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Abstract

The withdrawal of water from soil by vegetation, which in steady state conditions is equivalent to the transpiration rate, can be
written in terms of water potential in the form of an Ohm’s law analogy, known as van den Honert’s equation: The difference
between an effective soil water potential and the bulk canopy water potential is divided by an effective soil-plant resistance. This
equation is commonly used, but little is known about the precise definition of its parameters. The issue of this paper is to bridge
the gap between the bulk approach and a multi-layer description of soil-plant water transfer by interpreting the bulk parame-
ters in terms of the characteristics of the multi-layer approach. Water flow through an elementary path within the soil or the
root is assumed to follow an Ohm’s law analogy, and the soil and root characterisics are allowed to vary with depth. Starting
from the basic equations of the multi-layer approach, it is proved that the total rate of transpiration can also be expressed in the
form of an Ohm’s law analogy. This means that van den Honert’s equation holds at canopy scale, insofar as the assumptions
made on the physics of root water uptake hold. In the bulk formulation derived, the effective soil-plant resistance appears as a
combination of the elementary resistances making up the multi-layer model; and the effective soil water potential is a weighted
mean of the water potentials in each soil layer, the weighting system involving the complete set of elementary resistances. Simpler
representations of soil-plant interaction leading to Ohm’s law type formulations are also examined: a simplified multi-layer
model, in which xylem (root axial) resistance is neglected, and a bulk approach, in which soil-root interaction is represented by
only one layer. Numerical simulations performed in different standard conditions show that these simpler representations do

not provide accurate estimates of the transpiration rate, when compared to the values obtained by the complete algorithm.

Introduction

It is difficult to describe accurately the withdrawal of water
by plant roots because of the complexity of root systems.
To bypass this complexity, a bulk approach is generally
used which ignores details of the various paths of water
movement. In this approach it is assumed that, under
steady state conditions, the flux of water from soil to
canopy, i.e. the transpiration rate 77, can be expressed fol-
lowing an Ohm’s law analogy in the form

Tr = (¥ - ¥)/r5 @

¥¢ is an effective soil water potential, representing an
average value of soil water potential, ¥, is an average leaf
water potential and 7,° is an effective bulk resistance to
water transfer from soil to canopy. This equation, which
is often referred to as van den Honert’s equation (van den
Honert, 1948), has gained wide acceptance amongst plant
scientists (Cowan, 1965; Feddes and Rijtema, 1972; Katerji
et al., 1983; Lynn and Carlson, 1990), although little is

known about the precise definition and calculation of the
terms making up this equation.

In many models of soil-vegetation-atmosphere water
transfer, the soil-root interaction is represented by a set of
parallel layers, each one assumed to be horizontally homo-
geneous and characterised by mean properties such as
water content, water potential, root density, root potential
and resistance to water transfer from soil to root, etc. In
each layer, the Ohm’s law approximation is used to
describe horizontal transfer of water from soil to xylem
and vertical transfer through the xylem (Cowan, 1965;
Hillel ez al., 1976; Taylor and Klepper, 1978). The total
root extraction term (equal to the transpiration rate Tr
when there is no water storage in the vegetation) is com-
puted as the sum of the contributions from each layer.

May Eqn. (1) be used legitimately in a vertically
heterogeneous soil? In other words, can an Ohm’s law
analogy for canopy transpiration be derived from a multi-
layer description of the soil-root interaction? And if that is
the case, how are ¥¢ and ry° expressed in terms of the
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characteristics of each layer? These questions-will be the
topic of the study and the plan will be as follows. The first
section details the basic equations of the multi-layer
approach, specifying how each type of elementary resis-
tance can be expressed. The second section presents the
derivation of van den Honert’s equation with its effective
parameters in the general case. Also presented are addi-
tional simpler formulations of these parameters obtained
when certain approximations are made. The third section
compares numerically the performance of these simpler
expressions with respect to the exact solution.

Soil-root water transfer basic
equations

THE MULTI-LAYER APPROACH: AN ELECTRICAL
ANALOGUE

Assuming horizontal homogeneity, the soil is divided into
several parallel layers, each with a thickness 0z;, where
subscript ¢ refers to the layer number, counted from 1 to
n from the soil surface to the deepest layer explored by the
roots (Fig.1); the sum of the 82; is z,, the rooting depth.
¥, is the mean water potential of soil layer 7 and ¥,; is
the mean water potential of root xylem within the same
layer. The whole system is depicted as an electrical circuit
where the flux of water replaces current and the driving
force is water potential (Cowan, 1965; Hillel ez al., 1976;
Taylor and Klepper, 1978). The elementary flux of water
extracted by the roots in each layer (the properties refer-
ring to a layer are termed ‘elementary’ as opposed to
‘bulk’) can be written as

O6Tr; = (Y, — ¥,,)/1e; with ¥, > ¥, (2)

rei is the soil-root resistance in layer i, considered to be
the sum of a soil resistance r;; (from the soil matrix to the
root surface) and of a root radial resistance 7,; (from the
root surface to the root xylem through the root cortex)

Yori = Tsi + Tyi (3)

The vertical flux through the root xylem emanating from
soil layer ¢ is written as

Tri = (Wyi — ¥ric))/ 150 4)

where r, ;; is the root axial resistance (or xylem resistance)
to vertical water transfer within layer / — /. Assuming there
is no water storage in the plant, the total flux of water
which enters the shoot above the soil surface (denoted by
Trp) can be expressed as the sum of the elementary fluxes
emanating from each layer

Ty = Y, 6T (5)
i=1

In the electrical analogue shown in Fig. 1 ¥, represents
the water potential in the stem right below the first leaves
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Fig. 1. Electrical analogue of water transfer processes within the soil-
root system: general case of the multi-layer approach.

of the canopy in order to avoid the additional complexity
generated by the foliage architecture.

EXPRESSING SOIL RESISTANCE 7y

The rate of water uptake per unit length of root can be
expressed as

g = A¥/p; (6)

where AW represents the difference of potential (expressed
in MPa) between the bulk soil and the root surface and p;
is the corresponding resistance per unit root length with
units of MPa s m~2 (because ¢ represents a flux of water
per unit length of root expressed in m> (of water) s m™!
(of root)). Root length density in layer ¢ is denoted by RD;
(expressed in m (of root) per m? of soil ), and L; is the total
root length within the same layer per unit area. Both enti-
ties are linked by L/ =RD;0z;. The total water flow Q;
entering the roots in layer i is calculated as the integral of
g over the total root length and is then given by

_ J.L,- qdl = (A¥ / p,)L; = A¥ /1,; with
g r; = p./(RDz;) (7)

The elementary resistance p; has been inferred from phys-
ical models. In the model of Gardner (1960), a single root
is taken to be a hollow, infinitely long cylinder of uniform
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radius 7, extracting water at a constant rate from an infi-
nite volume. Under steady state conditions, with water
flowing from a distance r2, p; is expressed as a function of
soil hydraulic conductivity K (assumed to be constant) as

ps = In(r2/ 1)/ 27K) ®)

Cowan (1965) developed a similar model, assuming that
the constant flux of water entering the root comes from the
volume surrounding the root (defined by 7} < r < 1), and
derived an expression for p; which is different from that of
Gardner. Hydraulic conductivity K is expressed as a func-
tion of soil water potential ¥; as (Campbell, 1974)

K= K( lIIS) = Ksat( 'Pmt/ ‘Ils)3/b+2 (9)

where ¥, is the soil water potential at field saturation and
K, is the corresponding maximum conductivity.
Assuming that r, is linked to root density RD by
r2=(mwRDY1/2, the volume v of root per unit volume of soil
is given by v=7m ri2RD=(r/r2)>. Taking into account
Eqgns. (7) and (8) the soil resistance can be rewritten in
terms of v as (Reicosky and Ritchie, 1976; Abdul-Jabbar et
al., 1984)

tsi = —ln(ltrzl,,-RD,-)/ (47L'K,‘RD,‘52,') = —lm);/ (47EK,'RD,'5.Z,‘)
(10)

The units of r;; are MPa s m™' when Kjis expressed in m?
MPa™' s, Zur et al. (1982), working on field soybeans
with limiting soil moisture, found that soil resistances cal-
culated from experimental results were four to six orders
of magnitude higher than theoretically calculated using the
Gardner model. They attributed this result to the fact that
the unsaturated hydraulic conductivity of soil adjacent to
the roots may be several orders of magnitude lower than
that of the bulk soil.

EXPRESSING ROOT RADIAL RESISTANCE 7, ;

The radial movement of water from soil to xylem occurs
through the cortical tissue, partly in the water-filled free
space of the cell wall, and partly within the symplasm,
which is the connected protoplasm within the cell mem-
brane (Jones,1983). A unit radial resistance, p,, can be
defined as the root cortex resistance per unit length of
root (with the same units as p;), linked to the radial resis-
tivity p,° (resistance per unit area of root) by
P=p,°/(27r1), r1 being the root radius. The flux of water
entering the root per unit root length is given by an equa-
tion similar to (6): 4=A¥/p,, where A¥ represents the
potential difference between the surface of the root and
the xylem, assumed to be constant for a given layer. In a
very similar way to the previous section, it can be shown
that the total water flow Q; entering the roots from soil
layer i is written as

L
0, = J qdl = A¥ /1, with
0
t; = p,/(RD0z;) = P? /Q2mi;RD,6z;) (11)

r,,; has the same units as r,; (MPa s m™!). Herkelrath ez al.
(1977) give an average value for p, of 1.2 X 10'© MPa s
m2, For young maize plants Steudle ez 4/. (1987) evalu-
ated the radial resistivity (p,°) of excised main roots and
found an average value of about 2 X 10° MPa s m™! (which
means that p, = 3 X 10! MPa s m2 for a root radius of
1 mm). In the case of onion roots grown hydroponically
Melchior and Steudle (1993) found a value of about 7 X
10¢ MPa s m™! for p ,° at distances between 30 and 150
mm from the root tip: In this case p, = 101 MPa s m™2
for a onion root radius of 0.1 mm. These authors, how-
ever, specified that p,° was considerably larger in more
basal root zones.

EXPRESSING ROOT AXIAL RESISTANCE (XYLEM
RESISTANCE) 7y ;

The pathway for axial or longitudinal flow is the xylem.
The conducting elements are primarily the non-living and
lignified tracheides and xylem vessels (Jones, 1983). It is
assumed that the flux, ¢, of liquid water between two
points along a set of xylem elements in a primary root
(defined as a root which crosses a layer from bottom to top,
i.e. which transfers water vertically) can be expressed in
the form of an Ohm’s law analogy (Denmead and Millar,
1976; Taylor and Klepper, 1978)

qg=AY/r with r= p,d (12)

AY is the potential difference and 4 the distance between
the two points; p; is the resistance of xylem elements per
unit length expressed in MPa s m™ (because ¢ is expressed
in m3 (of water) s, A¥ in MPa and d in m (of root)). Let
m; be the number of primary roots which cross the soil
layer i of thickness dz; per unit surface and Q; the total
water flow through the roots for the elementary volume (1
X 6z;). Applying Eqn. (12) to each primary root crossing
the layer (counted from j=1I to j=m;) and considering that
AY is the same for all the roots leads to

m;

* AP & 1
= == — 3
Q= Péé (13)

j= *

For the sake of convenience the primary roots are assumed
to cross layer / with a mean angle ; to the vertical. This
means that 4=03z,/cosw;, and Q; can be rewritten as

Q; = A¥/r,; with r,; = p,0z;/(m cosw) (14)

Introducing the primary root density function, denoted by
RD, ;, which represents the length of primary root per unit
volume (m m™3) in layer ¢, the following relationship can
be written

RD, 5 = ' d; = mz; / cos w; (15)
2y J
j=1

which means that m,=RD, ; cos®; . This leads to the fol-
lowing expression for 7, ;

7y = Px0%i/ (RDy icos? @) (16)
33
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with the dimensions of MPa s m!. Denmead and Millar
(1976) studied water transport in the xylem elements of
wheat stems and determined the average value of the stem
resistance per unit length (p,). The value found was 1.6 X
101 MPa s m. Melchior and Steudle (1993) measured
the axial resistance of onion roots grown hydroponically
and found an average value of 10! MPa s m™*. Yamauchi
et al. (1995) measured the axial resistance to water flow
along a cotton taproot of 70—120 days old plants and found
a value for p, of about 10° MPa s m™, stipulating that this
value is near the lower limit of other reported values for
cotton as well as other species.

It should be noted that the values of p, and p, cannot
be compared directly because they represent different
processes (Melchior and Steudle, 1993): p, is the axial
resistance per unit length of root expressed in MPa s m™,
whereas p, is the root radial resistance per unit length of
root expressed in MPa s m2. Only 7,; and r,;, which have
the same units, can be compared (cf. the section devoted
to numerical results).

Formulation of water withdrawal by
roots

MULTI-LAYER APPROACH: GENERAL CASE

The mathematical algorithm which follows solves the
problem of deriving an Ohm’s law type expression for the
transpiration rate in the general case of a multi-layer model
represented by Fig. (1). This algorithm was developed
by Lhomme (1988a,b) for application to multi-layer
micrometeorological models describing the vegetation-
atmosphere interaction. It can be extended to multi-layer
models of soil-plant water transfer in the way detailed
below.

For each node in the electrical circuit, assuming no
water storage, the following conservation equation can be
written

Tri— Tris1 = 5Tr,' (17)

where 7T7;is the upper vertical flux, T7;4+ is the lower ver-
tical flux and 877; is the lateral flux which enters the roots.
Expressing the fluxes in Eqn. (17) in terms of driving
potentials and resistances, following Eqns. (2) and (4),
leads to

¥,oit1 = 0¥, + bW, i + 6, (18)
with
a; = 1- b,' — ¢
bi = —ryilry i (19)

6= "7x,i/rsr,i
From this recurrent formula it can be proved (see
Appendix B) that the following relation holds for any sub-
script ¢

34

i—1
¥, = 0¥, + B (roTn) + D &Y, (20)

j=l

where the coefficients o, f5; and &/ are calculated by means
of the recurrent formulae given in Appendix B (Eqn. B7).

Substituting Eqn. (20) into Eqn. (2) and putting &= -1
leads to

0T, = ~(o; / 1, ), — (B, / 7, 1:0T1y)

NG 21)
=1

Introducing Eqn. (21) into Eqn. (5) yields

Tro[l +10 B/ rs,,f]

i=1

= _(i o/ r,,’i]‘f’, - i 2(3" /n )Y, (22)
i=1

=l j=1

Noticing the following formal identity between coefficients
€ (see Appendix C)

S @, =SS @ @)

i=1 j=1 =l j=i

and defining

” n n

A=Y o /r, B=Y B/r, E==-Y &/r,; (24
i=1 i=1 =i

the total flux of transpiration can be rewritten as

Tn(l+1,0B) = Y E¥, — AY¥, (25)
i=1

Parameters A, B and E involve only the elementary resis-
tances (75, 7,; and r,;). They have the dimensions of a
conductance (reciprocal of a resistance). We will put

rp=(+roB)/ A ¥ =Y E¥,/A4 (6

i=1

7y has the dimensions of a resistance and ¥ represents a
weighted mean of the water potentials of each layer because
A = Z=1E; This last relation can be easily proven by giving
the same value to all the driving potentials in Eqn. (22). In
this case Trg is equal to zero, which implies the above equal-
ity. Therefore, Eqn. (25) can be rewritten as

Try = (W5 - ¥o)/r5 27)

Consequently the total transpiration rate can effectively be
expressed in the form of an Ohm’s law analogy, which
confirms the legitimacy of van den Honert’s equation in a
multi-layer representation of root water uptake. The effec-
tive soil-plant resistance 7y, and the effective soil potential
¥, do exist and are calculable by means of the recurrent
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formulae derived above, which are fairly easy to implement
on a computer. The coefficients o, f§; and & are calculated
by the recurrent algorithm (B.7), and A, B and E; by Eqn.
(24).

However, it is worthwhile considering the possibility of
deriving approximate expressions for the effective parame-
ters, because, in the practice of soil-plant-atmosphere
water transfer modelling, simpler models are often used to
describe the soil-root interface.

APPROXIMATE EXPRESSIONS

For instance, in the SiSPAT model (Braud ez al., 1995),
xylem resistance 7,; which is smaller than root radial
resistance 7,; by about two orders of magnitude (cf. sec-
tion devoted to Numerical Results ), is neglected and the
water transfer occurs through parallel resistors. Other
models are based upon a bulk approach in which the soil
root interface is represented by only one layer with the
mean properties of the entire soil-root profile (Rose et al.,
1976; Lynn and Carlson, 1990).

(i) Multi-layer approach: case of parallel resistors

If xylem resistance is disregarded, all the root potentials
¥, are equal to ¥, ), and the whole circuit is equivalent
to parallel resistors. In this case derivation of effective

parameters is straightforward. Combining Eqn. (5) with
Eqn. (2) leads to

Iy = i(l}’n - 'Ilr,l)/'}r,.‘ = ilPs, /’}r,.' - 'Pr,lil/’;f,;
i=1 i=1 i=1

(28)
which can be transformed into

Tr = I:[i‘}’;; /?;,,,»)/(2 1/ Ky,;]— 'Pr,ljlzn: /% (29)

i=1 i=1

Trp being also equal to (¥,1 — ¥,)/r. 0, this means that

e e
'.'vp - rx,O + %y

with 7=1/31/r,  (30)
i=1

and

v = [Z ¥,/ rs,,,)/[ﬁl/ } Gy

=1

(1) One-layer or bulk approach

When the soil-root system is represented by only one
layer, the equivalent electric circuit consists of four bulk
resistances (r?, r,%, r,” and r, o) put in series between an
effective soil water potential ¥¢ and a canopy water
potential ¥, (Fig. 2). The transpiration rate is written as
Tro = (¥Yi— Wo)/rp with =i+ rk+rh+r0Q32)

These resistances can be easily calculated from the formu-
lae derived above (Eqns. (10), (11) and (16)). Using the
same symbols, the bulk soil resistance reads as

7t = —In(nARD)/(4nK*RDz,) with

K? = Kl Vsar/ FP/7*2 (33)
K? being the bulk hydraulic conductivity of the soil layer.
The bulk root and xylem resistances read as

7%= p,/(RDz,) and b= p,z,/(RD,cos® @) (34)

When the root density and soil water potential profiles are
known, the effective soil water potential can be logically
expressed as a weighted mean of the soil water potential of
each layer in the following form

e = [Z RDiaz,ﬂ,,J/(i RD,-&,-) (35)
i=1 i=1

The soil water potential is weighted by the root density
mutliplied by the layer thickness (Federer, 1979; Jones ez
al., 1982; Zur et al., 1982).

¥
'{l"
mean canopy height
% rx’o
] soil surface
Tro ]
Tro é e
—_—
soil layer
— A AAA
Y o R ¥,

Fig. 2. Electrical analogue of water transfer processes within the soil-
root system: particular case of the bulk (or one-layer) approach.

Numerical results

The purpose of this section is to evaluate numerically,
with respect to the true solution given by the general algo-
rithm, the performance of the approximate expressions of
the transpiration rate presented in the previous section: (i)
the parallel resistors approach, (ii) the bulk approach. The
following standard conditions have been chosen to carry
out this assessment. The root depth z, is 2 m. The num-
ber of layers n is 20 with a constant thickness 6z; = 0.10
m. The canopy water potential ¥, (in fact the stem
potential) has a constant value of —1.2 MPa and the stem
resistance is neglected (7,0 = 0). The root characteristics
(1, pr and p,) and the soil characteristics (K, ¥4 and )
are assumed to be known with constant values that do not
vary with depth. They are given in Table 1: the root radius
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Table 1. Base values of the variables and coefficients used in the numerical simulations (see Appendix A for the significance of each

symbol).

Ko Wear b 71 Pr Px @ ¥x,0
6.3 X 10+ —0.003 7.1 10~ 5 X 1010 100 0 0
m?s ' MPa™! MPa m - MPasm? MPasm* degree MPa s m™!

r1 is 0.1 mm (value given by Abdul-Jabbar et al. (1984) for
alfalfa); p, and p, are taken to be respectively equal to 5 X
10! MPa s m2 and 10'© MPa s m™, which correspond
roughly to the average of the values encountered in the lit-
erature. The values retained for the soil hydraulic para-
meters Ky, ¥, and b are those corresponding to a sandy
clay loam in the classification given by Clapp and
Hornberger (1978).

In the simulations only root density (RD;) and soil water
potential (‘7 ;) vary with depth. The root density profile is
described by a polynomial function of depth z

RD(2) = dyz" + . . . + diz + dy (36)

where 4; ({ = 1 to n) are adjusted coefficients. Two simple
cases are considered in the simulation process: (i) the root
density profile is constant from the soil surface to the root-
ing depth 2, with a value of 10* m root/m? soil; (ii) the
root density profile decreases with depth from RD(0) =
2 X 10* m m™ to RD(z,) = 0. (In both cases this means
that d,>1 = 0, di = (RD(z,) — RD(0))/ 2, and dyp = RD(0)).
These values of root density are in agreement with the
experimental data given by Jones ez al. (1982) for soybean
or Abdul-Jabbar et al. (1984) for alfalfa. For the sake of
convenience, the density function of primary root RD,
(Eqn. 16) is arbitrarily taken as half the value of the root
density function (RD,=RD/2) and the primary root angle
to the vertical @ is set to 0. The vertical distribution of soil
water potential is also parameterized in the form of a poly-
nomial function of depth z

Pi(z) =ez"+ ... +teizt e 37

Only two linear cases are analysed here: (i) a linear
decreasing profile from ¥(0) = —0.1 MPa to ¥i(z,) =-1.0
MPa, and (ii) a linear increasing profile from ¥y(0) = -1.0
MPa to ¥(z,) = —0.1 MPa. This means in both cases that
en>1 = 0, g = ¥(0) and e; = (¥i(2,) — ¥i(0))/z,. These
conditions are summarised in Table 2. With the units cho-
sen (MPa for water potential and MPa s m™! for the ele-
mentary resistances 7y, 7,; and 7, ;) the flux of transpiration
is expressed per unit area of soil as m* m2 571, To obtain
the flux in W m2 (the most commonly used units in
micrometeorology) it must be multiplied by the latent heat
of vaporization (2.4 X 10° ¥ m73). Figs. 3 and 4 show the
variation with depth of elementary resistances 7, 7,; and
7,i in two different conditions (case 1 and case 2, Cf. Table
2). Xylem resistance r,; is generally two orders of magni-
tude lower than root resistance r,;. Both increase when
root density decreases. Soil resistance r;; varies with soil
moisture and root density, and is one to three orders of
magnitude lower than 7,;.

The results of the numerical simulations are shown in
Table 3 for the four cases considered in this analysis. The
method denoted by A is the complete multi-layer approach
which takes into account the three types of elementary
resistance: soil resistance, root radial resistance and root
axial resistance (Eqns. 26 and 27). Method B is the sim-
plified multi-layer approach which does not take into
account root axial resistance (Eqns. 30 and 31). Method C
is the bulk or one-layer approach (Eqns. 32 and 35). For
the standard conditions simulated methods B and C pro-
vide estimates of the effective soil water potential which
are fairly close to the true value given by method A, but

Table 2. Root density and soil water potential profiles for each of the four cases considered in the numerical simulations.

Case 1 Case 2 Case 3 Case 4
Root
density Constant profile Decreasing linear profile
profile
(m m3) RD(0) = RD(z,) = 10* RD@0) =2 X 10%, RD(z,) =0
Soil water Decreasing Increasing Decreasing Increasing
potential linear profile linear profile linear profile linear profile
profile ¥(0) =-0.1 Y(0) =-1.0 Y(0) = -0.1 ¥(0) = -1.0
(MPa) Y (z,) = —-1.0 Y(2,) = -0.1 Y (z,) = -1.0 ¥ (z,) = 0.1
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Resistance (x 10° MPa s m™)
0.01 0.1 1 10 100

0.00 t t t

0451 i fo

0.95 +

(w) z pdeg

1.456 +

1.95 +

Fig. 3. Variation of soil, root and xylem elementary resistances r,;,
ryi and ry; (Eqns. (10), (11) and (16)) as a function of depth in
the conditions corresponding to case 1.

Resistance (x 10°MPasm™)
0.01 0.1 1 10 100 1000
0.00 + 1 t t

0.45 i fel o

0.95 +

(w) z pdeg

145 +

1.95 1

Fig. 4. Variation of soil, root and xylem elementary resistances ry,
ty,i and ry; as a function of depth in the conditions corresponding to
case 4.

the estimates of the effective soil-plant resistance 7, are
not as good. Method B underestimates the soil-plant resis-
tance, which leads to a systematic overestimation of the
transpiration rate (up to 48%), whereas method C overes-
timates 7y,?, which generates a systematic underestimation
of Tr (up to 59%). Consequently, neither the parallel resis-
tors model, which neglects xylem resistance in the multi-
layer approach, nor the bulk model, which considers only
one soil layer, can offer reliable alternatives to the com-
plete algorithm of method A.

Conclusion

Starting from a multi-layer description of the soil-plant
interaction, which accounts for soil, root and xylem ele-
mentary resistances, it has been proved that the total flux
of water withdrawn from the soil by the goots (i.e. the
transpiration rate of the plant canopy) can be expressed in
the form of an Ohm’s law. This means that the van den
Honert equation holds at canopy scale. Explicit mathe-
matical expressions have been obtained for the effective
resistance 7, and the effective soil water potential ¥y (see
Eqn. 1): r,° is a combination of the elementary resistances
making up the multi-layer model and ¥y is a weighted
mean of the water potentials in each soil layer, the weight-
ing system involving the complete set of elementary resis-
tances. Simpler representations of soil-plant interaction
leading to Ohm’s law type formulation of the transpiration
rate have been examined: a simplified multi-layer repre-
sentation (B), in which xylem resistance is neglected, and
a bulk approach (C), in which soil-root interaction is rep-
resented by only one layer; and numerical simulations have
been carried out to assess the performance of these simpler
models. It appears that both approaches do not provide the
values obtained from the correct algorithm. Model B sub-
stantially overestimates transpiration, which means that
xylem resistance cannot be neglected, even if it is two

Table 3. Estimates of the effective parameters (¥ and ry,°) and of the transpiration rate (77) obtained by different methods (A, B, C)
in the four experimental conditions detailed in Table 2. ¥¢ is the effective soil water potential and 7, is the effective soil-plant resis-
tance. (A) is the reference method based on a complete multi-layer approach; (B) is the method based on a simplified multi-layer
approach with parallel resistors; (C) is the bulk (or one-layer) approach. The canopy water potential ¥, is set to be equal to —1.2 MPa.

Case 1 Case 2 Case 3 Case 4

Y A -0.49 -0.56 -0.37 -0.65
(MPa) B -0.55 -0.55 -0.40 -0.70

C -0.55 —0.55 —0.40 -0.70
T’ A 3.6 X 10° 3.6 X 106 2.9 X 106 2.9 X 106
(MPa s m™) B 2.5 X 108 2.5 X 106 2.5 X 106 2.5 X 108

C 6.5 X 108 6.5 X 108 6.5 X 10 6.5 X 10°
Tr A 469 419 686 451
(W m2) B 621 (+32%)* 621 (+48%) 765 (+12%) 476 (+6%)

C 239 (—49%) 239 (—43%) 295 (-57%) 184 (-59%)

* Between brackets is the relative error made on the estimation of the transpiration rate, method A providing the reference value.
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orders of magnitude lower that root radial resistance.
Model C systematically underestimates the transpiration
rate (of about 40—60%), which implies that the one-layer
approach is not an accurate model of water transfer by
roots either.

. As a concluding remark, and at the risk of denegrating
the significance of the results obtained, it is worthwhile
pointing out that the legitimacy of this analysis rests essen-
tially on the current understanding of the physics of water
uptake by the roots. This understanding assumes that
water transfer, through an elementary path within the soil,
the root cortex or the root xylem, follows an Ohm’s law
analogue. There is still debate in the literature on the true
nature of the elementary processes involved, and many
cases of non-linearities between flow and driving forces
have been encountered: e.g. osmotic effects in root water
uptake, flux-dependent root resistances (Passioura, 1984;
Steudle, 1994). A physically-correct model of elementary
water transfer within the roots may ultimately differ from
Ohm’s law analogy and invalidate the analysis performed.

Appendix A: definition of symbols

A parameter representing a combination of elementary
resistances (m MPa™! s71)

a; dimensionless parameter defined by Eqn. (19)

B parameter representing a combination of elementary
resistances (m MPa! s71)

b dimensionless parameter in the relation K = f(¥,)
(Eqn. (9))

b;, ¢; dimensionless parameters defined by Eqn. (19)

E; parameter representing a combination of elementary

resistances (m MPa™! s71)

K soil hydraulic conductivity (m? s~ MPa1)

K, soil hydraulic conductivity at field saturation (m? s1
MPa1)

m; number of primary roots crossing soil layer i per
unit area

0; water flow entering the roots in layer / per unit area
(=6T7) (m® m2 s71)

1 root radius (m)

rn distance from which water flows to the roots (in
Eqgn. 8) (m)

r;;  soil resistance (from the soil matrix to the root sur-
face) of layer / (MPa s m™)

tri  root radial resistance (through the root cortex) of
layer i (MPa s m™1)

Tsri =7yt r,; (MPas m™)

ry;  root axial resistance (through the root xylem) of

layer i (MPa s m™)

ry®  effective resistance to water transfer from soil to
canopy (MPa s m™1)

RD; root length density in layer 7 (m m™)

primary root length density in layer ; (m m™3)

Tr;  vertical flux of water which leaves layer / through
primary roots (m® m=2 s7!)

Tro  total root water uptake (m3 m=2 s1)

¢;, B; dimensionless parameters calculated by Eqn. (B.7)

Oz;  thickness of soil layer ¢ (m)

OTr; flux of water extracted by the roots in soil layer
per unit area (m® m=2 s7!)

&  dimensionless parameter calculated by Eqn. (B.7)

v volume of root per unit volume of soil (dimension-
less)

Ps soil resistance per unit root length (MPa s m2)

Pr root cortex resistance per unit root length (MPa s
m?)

Px  xylem resistance per unit root length (MPa s m™)

¥, canopy water potential (in the stem below the first
leaves) (MPa)

¥,  soil water potential (MPa)

¥,  water potential of root xylem (MPa)

Y  effective soil water potential (MPa)

Y+ soil water potential at field saturation (MPa)

(0] mean angle of the primary roots to the vertical
(degree)

Appendix B: derivation of eqn. (20)

The root water potential in the first layer ¥, is linked
with the bulk canopy water potential ¥, by

¥o1= ¥+ rnoTn B.1)

where Try is the total transpiration rate which passes
through the shoot and 7, is the xylem resistance of the
stem. ¥, and ¥, ; are easily calculated from Eqn. (17) as

¥2=(1-c) ¥ + alrepTrg) + a'¥1  (B.2)
W3 = [aa(l — c1) + b2l + (aza1 + b2)(re0Tro) + a2e1'¥ )
+ 0¥ (B.3)

Eqns. (B1), (B2) and (B3) suggest that ¥,; can be written
in the general form

i—1
¥, = o, + BrgTn)+ D &%, (B4
j=1

To prove the validity of this relationship we suppose that
Eqn. (B4) is true for 7 and /~1 and we demonstrate it also
holds for i+1. Using Eqn. (18) ¥,,;+1 can be written as

¥ i = (@0 + oy ), + (aB; + 5,3, )r.oTh) +

i—2
+z (a8 + bieij—l)'fls,j + “isf_l'f’s,i—l +¢¥,; (BYS)

=1

which means that ¥, ;41 can be written in the same form
as ¥,

¥ i = G+ Bua(iaTn) + D ¥, (B.6)
7=l

and that Eqn. (B4) holds whatever the value of 7. The coef-
ficients @, B and &, which are dimensionless, are calculated
by means of the following recurrent formulae
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O = a0 + 50,
B =apb;+bB,

el5™ = ael +hel,

A (B.7)
g1 =ag +a,
3f+1 =¢;
the first coefficients being defined as
og=1 Bi=1
n=1-q ph=au &= (B.8)

Appendix C: derivation of eqn. (23)
We define
Xi= (8{/ 7o) Wsj (C.1)

The terms X/ (with j < 7) can be arranged in the form of
the following (# X n) triangular square matrix, i referring
to the row and ; to the column

X} 0 . 0 e 0
X} X5 1 0
X! X2 X 0
XL D ¢ X, e X

The double sum which appears in the left hand side of
Eqn. (23) can be rewritten as
= z X/
=1

SS represents the sum of all the elements of this matrix
and §,; is the sum of the elements of row 7. The same
summation can be performed by summing the elements by
column instead of row. In this case we have

=2x;;

k=i

$§=35, with S, (C2)
i=1

$§=3'5,, with S, (C.3)

Since the summation by row should give the same result
as the summation by column, the following equality holds

S8 = ZZX’ = ZZXk

=1 j=1 =1 k=i

(C.4)

which means that

3 /5%,

=1 j=1

=Y e/ (©)
i=1 k=i
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