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Abstract

Analytical and numerical solutions are obtained for dispersion of pollutants along unsteady groundwater flow in a longitudinal
direction through semi-infinite aquifers the permeability of which is either uniform or varies with position. Sources of pollution
are both a concentrated point input at the origin and a spatially distributed background source. One expression chosen to rep-
resent the seasonal pattern of the time dependent velocity is sinusoidal behaviour over a year. The solutions obtained predict
the time and distance from the location at which an input concentration is. introduced at which the pollution concentration
becomes harmless. Also, the time period for rehabilitating a polluted aquifer for human use can also be assessed.

Introduction

Allthough in some regions groundwater varies with time,
relatively few solutions for solute dispersion in aquifers in
such regions have been reported. In tropical regions such
as India, groundwater flow and level show a seasonal vari-
ation of sinusoidal nature around a year. Groundwater
level and velocity are at maximum in the middle of win-
ter, after the rainy season and the two are minimum in
summer, just before the rainy season. The ultimate source
of water to sustain a groundwater body in fine to coarse
grained sands-of the older alluvium is rainfall and infiltra-
tion from rivers in spate. The Gangetic Basin, a part of
Himalayan foredeep which covers an area of about
2,50,000 km? between the Himalayan front and the Indian
peninsular shield, is one of the longest groundwater reser-
voirs in the world. Even in recent publications like Leij et
al. (1993), Aral and Tang (1993) and Serrano (1995) the
groundwater velocity is considered steady. Van
Genucheten and Alves (1982) and Javendel et al. (1984)
have reviewed and compiled most of the non-dimensional
conventional dispersion problems for steady fiow through
porous media. Fry et a/l. (1993) presented model equations
and their analytical solutions; the solutions depend on the
magnitudes of the model parameters. On the other hand,
experimentally, Banks and Jerasate (1962) derived linear
and exponentially decreasing time dependent expressions
for seepage velocity through porous media. Oroveanu
(1966) has shown how seepage varies inversely as the
square of time. Bear (1972) proposed that, in some condi-
tions, permeability, hence the seepage velocity through a

porous medium, may vary with time due to external loads
that produce stresses that change the texture and structure
of the porous medium.

The present work deals with one-dimensional solute dis-
persion along unsteady groundwater flow in a semi-infinite
and saturated aquifer of substantial depth. Sinusoidal and
exponentially decreasing time-dependent expressions for
groundwater velocity are considered separately. The for-
mer represents the seasonal pattern of sinusoidal fluctua-
tions in groundwater velocity over a year. Analytical
solutions are provided for a homogeneous aquifer, while
for an inhomogeneous one, numerical solutions are
obtained. The semi-infinite system is subject to zero-order
production. A direct relationship between dispersion
coefficient and velocity helps to convert the time depen-
dent coefficients in the governing equations into constant
coefficients. Such a relationship has been established by
Ebach and White (1958), Scheidegger (1961), Rumer
(1962) and Bruce (1970). Rumer (1962) found that such a

~ relationship for steady flow was also valid for unsteady

flow with sinusoidally or exponentially varying velocity
through porous media.

Y

Mathematical formulation

Pollutants from instantaneous point sources (spills), such
as septic tanks, garbage disposal sites, cemeteries and mine
spoils on the surface; infiltrate to groundwater and spread
along the flow. The solute concentration distribution due
to dispersion and convection in one space dimension, along
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with a zero-order liquid phase source, is defined by a par-
tial differential equation of parabolic type (Scheidegger,
1961; Bachmat and Bear, 1964).

oa*r_d|po* *w ¥
&_8x[D Fr i )

where ¢*(ML™3) is solute concentration in the liquid phase,
PH(ML-3T1) is a zero-order production term, D(L2T1) is
the dispersion coefficient and #(L7T!) is the groundwater
velocity at position x and time ¢. Initially, groundwater is
not solute free due to some internal cause or effect in the
aquifer, or some other type of zero-order production, rep-
resented by the symbol y*. This produces solute particles
in the liquid phase. An appropriate initial condition may
be chosen as

H*x, 0)=C1 +y*x/u; 2 20 (2)

The input concentration at the origin (where the pollu-
tants reach the groundwater level) is of pulse type. The
first boundary condition is defined as at

x =0, —(1—5)(D/u)$+c*=q,f(t); 0<t<t (3a)
X

= (; t> 1, (3b)
to is the time at which the source of the pollution on the
surface is eliminated for ever. For 6 = 1 the conditon (32)
is of the first or function-type where the solution is pre-
scribed at the origin. When the derivative of the solution
is defined at the boundary, it is of the second or flux type
boundary condition. A third or mixed-type boundary con-
dition is that in which a linear combination of solution and
its derivative is defined at the boundary. The condition
(3a) is of mixed-type for § = 0. When the conditions (3)
are of the first-type, it means that the input concentration
at the groundwater level and hence its source of pollution
on the surface remain uniform during 0 < ¢ < 1y, and the
input becomes zero immediately after the source is elimi-
nated (¢ > #p). But this may not be the real situation. In
fact, with increasing human activities on the surface, pol-
lution at the source and so the input at the groundwater
level will increase during 0 < 7 £ #p and the input, instead
of becoming zero, will start decreasing when ¢ > #. The
infiltrated concentration reaching the groundwater level
penetrates downward because of higher density and from
each point of the downward vertical, starts to spread lon-
gitudinally, along the flow in the region » > 0. Naturally
some concentration spreads within the nearby region x <
0. As soon as the infiltration starts decreasing and eventu-
ally stops due to elimination of the pollutant source on the
surface (at ¢ = rg), this concentration in the ¥ < 0 region
starts crossing the boundary ¥ = 0 ané spreads along the
flow. That is why, after + = fp, up to some duration, the
input concentration remains at ¥ = 0, though it decreases
with time. Only after a long time period may it become
zero. This realistic picture can be demonstrated by the
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mixed type boundary conditions (3). Such conditions help
to predict the time period under which a polluted aquifer
can be rehabilitated.

The other boundary condition for a semi-infinite

system that is subject to zero-order production can be
defined as

a* .
—— = finite
x

asx > oo, 120 4

The two forms of unsteady groundwater velocity are con-

sidered as

u(r) = up (1 — sin mi)
u(t) = up exp (— mt),

(53)
(5b)

where u is the initial velocity and m(7™! ) is the flow resis-
tance coefficient.

mt <1,

Dispersion in homogeneous aquifer

The partial differential equation (1) when D and u are

independent of x, for an homogeneous aquifer can be writ-
ten as:

o * % *

—=D —u—ty* 6

a Tt Yt ®

where u = uy V) (7)

As dispersion coefficient varies directly with velocity, let
D = au, o is a coefficient of the dimension of length and
depends upon pore-system geometry and on the average
pore-size diameter of an aquifer. Using the expression (7).
D = Dyl(t), where Dy = oaugy is the initial dispersion
coefficient and ¥* = % V(¢), when 9 is the initial zero order
production term, Eqn. (6) becomes,

1 oa*
V@) o

Fer  ar

o‘ng—uo o + %0 )

Introducing a new time variable by the following transfor-
mation (Crank, 1975)

T* = JV(t)dt 9)
0
The equation (8) assumes the form
o * A * ac*
=Dy——uy—+ 10
oT * o uoc?x Yo (10)

Now, the above equations are non-dimensional but not in
the same way as in the Leij ez /. (1993) work' on semi-
infinite or infinite domains, where space and time variable
are non-dimensionalised in terms of parameter L (length
of aquifer) which does not occur in the problem. This flaw
is taken care of in the present problem and non-dimen-
sional variables are introduced in terms of ‘existing para-
meters as follows:
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* 27 %
c=2, x=% p_%l* %D gy
G, D, D, Couy
In terms of these, Eqn. (10) can be written as
aC _ ’C  aC
— - 12
o ax 7 (12

and the initial and boundary conditions (2-4) can be
deduced as :

atT=0,CX, H=C1/C+yX ;X=20 (13)
at X = 0, (1-6)(dC/9X) + C=AD); 0 < T< Ty (14a)

=0 ; T>Ty (14b)
and as X — oo; dC/0X = finite ; T20 (15)

Now, a Laplace transformation is used to obtain the ana-
lytical solutions of (12-15) for different cases.

Case 1: J(#) = 1 —sinmt, i.e. a sinusoidal form (5a) for
groundwater velocity is considered. The non-dimensional
time variable defined in (11) can be obtained as

T = (4§ / Dy)[t — (1 — cosmt) / m] (16)

Also f(2) in (3a) is taken as unity, i.e. in (14a) AT) =
The analytical solution for 6 = 0 in (14a) i.e. for mixed
type boundary conditions can be obtained as

C(X,T) = % X + (1 ty- %)F(X, TY;
0 0

0<T<T, (17a)
_G
+ X +|1+y ~—
"6t ( 4 Co]
FX,T) = F(X,T-T); T>T, (7b)
where
. _ 2
FX,T)=T/x. exp(ﬂﬁﬂ + E, - exp(X)E,,

Eq stands for

Lerfc X -—E
2 WT 2

1 erfc( X ﬁ

and E; for

+___
2T 2

in the above and subsequent solutions.
For 6 = 1 (concentration type condition) in (14a), the
analytical solutions will be

C(X,T) = C+yX+( g‘)F(XT), 0<T<T,

| (18
=%+7X+[ CJF(X T)- F(XT )

(18b)

where F (X, T) = E1 + exp (X) Es.

Case 2: V(t) = exp(-mt), mt < 1 i.e. groundwater velocity
has the form (5b). The function (t) in the boundary con-
dition (3a) is chosen as [1 — exp(~¢?)], ¢¢ < 1. From the
transformation (9),

T* = J"exp(-—mt)dt =1 [1 — exp(—mi)] (19)
0 m
So S =1—exp(—qt) =1-(1-mTH¢m

In this case, both parameters m and ¢ will be either of
the same order or equal. Let m = 0.0002 (days)™! and
g = 0.0001 (days)™'. For ¢+ = 1000 days (let), mt and 4¢,
both are much less than one. From eqn. (19), 47* = 0.0906
and %g(m — 4)T* = 0.0041 which is much less than qT*,
So the higher order terms in the binomial expression
(1 —mT*)#™ can be neglected as compared to ¢7*. When
m = g, all the terms containng (m — ¢) will become zero.
Thus, f(¢) = ¢T*, and the boundary condition (14a) con-
tains the expression f(7) = QT where the non-dimensional
parameter Q = ¢Dy/uf. For § = 0 (i.e. for the mixed type
boundary condition) the analytical solutions will be

C(X,T) = ‘ + ¥X + (y - ——)F(X T) + QG(X, T);(20a)

0<T5n
= ﬁ+)/X+()/——)F(X T)

G
—QLF(X,T - Ty) + Q[G(X,T)

-GX,T-T)), T>T, (20b)
where
FX,T)=T/x. exp(l(%;—nz)
—(1+ X + T exp(X)E,,

GX,T)=(+X/24T/2NT /% exp[ﬂ“;_T)z]

HT - X = DE,
[T =1+ 3(X + T)’]exp(X)E,

Similarly the analytical solutions when & = 1, (i.e. for
the concentration type boundary condition) exist as

C(X,T) = + ¥X - G F(X, T)+ QG(X,T);
0 N
0 <T<T, (21a)
_ gl_ + X —_ g_l_F — —_
= ¥X - (X, T)- QT F(X,T -T)
G, G
HO[GX, 1) -GX,T-T));, T>T, (21b)
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where F(X, T) = E} + exp(X)Ez .
and G(X, T) = (T - X)E1 + (T + X) exp(X)E; .

The non-dimensional time variable in the solutions of
case 2, has the expression,

= (ug / mDy)[1 ~ exp(~m1)] @2)

These solutions match those for steady groundwater
flow compiled by Van Genucheten and Alves (1982), if
m = 0 is substituted in the expressions for velocity (5a, b).

Dispersion along inhomogeneous
aquifer

In an homogeneous aquifer in which permeability varies
with position, the dispersion coefficient as well as ground-

water velocity will be functions of x, both having the same
tendency. Let the two be defined as

D = D(#)F(x) and u = u(z)F(x) (23)

The partial differential equation (1) will be written as

oc*
2= F(x)|:D

— —

e o *
ox* ox

4 F(x)[Dﬂ —uc *} Ly (24
dx o

which, in terms of non-dimensional variables defined in
eqn. (11), can be written as

aC _ FX )a’C o
) G-, ¢ dX

— [+ — F X)|—=-C|+ 25
E ( )[ ] 7 (25)
Following two expressions of F(X) are defined

0.5 exp(—X)

P == expeX) (262)
_ g 0.05exp(-X)
Fw=08- 2B (26b)

The former expression increases from 0.8 at X = 0 to 1.0
as X — oo while the latter expression has the reverse ten-
dency. For numerical solutions, a finite difference scheme
(two-level explicit) is used. But the semi-infinite domain
X € (0, o) is converted into a finite domain Y € (0, 1) by
the following transformation

Y =1-exp (-X) 27)

The partial differential equation (25) converts as follows

]

d
+ Vi F(Y)[(l - Y) Eval C_| +y (28)

ac

o (l—Y)[F(Y){(l Y) aYz

926

where 0.51-Y)

FY)=1-=>0 (29a)
_ 0.051-Y)
and F(Y) =08+~ > (29b)

F(Y) has the same variation in Y € (0, 1) as F(X) has in
the domain X € (0, o). The initial and boundary condi-
tions (13—15) can be converted in the domain of Y as

C(Y,0) =21 + ylog Y>0  (30)

1
lY
at

0<T <T, (3la)
(31b)

Y =0, —(l—6)(l—Y)%+C=f(T);
=0; T>T,

and at Y=L(1-Y7) x = finite; 720 (32)

. Y

As Y = 1 corresponds to X — oo, i.e. ¥ — oo, but it is
not possible to get concentration values at infinity. The
values are evaluated up to some finite extent along the
longitudinal direction, away from the origin with the
implicit assumption that the upper boundary is placed far
enough upstream for the concentration (due to the zero-
order production term) to remain unchanged with time.

.Let the values be computed up to ¥ = €, which corre-

sponds to Y = 1 — exp(—(€up/ Dp)) = Yj in the domain (0,
1). Also, the analytical solutions make clear why the con-
centration gradient at ¥— oo is considered finite, instead of,
as usual, being taken as zero, in the second boundary con-
dition (4), although condition oc*/ dx = 0 as ¥ — oo will
also yield the same analytical solutions as obtained here.
The finite parameter is just the zero-order production term
vin the non-dimensional form (15) or (32). Thus, for numer-
ical computation, the condition (32) is used in the form

at Y=Y, (-%W-y (33
The sizes of the intervals along T and Y-axes are chosen
to satisfy the stability condition for the explicit scheme
used.

Numerical example

Analytical solutions (17a) and (17b) are solved for a
selected set of numerical data to illustrate the concentra-
tion distribution behaviour of source concentration at the
origin satisfying mixed-type or third-type bounddry condi-
tion, along sinusoidally varying groundwater velocity.
Other solutions are not solved only to avoid too many illus-
trations and tables. The input values are : up =0.01 km
day™!, Dg = 0.1 km? day™!, 3 = 0.5 x 105 km™3 day™!, Cp
= 1.0 and C; = 0.1. The source of pollution is eliminated
after 2000 days ie. zp = 2000 days. Flow resistance
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coefficient m is chosen 0.0165 day~!. The values of mr are
chosenas 2, 5, 8, . . ., 41 and 44, for which «(z) having the
expression (5a) is minimum and maximum alternatively. It
means the velocity has this tendency at ¢+ = 121.2, 303.0,
484.8, . . ., 2484.8 and 2666.8 days at the regular interval
of 181.8 days. Let # = 121.2 days correspond to some day
in the month of June during which the groundwater level
is minimal and hence the velocity is also at a minimum.
This period is the peak of the summer season just before
the rainy season. Then, the next value ¢ = 303.0 days cor-
responds to approximately the same day in the month of
December, the peak of the winter season, after the rainy
season, during which groundwater level and velocity are
maximum. Further, the next value ¢ = 484.8 days will cor-
respond to almost the same date in the month of June in
the next year, and so on. Supposing that the solute con-
centration starts spreading from the origin in the month of
February (¢ = 0), Fig. la shows the concentration values in
the months of June and December respectively in the sec-
ond and fifth years. Figure (1b) depicts the concentration
values in the same months in the seventh and eighth years,
after the source of pollution at the surface has been elimi-
nated during the month of August in the sixth year. The
two figures show the nature of the mixed-type boundary
condition at the origin, stated after the equations (3). In the
case of the first-type boundary condition, input concentra-
tion in Fig (1a) would have been 1.0 while that in Fig. (1b)
would have been zero at all the times chosen. As time
passes, the region near the origin will contain fewer solute
particles. In both figures, the concentration distribution is
shown up to ¥ = 10 km. The solutions (17) are compared
with the results that would have been obtained in the case
of initially solute free groundwater (C; = 0 and y = 0).

No. mt period
0.5~ 1 June in 2nd yr
2 1" Dec.in 2ndyr
3 2 June.in S5thyr
4 29 Dec.in Sthyr
t<to
to = 2000 days

Aug in 6th yr

Tables (1a) and (1b) present numerical results for the
same problem in an inhomogeneous aquifer. The concen-
tration values are obtained for the same set of data with
one change; the value of 9 is taken as 0.2 X 1075, instead
of as 0.5 x 10~5 (for analytical solution). This change illus-
trates the effect of the zero-order production term on the
concentration distribution. For a smaller value of %, the
initial concentration will be less and so subsequent con-
centration values will be lower. For an initially solute free
aquifer, concentration values shown by dotted curves in
the Figures (1a,b) are much lower than those in the pres-
ence of a zero order production term. The numerical result
for an homogeous aquifer is compared with the analytical
result for the same set of data and it is found that the two
coincide up to four decimal places. This excellent agree-
ment between the two confirms the suitability of the
numerical solution scheme. Table (la) also shows that,
from the origin, for example at » = 10 km, concentration
values are almost the same, converging to the initial con-
centration at all times. This will be more evident as x >
10 km. As the numerical and analytical solutions are in
good agreement, this tendency can also be seen in Fig.
(1a). This justifies the implicit assumption stated for the
upper boundary condition (33). Also the effect of initial
groundwater velocity on the concentration distribution is
also shown. Table (1b) shows that in the case of higher ini-
tial velocity, concentrations at the origin as well as at other
positions decrease more rapidly as time increases i.e. a pol-
luted aquifer will be rehabilitated sooner. For example at
2121 days at ¥ = 4 km, the concentration is higher for
up = 0.05 km day™! than that for z9 = 0.01 km day!. But
at ¢t = 2666.8 days at the same position, the concentration
becomes less for higher values of uy.

mt period

35 Dec.in 7th yr
38 Junein 7th yr
41 Dec.in 8th yr
44 June in 8thyr

0.5

-
WM 3

W N 1
4 N
W,
v\
\\
YNy a
VoS3,
0.5 1.0
X ——a

97



N. Kumar and M. Kumar

Table la
Concentration values, for yp = 0.2 x 10-° numerically obtained at < to for mixed type boundary condition at x = 0 along
sinusoidal velocity in (i) homogeneous aquifer (a) up = 0.05 km day~', (b) 9 = 0.01 km day-!, (ii) inhomogeneous aquifer
for expression (26a) of F(X) and (iii) for expression (26b) of F(X)

x(km) 0.0 2 4 6 8 10
t = 484.8 days (mt = 8)
()a .787209 .742420 .688090 .624835 .561004 .531619
(i)b .303598 .183583 123201 112820 116224 123580
(i1) .284812 .166481 116892 111981 115886 123181
(iii) .307841 .184016 121601 112915 116504 : 123665
t = 666.7 days (mr = 11)
()a .864646 .836130 .801437 .760870 719742 .700825
()b .337888 .218062 141190 116162 116533 124051
(i1) 315450 .195881 129561 113530 115944 123502
(iti) 344201 .220207 .138827 115518 116864 124246
t = 1575.8 days (mt = 26)
()a .985906 982936 979319 - .975099 .970868 .969139
()b 449478 341042 .239297 164552 129612 128844
(ii) 414976 .302808 .206726 145197 122469 125637
(iii) 464940 .352655 .239790 159652 126955 128113
t = 1757.6 days (mt = 29)
()a 988881 .986537 983685 .980359 977034 975728
()b 458077 .350903 .248649 .171038 132378 .130082
(i1) 422632 311446 214396 .149856 .124058 126208
(iii) 474396 .363470 .249752 .165973 129203 .128966
\ Table 1b
Concentration values for similar cases as in Table la, but at ¢ > £ (2000 days).
x(km) 0.0 2 4 6 8 10
t = 2121.2 days (mt = 35)
()a .602168 721449 .836177 925144 .973003 984814
b - .378542 .378679 281281 .195482 144476 136419
(ii) .348266 .337280 .241387 167835 131349 129355
(iii) .397940 .395292 .284834 .190262 139370 133442
» t = 2303.0 days (mr =38)
(1)a. 267668 .323955 .392019 470937 .550278 .587220
()b .298726 333716 .294562 215741 156619 .143945
(ii) 276734 303727 .255506 .183320 139047 133407
(iii) 317847 .353625 .302425 211090 149977 .139023
t = 2484.8 days (mz = 41)
()a .229841 278221 .336920 405315 474480 .506833
()b .288637 325026 .294209 .219643 159354 145841
(ii). .267662 .296548 256165 .186495 .140888 134466
(iii) 307673 345171 303133 215337 152503 .140469
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#(km) 0.0 2 4 6 8 10

1 = 2666.86 days (mt = 44)
@i)a 113062 136879 165864 199792 234310 250647
()b 252962 291370 286006 233347 173238 155948
(i) 235549 268063 252902 .198766 150140 140314
(iif) 271623 312039 231723 165172 148409

.298927

Summary and conclusions

In the present dispersion problem in a semi-infinite
aquifer, deviating from the common assumption of steady
groundwater velocity, two expressions for time-dependent
groundwater velocity have been chosen. The expression
representing sinusoidal fluctuation in velocity, at uniform
time interval describes the seasonal pattern of groundwater
velocity over a year in a tropical region. A direct relation-
ship between dispersion coefficient and velocity is used.
Transfomation introducing a new time variable helps in
the application of Laplace transform technique to obtain
analytical solutions. The semi-infinite system is subjected
to (i) a zero-order production term resulting in initially
solute concentrated groundwater and (ii) pulse-type input
concentration at the origin. The boundary condition at the
origin is both of the third-type and of the first-type.
Illustrations in the case of analytical solutions and tables in
the case of numerical solutions, are given only for the
third-type of boundary condition at the origin. The
numerical scheme is applied only after transforming the
infinite-domain into a finite one. At this stage, it is impor-
tant to point out that other choices for such transforma-
tion may be made, such as
X 1
= r 1-
1+ X 1+ X

This will result in expressions for F(Y) in the eqn. (29)
containing exponential functions but their variation will

remain the same. Although the differential equation (25)

will be transformed into:

aC _ _vy 2
SE=-Y) |:F(Y){(l Y)

J’C
oY?

d , 9C
+WF(Y){(1 Yy o c}] +y

aC
~3- ZY)W}

and, similarly, initial and boundary conditions will assume
forms other than those given by (30)—(32), the results will
be the same.

Two expressions for the position coordinate, one
increasing and the other decreasing in the domain, are cho-
sen to show the inhomogeneity of the aquifer. In the case
of an inhomogeneous aquifer, groundwater velocity and
dispersion coefficient are expressed directly as either of the

two expressions. In fact, similar input concentrations are
introduced at different positions on the longitudinal axis
along groundwater flow, due to different point sources in
a particular region on the surface. The present study pre-
sents the concentration distribution behaviour of the con-
centration in an aquifer due to only one such input.
Alternatively expressions for ¥{(¢) can be chosen, if they are
of practical relevance. For any such expression, the result-
ing equation from the transformation (9) should be solv-
able for the old time variable in terms of the new one so
that the boundary conditions ¢*(x, #) are converted into
C(X, T). A similar condition applies to any function f{(z)
existing in the boundary condition (3a). That is why a suit-
able expression for f(#) has been considered when I{7)
decreases exponentially while f(z) = 1 has been taken when
the form J{¢) is sinusoidal.
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