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Abstract

The theory of the geomorphological unit hydrograph (GUH) is examined critically and it is shown that the inherent assump-
tion that the operation of the drainage network may be modelled by a corresponding network of linear reservoirs so restricts the
instantaneous unit hydrograph (IUH) shape that the effects of further restrictions, reflecting the constraints imposed by the geo-
morphological laws of the channel network, cannot easily be identified. Without such identification, the geomorphological unit
hydrograph theory is untestable and must remain only a plausible hypothesis providing an indication of a two-parameter I[UH
whose shape and scale factors must still be related empirically to appropriate catchment characteristics.

Introduction

The geomorphological unit hydrograph (GUH) arises in
the context of attempting to relate the instantaneous unit
hydrograph (IUH) of a catchment to the geometry of the
stream network and, ideally, to some expression of flow
velocity or stream length, so that the IUH may be synthe-
sized from information contained on a topographical map
or, by extension, from the general relations observed in the
geometrical configurations of stream networks, relations
known as the geomorphological laws. The concept is pre-
sented as an alternative to the traditional method of seek-
ing empirical relations between measures of IUH scale and
shape and appropriate catchment characteristics, by the
regression of the former on the latter, and the use of such
relations, once established, to predict the IUHs for
ungauged catchments. In fact, however, there is no way in
which the empiricism of the traditional method can be
avoided. The geomorphological relations do not contain
the necessary information to determine the scale of the
IUH which, of course, is very much more important than
the shape, nor can the scale be determined without
recourse to a measured velocity or some observation of
delay time on the actual catchment, or by establishing an
empirical relationship with some catchment characteristic
or combination of characteristics, such as catchment area
and/or slope. In the absence of such a relationship for the
scale, the GUH theory is, necessarily, restricted to being a
theory of IUH shape—a matter of relatively little practical
importance and one concerning which any hypothesis
would be difficult to verify, due to the difficulty of obtain-
ing reliable expressions of the IUH shape empirically.

The original papers on the geomorphological unit
hydrograph (Rodriguez-Iturbe and Valdés, 1979; Gupta et
al., 1980) were expressed, quite unnecessarily, in proba-
bilistic terms, the IUH becoming the frequency distribu-
tion of the arrival time at the outlet of a drop of water
randomly precipitated on the catchment. Each channel
element, similarly, was assumed to produce a random
delay time expressed as an exponential distribution, and
channels of one order were assumed to discharge into
channels of equal or higher orders [in Strahler’s (1952)
sense] randomly, in proportions determined by the geo-
morphological ratios. This model was shown by Chutha
and Dooge (1990) to be equivalent to representing the sur-
face drainage system by a network of linear reservoirs hav-
ing the same two-dimensional configuration as that of the
actual network of channel elements, with some assumed,
not observed, relationship between the reservoir coeffi-
cients and the channel elements of different order. Thus,
the necessity for the expression of the GUH model in
probabilistic terms was avoided and henceforth the GUH
could be discussed in classical hydrological terms.

In these terms, the GUH theory attempts to relate the
shape, as distinct from the scale, of the IUH to the catch-
ment by making two assumptions, viz.,

1) The IUH of a network of channel elements is equiva-
lent to that of a network of linear reservoirs (as the
analogous network, corresponding in two dimensional
configuration with the actual network of channel ele-
ments), which bears some prescribed relationship
between the reservoir storage coefficients and the phys-
ical characteristics of the channel network. [The form
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- of the relationship prescribed varies between different
authors. Some authors would have the reservoir coeffi-
cients proportional to the channel element lengths
(Gupta et al., 1980; Chutha and Dooge, 1990) and
others would assume the reservoir coefficient to be
equal to the channel element length divided by a rep-
resentative velocity (Rodriguez-Iturbe and Valdés,
1979). The velocity and the constant of proportionality
provide a measure of the GUH scale which is unde-
fined by the theory and it is implied that such a
measure would be determined from records or mea-
surements or from established regression relationships
with catchment characteristics].

2) The geomorphological laws restrict the IUH shape in a
manner which persists through the analogy. The man-
ner by which these restrictions operate can therefore be
found by imposing the corresponding restrictions on
the network of linear reservoirs and computing the
resulting IUHs.

It is evident that the validity of the second assumption (the
restriction of the IUH shape and its persistence in the
analogy) depends critically on the validity of the first. If it
can be demonstrated that the analogous network always
yields an ITUH of moderate positive skewness (resembling
in general shape virtually all empirically derived unit
hydrographs of short rainfall duration), such agreement
alone would not provide evidence for the second assump-
tion. Indeed, the closer the similarity of shape exhibited by
IUHs obtained from different networks of linear reser-
voirs, the less the prospect of predicting the effects on
IUH shape of variations in the network. This even applies
to those restrictions imposed in response to the geomor-
phological relations of the stream network through the
analogous network. Hence, it is of the greatest importance
that the validity of the first assumption (that the analogous
network responds like the physical one) be tested; yet this
assumption is often made uncritically.

The gamma distribution GUH

Chutha and Dooge (1990) showed (inter alia) that, for net-
~works conforming to the geomorphological relations, the
IUH shape for the corresponding network of linear reser-
voirs closely resembled the two-parameter gamma distrib-

ution
-1 (z " _[i]

where # is a dimensionless shape parameter, and the prod-
uct nk is a scale parameter corresponding to the mean
delay time of the IUH.

This form was suggested by Edson (1951) as a general
IUH equation and later shown, by Nash (1957), to be the
exact impulse response of a single cascade of equal linear
reservoirs and, by Nash (1960), to be a good approxima-
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tion to the IUH of a similar cascade of linear reservoirs not
restricted to equality of the storage parameters.

It would be a mistake however to interpret the work of
Chutha and Dooge (1990) as showing that the geomor-
phological laws, per se, provide the source of this restric-
tion. It is part of the thesis of the present paper that the
restriction derives mainly from the first rather than the
second GUH assumption and, to this end, extensive sim-
ulation experiments were carried out.

The simulation experiments

To demonstrate the extent to which the first GUH
assumption alone determines the IUH shape, the work
described in -detail in the appendix was undertaken.
Networks of linear reservoirs of different complexity were
generated, as seen in Figs. 1 to 3. These have different
‘levels’ (as defined in the appendix) and random construc-
tion according to rules which tended to produce mainly
tree-like structures, but without constraints related to the
geomorphological ratios. Runoff from contributing areas
was represented by random distributions of input at the
node points and these were routed through the network to
produce the IUH at the catchment outlet. Dimensionless
shape factors, m; and ms3, respectively the second and third
dimensionless moments of the IUH, were found and plot-
ted in Figs. 5 to 9. It is evident from these figures that the
points so obtained, each corresponding to a different sim-
ulation, tend to lie close to the curve corresponding to the
gamma distribution, indicating that the IUHs of branch-
ing systems of linear reservoirs constructed randomly, but
without any restriction deriving from the geomorphologi-
cal laws of channel networks, exhibit convergence similar
to that observed by Chutha and Dooge for the ITUH of
networks, in which such restrictions were imposed. Two
consequences would seem to follow:

1) Convergence of the IUH shape factors to the limited
regions indicated by figures 5 to 9 is a consequence of
the first, rather than the second assumption of the
GUH theory.

2) Because of this convergence, any real effects on the
IUH shape imposed by the geomorphological ratios can
be transmitted by the GUH model only insofar as these
lie within the restrictions imposed by the first GUH
assumption. That is, the effects of the geomorphologi-
cal restrictions can be shown on the shape factor dia-
grams only as a further restriction of the limited
regions.

It is, therefore, necessary to test the GUH assumptions
very carefully. Unfortunately, such a test of a natural law
relationship would be extremely difficult; evidence of
necessity as well as sufficiency would be required. As a
working hypothesis, however, providing the basis of a
practical tool of applied hydrology, sufficiency alone would
be required, i.e., does the model provide an adequate



expression of the IUH shape for use in a convolution with
an effective rainfall record? In principle, a test of suffi~
ciency might be attempted using two alternatives: directly
by a one to one comparison of actual and model IUH
shapes, or indirectly, by comparing the accuracy of repro-
duction of the observed flood hydrograph with a synthetic
hydrograph obtained by convolution of the actual effective
rainfall with the IUH whose shape is provided by the
GUH theory and whose scale is determined from observa-
tion.

Direct comparison of actual and model TUH shapes
would, however, be very difficult. Identification of the
IUH from the rainfall-discharge records in which it is
embedded involves de-convolution, a process which is as
unstable as direct convolution is stable. The first casualty
of such an operation would be the shape of the IUH.
Furthermore, uncertainty of baseflow separation, defini-
tion of effective rainfall and neglect of non-uniform spatial
distribution of rainfall all add to this difficulty. Experience
suggests that IUHs derived from different events on the
same catchment exhibit almost as much variation in shape
as those obtained from events on different catchments.
The indirect method of testing for sufficiency by compar-
ing observed and computed flood hydrographs, would also
prove difficult to apply because the process of convolution
of the IUH and the effective rainfall so dampens out the
effect of the IUH shape that significant differences in the
hydrograph do not usually result from even substantial
variations in IUH shape, as distinct from scale. For this
very reason, of course, it is far more important that the
scale, rather than the shape, be determined accurately
when the IUH is used simply as a practical tool for gen-
eration of storm runoff.

Discussion

Pending such tests of adequacy as a model of the IUH
shape, and the very much more important matter of pro-
viding a satisfactory hypothesis for the IUH scale, the
GUH theory must be regarded as an untested hypothesis.
In the meantime, it would seem that little generality would
be lost by a assuming a two-parameter distribution (such
as the gamma for the IUH) and the subsequent regression
of the scale and shape parameters on appropriate catch-
ment characteristics—that is, the traditional method.

The simulation results of Figs. 5-9 may, however, pro-
vide a suggestion of a hypothesis for IUH shape.
Comparison of these figures indicates that, as the level of
complexity of the simulated network increases from 2 to 6,
the cluster of points representing the shape factors moves
further down the gamma distribution curve towards the
origin of the diagram, suggesting a relationship between
catchment complexity and the IUH skewness.

The geomorphological unit hydrograph — a critical review

Conclusions

The theory of the geomorphological unit hydrograph does
not provide a causal link between the geomorphological
laws and the dynamic response of a catchment to rainfall.
Crucially, the theory fails to address the matter of IUH
scale and, in the matter of IUH shape, it relies critically
on an untested hypothesis.

The indication of a restricted GUH shape, as demon-
strated by the results of the simulation studies reported in
the appendix, derives from the assumption that the
dynamic operation of the catchment may be modelled by
a network of linear reservoirs. The shape is, thus, not a
unique consequence of the geomorphological constraints
on stream network patterns.

As a basis for establishing an empirical relationship
between the IUH and the catchment, the GUH theory
would, in practice, be equivalent to the assumption of a
general IUH equation described by a gamma distribution
or similar functional form whose parameters must subse-
quently be related by regression (or otherwise) to appro-
priate catchment characteristics.
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Appendix

The construction of synthetic random networks of linear
reservoirs of reasonably ‘tree-like’ shape is described
herein. Dimensionless moments of the corresponding
instantaneous unit hydrogrpahs are obtained and are
shown, through shape factor diagrams, to conform closely
to those of the gamma distribution IUH, which is the exact
impulse response of a single cascade of equal linear reser-
voirs. Thus, little extra generality of IUH shape is implied
by the network compared with the single cascade of equal
reservoirs and therefore little further restriction is imposed
on the IUH by further restricting the network of reservoirs
to reflect the geomorphological restrictions on the channel
network.

THE CONSTRUCTION OF RANDOM STREAM
NETWORKS AND THEIR REPRESENTATIONS BY
NETWORKS OF LINEAR RESERVOIRS

Fig. 1a shows a simplified stream network which forms the
basis for constructing random stream networks with tree-
like shapes.

In Fig. 1a, the network consists of three streams num-
bered (1), (2) and (3). The points shown by circles and
labelled A, B and C are the nodes, points of origin or
points at which two streams join to form a single stream.
It is assumed that not more than two streams combine at

3
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(a) (b)
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Fig. 1. A simple second level stream network and its representation
by a network of linear reservoirs.

a single node. Each stream receives inflows at its upstream
end from its own contributing area and/or from the feed-
ing streams.

In the present work, each node is assigned a level equal
to the number of streams through which drops of water
starting at that node must pass before reaching the catch-
ment outlet. Thus, nodes B and C are second level and
node A is first level. The stream network is likewise des-
ignated by a level equal to the maximum of the node lev-
els therein. Thus the network of Fig. la is second level.

If each stream of the network of Fig. la is represented
by a linear reservoir of storage coefficient &;, the network
can be represented by three cascades of linear reservoirs
connected in parallel (Fig. 1b); w; denotes the contributing
area for stream ¢ (: = 1,2,3, in turn).

Third level stream networks can be constructed from
second level networks by adding two extra streams at
either or both second level nodes B or C. Addition of a

(a)

Catchment outlet

single stream at B or C would, of course, only locate the
node further upstream without changing its level.
Likewise, fourth level stream networks are constructed
from the third level networks by adding extra streams (two
per node) at the third level nodes and so on.

To illustrate how a third level network can be con-
structed from the second level network of Fig. 1a, assume
that the extra streams are added at node C only. The
resulting network is schematically shown in Fig. 2a. Two
other possible third level configurations could be obtained
by adding extra streams at node B, and at both nodes B
and C.

Similarly, fourth level networks can be constructed from
the network of Fig. 2a by adding extra streams at either or
both third level nodes (i.e. E and F). Fig. 3a displays an
example of one of the possible configurations of the fourth
level network obtained by adding two streams to the net-
work of Fig. 2a at node E. :

Generally, the number of possible network configura-
tions increases with the level of the network.

In the random construction used herein, networks of
level (L) are constructed from those of the preceding level
(L — 1). In doing so, random decisions are made on how
many, and at which of the (L — 1)-t% level nodes the extra
streams join. The level of the network is chosen a priori,
the number of nodes 7, (from 1 to Nz) to be expanded
is chosen randomly with equal probability among the inte-
gers (1 to Ny1). The selection of n; nodes is determined
by random choice, each node not already chosen having
equal probability of being chosen.

Networks so constructed tend to be well-conditioned or
‘tree-like’ but, exceptionally, unlikely configurations may
also be obtained. To complete the network, it is necessary
to assign weights (») proportional to the direct contribut-
ing areas of each stream element, and to determine the

Il
(b}
W, A K, K,
L A
Wy k, ks K, ks
1 1 1 1
K, k, k, k,
3 Y v v
|
Catchment outlet

Fig. 2. An example of a third level stream network and its representation by a network of linear reservoirs.
(Note that each path in Fig.2(b) consists of a cascade of reservoirs, not necessarily equal, with inflow only at the upper end.)
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Fig. 3. An example of a fourth level stream network and its representation by a network of linear reservoirs.

storage coefficients £;. Obviously, only relative weights and
k ratios are required. For the contributing area ratios, a
sequence of real positive random numbers is selected from
a uniform distribution in the range [0,1]. These are then
standardized by dividing each by the arithmetic sum of all.
Likewise, the storage coefficient values, except for that of
the first stream at the downstream end of the catchment
which is taken as unity, are obtained by selecting a
sequence of random numbers from a uniform range [0,1].
The effect of this is that the reservoir furthest downstream
has a coefficient greater than any of the others in the net-
work. This would seem a reasonable, though arbitrary,
restriction for a network representing a catchment
drainage system.

THE INSTANTANEOUS UNIT HYDROGRPAHS OF
THE NETWORKS OF THE LINEAR RESERVOIRS

The IUH of each network of linear reservoirs is found by
routing a delta function of unit volume through the net-
work. The unit volume is distributed among the various
pathways (each of which is a cascade of linear reservoirs)
according to the relative contributing areas w;. The IUH
of the network is the weighted sum of the IUHs of the var-
ious pathways and can be expressed conveniently as

npath

IUH() = ) wh(s) A1l

where npath is the total number of pathways (i.e. the num-
ber of cascades) and 4,(z) is the ITUH of the i~k cascade.

The r-th moment of the IUH about the origin is also the
weighted sum of the r-#& moment of the IUHs of the var-
ious pathways and can be expressed as

npath
U; = 2 w; .‘U;

i=1

(A2)

where ;U, is the r-th moment of the impulse response
function of the i-t4 pathway.

THE MOMENTS OF THE IUH

The moments about the time origin, or about the centre
of area, provide useful descriptive parameters of the
instantaneous unit hydrograph. The r-tA moment U, of
the IUH about the time origin is defined by

oo

f £ h(e)dt
U=t

= (A3)
I h(t)dt \
0

and the r-t4 moment U, about the centre of area by

_[(t _UY k)t
—_— 0

U, = (A4

]: h(t)dt
0

where 4(1) is the ordinate of the IUH at time ¢.
The standard formulae relating moments about the ori-
gin and about the centre of area are (Kendall and Stuart,

1974)

(A5)

w=§@%gﬂy
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ey

From eqns.(A 5) and (A 6), the relationships between
the first four moments about the centre of area and the ori-
gin may be expressed by

Uy = U + (U

(A 6)

Ui = Us + 3U1 U, + (UY)? (A7)
Uy = Uy + 4U1 U3 + 6(UY)? U, + (UY)*

or inversely by
U, = Uy — (Uh)?
Us = U - 3U U, + 2UY)3 (A 8)
U7/= Uy —4U US + 6(UY)? Uz - 3(UY*

COMlARISON OF IUH SHAPES

Nash (1960) proposed a procedure for scale-free compari-
son of the shapes of instantaneous unit hydrographs in
which the second and the higher moments about the
centre of area were expressed as dimensionless moments
(shape factors) by division by the appropriate power of the
first moment about the origin U}. The r-tk dimensionless
central moment m, was defined by

U,
m, = ——
@)

Different instantaneous unit hydrographs were repre-
sented on a shape factor diagram obtained by plotting the
third dimensionless moment m3 as a function of the sec-
ond dimensionless moment

m3 = f(my) (A 10)

A one-parameter instantaneous unit hydrograph would
be represented by a single point on such a diagram while
a two-parameter JUH would be represented by a line seg-
ment and one of three or more parameters by a region or
a number of line segments. Instantaneous unit hydro-
graphs of similar shapes would be represented approxi-
mately by closely related points or line segments or regions
of the diagram. The flexibility, or generality, of a particu-
lar instantaneous unit hydrograph equation might be
judged by the extent of the corresponding region of its
m3:my relationship, the smaller the region the less general
and the more restrictive the equation. Obviously, other
similar shape factor diagrams could be obtained by plot-
ting higher dimensionless moments against the second
dimensionless moment m; and these could also be consid-
ered in such comparison of shapes.

(A9

THE MOMENTS OF THE INSTANTANEOUS UNIT
HYDROGRAPH OF A CASCADE OF UNEQUAL
LINEAR RESERVOIRS

For a cascade of #, not necessarily equal, linear reservoirs,
the first moment about the origin, and the second and

6

third moments about the mean or centre of area of the cor-
responding TUH are given by

U, = z k (A 11)
i=1

U=k (A 12)
i=1

Uy =2) K (A 13)
i=1

where &; is a positive quantity of time representing the
storage coefficient used in defining the storage discharge
relationship (s;=k;g;) of the i-th reservoir in the cascade.
For such a cascade, the relationship between the third
dimensionless moment 3 and the second dimensionless

moment my can be expressed by the following inequality
(Nash, 1960);

2m% < m3 < 2mi> (A 14)

with
0<m;<2and0<m <1

Similarly, it can be shown algebraically that the relation-
ship between the fourth dimensionless moment 74 and the
second dimensionless moment m; is given by the follow-
ing inequality

3m5+ 6my < my < Im5 (A 15)

with
0<my<9and 0<my <1

The relationship of (A 14) corresponds to the loop in Fig.
4a. The corresponding relationship of (A 15) is shown in
Fig. 4b.

In both figures, the lower boundaries (m3 = 2m3 in Fig.
la and m4 = 3m3 + 6m3 in Fig. 1b) correspond to a cas-
cade of equal linear reservoirs . The corresponding IUH
has an equation of gamma distribution form

z) = L(é)n_l e_(i)

kI(n)

The upper boundaries (m3 = 2m;° in Fig. 4a and
ms4 = 9m3 in Fig. 4b) correspond to a lag and route [UH
(lagging by an amount 7 and routing through a single
reservoir having storage coefficient £) whose equation is

KMy=0 t<T
(=T A l6
=%e['e] t2T ( )

Any cascade of linear reservoirs, without restriction on
relative sizes, with inflow at the upper end only, and dis-
charge at the lower end of the cascade, will have an IUH
represented by a single point within each of the loops of



Figs. 4a and 4b. Further restrictions were given by Nash
(1960) for particular numbers of reservoirs in the cascade.
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Fig. 4. Shape factor diagrams.

RESULTS OF THE SIMULATION EXPERIMENTS

Knowing the contributing areas and the storage coefficient
values for a particular simulation, the first moment about
the origin and the second and third moments about the
centre of area of the IUH of each cascade are found using
eqns.(A 11) to (A 13), respectively. Next, the first three
moments about the origin are found using eqn.(A 7) and,

2.0,

— Limits of the cascade of unequal reserviors
1.81 + Polnts corresponding to simulated networks

1.6f
1.4]
1.2
1.0f
0.8¢
0.6f
0.41

0.21

0.0 " , . 4 : ) . . )
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

m,

Fig. 5. The mz:my diagram for simulated second level networks.
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1.8¢ + Points corresponding to simulated networks
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-
°

0.0 " L L L . L L ,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

m,

Fig. 6. The m3:my diagram for simulated third level networks.

— Limits of the cascade of unequal reserviors
+ Points corresponding to simulated networks

0.0 . A . ) L ' N . )
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

m,

Fig. 7. The mz:m; diagram for simulated fourth level networks.

finally, the moments of the IUH of the network about the
origin and centre of area are found utilizing eqns (A 2) and
(A 8).

For a given network level, the mj:m; relationship was
examined for ten thousand different simulations of possi-
ble network configurations. Figs. 5 to 9 show the relation-
ships for random networks of levels two to six. Inspection
shows that, for each of the chosen levels, the m3:m; rela-
tionship extends over a very limited region of the plane,
close to the line corresponding to the gamma distribution
model. It is clear that the extra complexity of the more
general network is not reflected in a significantly greater
generality of IUH shape than that of the simpler gamma
distribution model.
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1.8¢ + Points corresponding to simulated networks
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Fig. 8. The mz:my diagram for simulated fifih level networks.
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Fig. 9. The mz:my diagram for sixth level networks.
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Fig. 10. m3:my diagram for different numbers of linear reservoirs in the cascade after Nash (1960).
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