of parameter values that an individual parameter
may be assigned and yet still produce similar behaviour
dependent on the other parameter values. Structure in the
posterior parameter distributions for given classes of sim~
ilar model behaviour is then investigated through the
application of Principal Component Analyses with the aim
of investigating the nature of the covariance between the
model parameters.

Defining functional behaviour in a
SVAT model

The approach taken here is a disaggregation methodology
in which the representation of heterogeneity of responses
in the landscape is treated as a mapping of the landscape
responses into an appropriate model space, where that
model space is defined not so much in terms of parameter
dimensions but in terms of function (i.e. flux behaviour).
SVAT models have too many parameters. Previous work
has shown that this leads to many different parameter sets
in a SVAT model leading to similar functional behaviours,
both in fitting observed data on evapotranspiration rates
and in predicting cumulative evapotranspiration (and sen-
sible heat) fluxes, a major aim of SVAT modelling (Franks
et al., 1997; Franks and Beven, 1997a). Thus it is possible
that many parameter sets, from those that are feasible in
representing the local responses within a given landscape
of interest, might predict very similar behaviours over a
day, or longer periods of time. It may, therefore, not be
necessary to consider all possible models in formulating
the weighted sum model above, but it will be important to
represent the dominant functional behaviours in the land-
scape and, in some cases, the extremes. In this study, func-
tional types are defined and investigated in terms of the
parameter space that defines the range of responses of the
TOPUP SVAT model. This particular model is used only
as an exemplar. A similar methodology can be applied to
a wide range of models, from simple to complex, with the
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proviso that the model (or models) should be capable of
simulating the range of local responses in the area of
interest.

A representative patch scale SVAT
model: the TOPUP model

This section describes a simple patch scale SVAT model,
TOPUP (Beven and Quinn, 1994; Quinn et al., 1995). The
purpose of this model is to simulate evaporative fluxes
between the land surface and atmosphere. The form of this
model is similar to a simple bucket type SVAT model,
commonly used within GCMs, except that the lateral
(downslope) redistribution of water is incorporated within
the model structure. The aim has been to provide
sufficient functionality in the model to reproduce the main
controls on evapotranspiration, whilst minimising the
number of parameters to be identified. The processes rep-
resented by the TOPUP SVAT model are illustrated in
Fig. 1. The model consists of three sources from which
moisture is available for evapotranspiration (see Fig. 1)

Interception
RSMIN N
Recharge

Root Zone Qv ={(S.VTD)

RSMAX

S
Upslope Downslope
Drainage Drainage
Q=FA" Q, - v % Qb= 1;tan Bexp(-S/m)

1. B ion from the il

2. Evapotranspiration from the root zone stors (RSMIN < surface resistance < RSMAX)

store (0 < surface resistance < RSMIN)

3. Evapotranspiration from the water table when in root zone
4. Evapotranspiration supplied by capillary rise from the water table

Fig. 1. Schematic representation of the TOPUP SVAT model.

a canopy/topsoil interception store (with capacity
MAXINT), which, as well as representing the canopy
interception store, can also serve to mimic the recovery of
evapotranspiration in a dry soil following rainfall; a root
zone store (with capacity SRMAX); and a variable water
table. The model is based upon the Penman-Monteith
equation (Monteith, 1981) requiring the specification of
aerodynamic and surface resistances. Within the TOPUP
SVAT model structure, surface resistance is calculated as
a linear function of available moisture against storage
(parameter SRMAX), between maximum and minimum
resistance parameters (RSMAX and RSMIN, respectively,
for evapotranspiration). Surface resistances for evaporation



from the interception store follow a linear relationship
between 0 sm-! and RSMIN according to the ratio of the
available intercepted moisture and the interception store,
MAXINT. Aerodynamic resistance is calculated as a func-
tion of windspeed and atmospheric instability requiring
the parameterization of roughness length for momentum,
29, zero displacement height, 4, and the ratio of the rough-
ness lengths for momentum and vapour, In(zo/ 2), (Franks
et al., 1997)

The lateral subsurface flow component of the model is
based on a similar set of assumptions to those used by
TOPMODEL (Beven and Kirkby, 1979; Quinn and
Beven, 1993; Beven et al., 1995) in which downslope fluxes
are assumed to be in equilibrium with a recharge rate cal-
culated from total hillslope discharge averaged over some
area, lateral transmissivity is assumed to be an exponential
function of subsurface storage and the downslope
hydraulic gradient is assumed equal to the surface slope.
With these assumptions, the outflow per unit contour
length is given by:

Q, =Tytanfe~

where tanf is the hydraulic gradient (assumed a constant
for the given patch area), Tp is the transmissivity of the
soil when the water table is at a level given by the para-
meter REFLEV, S is a storage deficit due to drainage of
the water table below that level, and m is a scaling para-
meter for transmissivity. Within this model structure, Tp
and tanB occur as a product so they may be considered as
a single parameter, thereby further reducing the number
of parameters to be considered. The TOPMODEL theory,
where it is deemed an adequate approximation, allows the
m parameter to be related to the discharge recession char-
acteristics of a catchment area. The introduction of the
reference level parameter REFLEV, the depth at which
T = Ty, allows the treatment of deeper water tables than
with the normal version of TOPMODEL where the ref-
erence level is taken to be the soil surface (see Quinn ez al.,
1991). The water table is maintained from upslope by
inflowing discharge calculated as a fraction of the outflow
subsurface discharge according to the fractional upslope
area parameter, F. Moisture routing through the unsatu-
rated zone is achieved through a time delay per unit deficit
specified by the parameter, VTD.

Meteorological data

Data sets from two sites were used in this study. Two
periods for each of the sites were available. IFC-3 (August
6-21, 1987) and IFC-4 (October 5-16, 1987) from the
First International Satellite Land Surface Climatology
Project (ISLSCP) Field Experiment (FIFE) were
employed. IFC-3 contains a storm event, whilst IFC-4 was
a particularly dry period within which the tall grass vege-
tation canopy was reaching senescence. Meteorological
forcing data and evapotranspiration measurements were
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also employed for an Amazonian, post-deforestation pas-
ture site from the ABRACOS database. This site is located
at Fazenda Dimona, central Amazonia. Two data sets were
available from the 16 October — 2 November, 1990, and
from the 29 June — 10 September, 1991. Details of the
instrumentation employed at the site are given in Wright
et al. (1992).

Similarity of functional response

As an example of the functional behaviour of the TOPUP
SVAT model (and by implication, SVAT models in gen-
eral) consider Fig. 2. This summarises the results of 10000
different TOPUP simulations with parameter sets chosen
randomly from reasonable ranges (see Table 1). At this
stage, each parameter has been sampled from a uniform
distribution across the range, but other choices of the prior
distributions, and joint distributions amongst groups of
parameters, could be made. Each plot in Fig. 2 represents
results across the range of a single parameter. Each dot on
each plot in Fig. 2 represents one model run. Each plot
therefore represents a projection of the results in the high
dimension parameter space onto a single parameter axis.
The results are the same in each plot and are the cumula-
tive evapotranspiration in mm over a 15 day period of the
3rd Intensive Field Campaign (IFC) of the First ISLSCP
Field Experiment (FIFE) in Kansas in August 1987.

It is readily seen in these figures that there are high pre-
dicted cumulative evapotranspiration fluxes across the
range of most of the parameter values. There are also low
cumulative evapotranspiration fluxes across the range of
most of the parameter values. These differences result
from the interactions of parameter values in the model.
This behaviour is not unique to this site and this period.
Similar plots are shown in Fig. 3 for IFC4 of FIFE, and
in Figs. 4 and 5 for the 1990 and 1991 periods of the

parameter SRMAX

parameter RSMAX

cum ET (mm)
cum ET (mm)

0.05 0.1 0.15 0.2 400 600 800 1000
parameter value (m) parameter value (s/m)
parameter RSMIN parameter REFLEV

cum ET (mm)

50 100 150 0 0.5 1
parameter value (s/m) parameter value (m)

Fig. 2. Scattergrams of cumulative evapotranspiration for 4 of the
model parameters when driven with FIFE IFC-3 data.
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Table 1. Parameter ranges for the TOPUP SVAT model

Varied Parameters

Parameter Range

Fa fractional upslope area 0.1 - 1.0

TTANB product of saturated transmissivity and hydraulic gradient (m2h') 0.0005 — 0.0400

m transmissivity profile and recession curve parameter (m) 0.005 - 0.050

RSMIN minimum surface resistance (sm!) 50 - 150

RSMAX maximum surface resistance (sm1) 300 - 1000

SRMAX root zone storage (m) 0.020 - 0.200

SRO initial fractional root zone store 001 - 1.00

MAXINT interception store (m) 0.0005 - 0.0050

VTD vertical time delay through unsaturated zone (hm) 005 - 500

DTHI1 gravity drainage effective storage coefficient 005 - 015

DTH2 root zone effective storage coefficient 005 - 040

Ln(20/24) log of the ratio of roughness lengths for momentum and heat flux 1.0 - 30

2 roughness length for momentum flux of grassland (m) 002 - 012

d zero displacement height of grassland (m) 015 - 035

REFLEV reference level for soil transmissivity (m) 001 - 1.00 (FIFE data)
8.0 — 15.00 (ABRACOS data)

SOIL soil type for capillary rise (matrix properties taken from Eagleson, [1978])

Hidden parameters for each SOIL type

(1) saturated soil matrix potential (m)
KZERO saturated effective hydraulic conductivity (ms!)
mc index of pore size distribution and disconnectiveness (Eagleson, 1978)

ABRACOS experiment. High fluxes and low fluxes are
predicted across the parameter ranges for many parame-
ters. In this study, the model contains a dependence of
effective surface resistance on soil moisture storage but
does not have any physiological feedbacks between surface
resistance and atmospheric conditions which have been
assumed to be the same (as measured in the field) for all
model runs. If such feedbacks were included, then the
variability of the ranges of cumulative evaporative flux
across the individual parameter ranges would be further
constrained.

parameter SRMAX

parameter RSMAX

cum ET (mm)
- - NN W
o O O O
cum ET (mm)

o o

0.05 0.1 0.15 0.2 400 600 800 1000
parameter value (m} parameter value (s/m)

parameter RSMIN parameter REFLEV

cum ET (mm)
PRV

100 05
parameter value (s/m) parameter value (m)

Fig. 3. Scattergrams of cumulative evaporranspiration for 4 of the
model parameters when driven with FIFE IFC-4 data.
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It must be stressed that this does not imply that the
model predictions are insensitive to the values of all the
parameters of the model. Franks et a/. (1997) have shown
how this type of Monte Carlo simulation can be used to
explore the sensitivity of the model to different parameter
values. The parameter interactions within the non-linear
model structure lead to this equifinality of behaviours in
the parameter space. Such equifinality should not be unex-
pected given the high parameter dimensionality but it does
make physical interpretation of individual parameter val-
ues rather difficult, since the effects of each parameter will

parameter SRMAX

parameter RSMAX

cum ET (mm)
cum ET (mm)

0.05 0.1 0.15 02 400 600 800 1000
parameter value (m) parameter value (s/m)

parameter RSMIN parameter REFLEV

50

cum ET (mm)

050 100 150 8 10 12 14
parameter vaiue (s/m) parameter value (m)

Fig. 4. Scattergrams of cumulative evapotranspiration for 4 of the
model parameters when driven with ABRACOS 1990 data.



parameter SRMAX

parameter RSMAX

cum ET (mm)
cum ET (mm)
n
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=

150

0.05 0.1 0.15 0.2 400 600 800 1000
parameter value (m)

parameter RSMIN

parameter value {(s/m)
parameter REFLEV

n
«a

cum ET (mm)
n
i=3
o

cum ET (mm)

o
o

50 100 150 8 10 12 14
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Fig. 5. Scattergrams of cumulative evapotranspiration for 4 of the
model parameters when driven with ABRACOS 1991 daza.

be dependent on the model structure and on the values of
any other parameters.

However, the results can also be interpreted in another
way. Cumulative evapotranspiration or latent heat flux can
be used as one definition of the functional behaviour
required of a SVAT model. It is the definition that will be
used here since, in coupling the land surface to the atmos-
phere, a first order requirement is to predict the fluxes of
energy and vapour correctly. Given the constraints of the
local energy balance, then if the latent heat flux is pre-
dicted reasonably well, sensible heat fluxes should also be
predicted reasonably well. Thus, it is important that some
areas of the landscape are generating high latent heat
fluxes, and others low latent heat fluxes, but it may not
matter too much how those fluxes are predicted within the
space of model behaviours as many different parameteri-
zations result in very similar functional flux behaviour. If
a given landscape could be disaggregated according to dis-
similar flux behaviours, then parameterizations representa-
tive of the flux behaviours (rather than specific physical
properties) might be used to simulate the flux responses of
the landscape units.

Looking at the problem in this way allows the dimen-
sionality of the parameterization to be greatly reduced,
from the high dimensional space of the parameters to a low
dimensional space of the model functional behaviour, how-
ever that might be defined. A definition in terms of cumu-
lative evapotranspiration alone, as in Figs. 2 to 5, results
in a single functional dimension, but other definitions can
also be considered if the details of the timing of the fluxes
within the period are considered important, as well as the
cumulative flux.

Functional similarity in landscape scale SVAT modeliing

Posterior parameter distributions of
functional types

To demonstrate the wide range of parameter values that
produce given functional responses for even the most sen-
sitive of parameters, posterior distributions of each para-
meter for ‘given functional types may be examined.
Parameter sets were chosen by Monte Carlo sampling from
uniform distributions of the parameters. As described
above, the model simulations were then assigned to func-
tional types (classes) on the basis of the cumulative evap-
otranspiration. Cumulative distributions of each of the
parameters arising from the parameter sets that produce a
cumulative evapotranspiration within a given range,
defining the functional type, are then constructed. A
straight line represents a uniform distribution of the para-
meter within that class, whilst a marked departure from
the straight line would represent a non-uniform distribu-
tion. Franks et al. (1997) have used the cumulative evapo-
transpiration and a ‘goodness of fit’ measure for comparing
predicted and observed fluxes as performance indicators,
in a simple multivariate sensitivity analysis (see also
Hornberger and Spear, 1980; Spear ez al., 1994).
Posterior parameter distributions for each functional
type were constructed for both FIFE and ABRACOS data
sets. For each forcing data set, the model parameter sets
were sub-divided into 19 groups on the basis of the cumu-
lative evapotranspiration produced. Figure 6 shows the
posterior distributions of four of the TOPUP parameters
for three functional classes defined by the cumulative evap-
otranspiration. These three classes are classes 1, 10, and 19,
representing the highest, mid and lowest functional types

parameter SRMAX parameter RSMAX
1 -~ 1
s ’,' L7
08 LT 0.8 s
- Ed B - > 4 e
gos 2 gose e
£ -~ g .
3 0.4 K 3 04 L
02} L~ o2l /.7
0« 0 ’
0.05 0.1 0.15 0.2 400 600 800 1000
parameter value (m) parameter vaiue (s/m)
paramster RSMIN parametsr REFLEV
1 - 1 5
p -
a - s
0.8 o 08 s
2 -
. . . .-
gos 7 gos6 s
" - - p
Eoa e Eo4 G
o , / A Q s
0.2 PRt o2t /-7
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P 0
50 100 150 0 0.5 1
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Fig. 6. Posterior distributions of four of the model parameters, for
three different classes of functional behaviour as defined by the cumu-
lative evapotranspiration when driven with the FIFE IFC-3 data
set. A solid line represents class 1 (highest cum. ET class), a dashed
line represents class 10 (median cum, ET class), and a dotted line
represents class 19 (the lowest cum, ET class)
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with respect to the cumulative total evapotranspiration
when forced with the FIFE IFC-3 period data. Figures 7,
8 and 9 show the posterior distributions of parameters
for classes 1, 10 and 19, when forced with the IFC~4,
ABRACOS-90 and ABRACOS-91 data sets, respectively.

Figure 6 shows the posterior parameter distributions for
classes 1, 10 and 19 for four of the TOPUP model para-
meters when forced with the IFC-3 data set. The parame-
ter distributions for each cumulative flux class span the
entire range of parameter values considered with the
exception of the highest flux class for the minimum sur-
face resistance (RSMIN) parameter. This posterior distri-
bution is significantly non-uniform indicating relatively
high sensitivity of the highest flux class to this parameter
given the forcing data set.

parameter SRMAX parameter RSMAX
1 1
Z
0.8 0.8 -~ -
Eos gos o
! - ;
o4 S04 £ 4
02t 02l /.7
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parameter RSMIN parameter REFLEV
1 1
. 7 ” ~ 0
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3 o7 L -
- g
0.2 o 0.2 L
o gl
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parameter value (s/m) parameter' value (m)

Fig. 7. Posterior distributions of four of the model parameters, for
three different classes of functional behaviour as defined by the cumu-
lative evapotranspiration when driven with the FIFE IFC-4 data
set. A solid line represents class 1 (highest cum. ET class), a dashed
line represents class 10 (median cum, ET class), and a dotted line
represents class 19 (the lowest cum, ET class)

Figures 8 and 9 both show that the lowest cumulative
flux class is particularly sensitive to the maximum root
zone store (SRMAX) parameter, as indicated by the highly
skewed posterior distributions. Indeed, the posterior
distribution of the SRMAX parameter for the lowest
flux class when forced with the ABRACOS-91 data set
(Fig. 9) indicates that only values of this parameter less
than 0.1 m will produce the lowest cumulative fluxes over
the period of the forcing data, irrespective of the other
parameter values.

The posterior distributions for the reference water table
level parameter (REFLEV) for all flux classes when forced
with the ABRACOS data sets (Figs. 8 and 9) can be seen
to be essentially uniform. This indicates that this parame-
ter is largely redundant in terms of influencing the cumu-~
lative totals. Reference to the posterior distributions of this
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Fig. 8. Posterior distributions of four of the model parameters, for
three different classes of functional behaviour as defined by the cumu-
lative evapotranspiration when driven with the ABRACOS 1990
data set. A solid line represents class 1 (highest cum. ET class), a
dashed line represents class 10 (median cum, ET class), and a dotted
line represents class 19 (the lowest cum, ET class)

parameter when the model is forced with the FIFE data
sets, however, indicates significant sensitivity of the high-
est cumulative flux totals to this parameter. This differ-
ence is explained by the relatively shallow depth of the
water table for the application to the FIFE site compared
to the deeper level for the application of the TOPUP
model to the ABRACOS site; the water table is predicted
as being a significant source of moisture available for
evapotranspiration at the FIFE site, whereas the deeper
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Fig. 9. Posterior distributions of four of the model parameters, for
three different classes of functional behaviour as defined by the cumu-
lative evapotranspiration when driven with the ABRACOS 1991
data set. A solid line represents class 1 (highest cum. ET class), a
dashed line represents class 10 (median cum, ET class), and a dotted
line represents class 19 (the lowest cum, ET class)



water table encountered at the ABRACOS site contributes
significantly less moisture for evapotranspiration.

As can be seen by reference to each of the posterior dis-
tributions of the REFLEV parameter when the TOPUP
model is forced with each of the meteorological data sets,
values from each of the a priori ranges may produce sim-
ilar cumulative flux responses due to the interactions and
values of the other model parameters. This can be seen in
the majority of cases, as most posterior distributions cover
the entire parameter ranges indicating strong parameter
interactions.

Identifying parameter covariation:
Principal Component Analysis

An alternative approach to investigate the posterior distri-
butions of parameters for each of the defined functional
types is to perform a Principal Component Analysis (PCA)
on the posterior distributions. The PCA approach
identifies eigenvectors that explain a proportion of the
variance of the data set in ranked order. These eigenvec-
tors represent correlations in the variance of the parame-
ter values. The importance of each such eigenvector and,
hence, the importance of the corresponding parameter
covariation, may be evaluated in terms of the proportion
of variance explained. PCA analysis was performed on
classes 1, 10, and 19, to identify eigenvectors from the pos-
terior parameter space. Figure 10 shows the proportion of
variance explained by each of the eigenvectors for class 1
(highest cumulative evapotranspiration fluxes) when forced
with the FIFE and ABRACOS data sets. In all cases only
the first eigenvector has any discernible importance in
terms of the proportion of the variance explained, with
respect to the other eigenvectors. Even the first component
explains only a small proportion of the total variance sug-
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Fig. 10. Bar charts of the proportion of variance explained by each
of the identified eigenvectors for the class 1 functional types when
Jforced with each data set.
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gesting that there is no strong linear structural covariation
in the parameter space in this class.

The PCA analysis was also performed for classes 10 and
19 resulting in remarkably uniform eigenvectors in every
case. The percentages of variance explained by the first
three (ranked) components for these flux classes are shown
in Table 2. The lack of a dominant eigenvector is a direct
result of the complex and nonlinear parameter interactions
that lead to the different functional responses. There is
little dependence on given eigenvectors because of the lack
of strong global correlation between individual parameters
of the model (though functionally there must be local
interactions as the effect of a change in one parameter is
compensated by changes in the other parameters).

Depending on the value of other parameters in a set, a
wide range of values of any single parameter may produce
similar responses as defined by the cumulative evapotran-
spiration for that period.

Tuble 2. Percentage of variance explained by the first three
components for highest, median and lowest cumulative
flux classes (classes 1, 10 and 19, respectively), when
forced with the FIFE IFC-3 and IFC-4, and ABRACOS
’90 and ’91 data sets.

Class Forcing data set Percentage of Variance Explained (%)

Components

Ist 2nd 3rd

1 IFC-3 129 8.9 8.3
IFC-4 13.4 89 8.0
ABRACOS *90 10.1 8.9 8.1
ABRACOS 91 10.1 8.9 8.3

10 IFC-3 10.9 8.7 8.2
IFCA4 12.5 8.5 8.0
ABRACOS ’90 11.7 8.7 8.0
ABRACOS 91 10.8 9.5 8.0

19 IFC-3 10.5 8.4 8.2
IFC-4 10.3 8.5 8.2
ABRACOS *90 12.8 8.6 7.5
ABRACOS 91 10.6 9.1 8.3

Discussion

For a given landscape, many of the parameter combina-
tions selected by the Monte Carlo sampling strategy may
be absent. This study has investigated the possible, rather
than the probable, variations of parameter values. To what
degree possible combinations do exist in a landscape is a
problem that cannot be resolved easily as many parameters
used in SVAT models are highly variable in space and may
not easily be measured. This is a key point; aggregation
strategies will be subject to high uncertainty due to the
difficulties in measuring land surface characteristics. This
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study has, therefore, concentrated on the parameterization
and function of SVAT models rather than on the applica-
tion to a given domain.

The implications of this study on the parameterization of
SVAT models are apparent: when achieved through cali-
bration (model inversion) parameter values reported in the
scientific literature will be dependent upon the other values
of the other parameters. Reasonable values from various
sources may produce the right (or wrong) results. Model
parameterization should consider the parameter set, rather
than any specific parameter, as it is the set that defines the
model behaviour. It could be argued that calibration of such
models might be better achieved through the use of longer
time series incorporating more of the dynamics of the
natural system. Whilst this is true, there remains a certain
intractability due to the over-parameterization of these
models: the measured fluxes (as well as containing high
degrees of noise) do not contain sufficient information for
the inversion of a complex model to yield robustly
identified, physically-meaningful parameter values.

In terms of the results presented in this study, if longer
forcing data sets were employed, then one might require
the definition of functional type to incorporate the tempo-
ral variations of evapotranspiration. One could perhaps
define functional types based upon a similarity of tempo-
ral responses to the meteorological forcing data. Parameter
interactions might then be investigated in a similar man-
ner to those presented here. However, this may also intro-
duce the requirement for additional parameterization of
the physiological changes of the vegetation over such long
periods. Under such circumstances, it would be expected
that the possibility of simulating an observed flux time
series would increase as the dimensionality of the parame-
ter space increased. It is apparent that the dimensionality
of a model parameter space should be minimised to the
degree that is supported by the available data: the model
dimensionality should permit sufficient functionality to
simulate the range of expected (preferably measured)
responses in time and space.

A new approach

This study of functional types reflects the need to repre-
sent the heterogeneity of land surface responses. Complex,
high-dimensional models can produce very similar
responses in terms of the required function of the model
with parameterizations from many different areas of the
parameter space. As the aggregation of parameter fields is
subject to high uncertainty due to high parameter uncer-
tainty and the highly complex internal behaviour of phys-
ically based SVAT models, this study advocates a different
approach to the representation of complex terrain. This
approach is the mapping of the functional behaviour into
low dimensional functional space. In principle, any over-
parameterised high-dimensional complex model may be
investigated in terms of its function. The functional space
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' may then be constrained for any given application through

whatever information is available. In terms of this study,
the aim is to parameterise variable surface fluxes at the
landscape scale. Given a range of possible functionally dif-
ferent behaviours arising from the feasible parameter
space, one can identify areal weightings for significantly
different functional types through the use of distributed
thermal remotely-sensed data. This is explored by Franks
and Beven (1997b), within an information-based uncer-
tainty framework, whereby uncertain estimates of distrib-
uted fluxes are used to condition a multiple patch SVAT
model (as represented by Eqn. 1).
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