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Abstract

A new probabilistic interpretation of at site rainfall sequences is introduced for the development of a stochastic model of rain.

The model, is divided into two sub models; the first one describing the total number of rainfall spells within a window of
time is described by a Polya process in order to reproduce better the variable probability of occurrence of rainfall during storm
events (due to the presence of different numbers of rainfall cells); the second sub model, conditional on the first one, describes
the total quantity of rainfall in the time window, given a number of rainfall spells.

The probabilistic rainfall model, which has shown interesting properties in reproducing the probability distribution of
observed data at time scales ranging from one hour to twenty-four hours, may be the basis for a number of applications which
include the development of a conditional stochastic generator of rain, within the frame of real-time flood forecasting, and the
derivation of a probabilistic distribution of rainfall extremes at the various time scales.

Introduction

In order to interpret observed rainfall time series, several
authors have used the assumptions of Poisson arrivals of
rainfall spells associated with a probability distribution of
rainfall quantities (Todorovic and Yevjevic, 1969; Gupta
and Duckstein, 1975). Other models use two stage
processes to represent the different transition probabilities
between rainfall/rainfall, rainfall/no-rainfall, no-rainfall/
rainfall and no-rainfall/no-rainfall conditions (Woolhiser
and Pegram, 1979; Smith and Karr, 1983; Foufoula-
Georgiou and Lettenmaier, 1987; Smith 1987). Others,
again, are based upon the Neyman-Scott model (Kavvas
and Delleur, 1981; Rodriguez-Iturbe ez al, 1984
1987a,b,c; Cowpertwait, 1994) better to account for the
physical features of rain fields. For a detailed description
of the point models see also Cox and Isham (1980),
Waymire and Gupta (1981a,b,c) or Rodriguez-Iturbe ez al.
(1987a).

Rainfall records are generally available as totals sampled
at fixed time intervals (e.g. one hour, three hours, twenty-
four hours); this, together with the need for relatively
short horizon rainfall forecasts (from twelve to twenty-four
hours) conditional upon the latest observations, motivated
the development of the discrete-time model.

The advantage of the proposed formulation lies in the
analytical derivation of the probability distributions of
rainfall totals from which, when short forecasting horizons
are needed as in the case of real time forecasting, the con-

ditional distributions can be obtained directly using the
conditional probability theorem.

The model is based upon the concept of a time window,
that is a window of fixed time length within which a num-
ber of time intervals Az can be rainy or non-rainy.

To develop the model, it is assumed that the knowledge
of the number of rainy intervals is informative on the total
quantity of rainfall while the total quantity of rainfall is not
informative on the number of rainy intervals; the same
amount could be originated by short duration severe
storms or longer duration low intensity precipitation.
Therefore, it is possible to treat separately (a) the proba-
bility of rainy intervals and (b) the probability of rain totals
conditional upon the number of rainy intervals. Similarly
to what was done by Thompson (1984) in the case of
monthly rainfall totals, the model is thus derived in two
stages: the first one is the derivation of the probability dis-
tribution of the number of rainy time intervals within a
time window of specified length, while the second one is
the derivation of the probability distribution function of
the total quantity of rain, conditional upon the number of
rainy intervals in the time window.

The derivation of the mixture -
distributions

Suppose that a sufficiently long record of rainfall is avail-
able and that it has been divided into windows of length
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nAt . For each window, the number of rainy time intervals
d, with 0 < d <, is computed. If one assumes that P,, the
probability of no rainfall occurring in one single interval of
time Az in a window of length nA¢, is constant in time, the
following Binomial distribution:

Prld | Py} = [Z)Po""’(l -P)*

should reproduce the observed frequency distribution of
the number 4 of rainfall spells in a window of length ».
When there are no clouds in the sky the probability of
rainfall occurring is far lower than when the sky is covered
by thick clouds or when it is already raining, and so the
time invariance of P,, and the validity of Eqn. (1) is called
into question. In Fig. 1, the frequency of 4 (varying from
0 to 6) obtained by using data for the raingauge station of
Fornacina in Tuscany is shown for a window of 64
(4t = 1 hour) together with the probabilities computed
according to the Binomial model of Eqn. (1): the mismatch
is evident and the same results have been found for a num-
ber of rainfall records from different parts of the world.
An alternative and more plausible model to (1) is now
derived.

M

DERIVATION OF A NEW MODEL FOR THE
NUMBER OF RAINY SPELLS IN A WINDOW OF
TIME

Given the results shown in Fig. 1, it seemed reasonable to
define a new probabilistic model in which the Binomial
model expressed by Eqn. (1) is assumed valid only when a
value for P, is known, i.e. it is taken as a model conditional

upon P, . Given the uncertainty on P,, it is necessary to
consider it as a random variable which is assumed to be
distributed according to a Beta distribution between 0 and
1, that can be written, for a window of length # as:

I'(r, +s

n) .Por”_l(]. })0):,,—1

S @Bl 7s,8,) = TITG)

@

where parameters 7, and s, are dependent on the window
size n. The choice of the Beta distribution, a natural con-
jugate prior of the Binomial distribution, is not really
binding because the Beta is formed by a very wide family
of distributions and is quite adequate to reproduce the
shape of the distribution of a quantity such as a probabil-
ity.
The new model can then be derived as:

P 1 ry,,} = [ PrlalPo )Py 15,00

! I'(r,+s,) T(n—d +r)T(d +5s,)
d' (n—d) T'(r,)T(s,) I(n+r,+s,)

€)

with two parameters 7, and s, that have to be estimated
from the observations.

This model, which corresponds to observing an average
process combination of an infinite number of different
Binomial processes owing to the assumed variability of P,,
is the classical Polya urn (Feller, 1970; Ord, 1972) process
model, a non-markovian non-stationary birth process,
extensively used for representing the spread of contagious
diseases, where the probability of possible new ill people
increases with the number of observed illness cases.

The consistency of the model hypotheses with the data
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Fig. 1 Comparison between frequencies of rainy spells in a window of 6 hours, observed at Fomacma gauge (solid line) and

computed using the Binomial model (dashed line).
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Fig. 2 Comparison between frequencies of rainy spells in a window of 6 hours, observed at Fornacina gauge (solid line) and

computed using the Polya process model (dashed line).

can be seen in Fig. 2 where the results of the probabilistic
model are plotted as in Fig. 1. These results are presented
here to justify the approach taken but are dependent on
the estimation of 7, and s,,.

DERIVATION OF THE MODEL OF RAINFALL TOTALS

It is common practice to assume that, when sampling on
sufficiently small time intervals the rainfall quantity x is
distributed according to a negative exponential distribution
with parameter 6:

fx)|0,n=1)=6% Vx>0 4)

A more complex problem is to derive the probability dis-
tribution of the rainfall totals for a number # of intervals.

Several probability distributions conditional upon the
sampling interval have been proposed for the non-zero
daily or hourly rainfall amounts. Todorovic and Woolhiser
(1971) and Richardson (1981) used an exponential distrib-
ution, but Skees and Shenton (1974) and Mielke and
Johnson (1974) suggested that the exponential distribution
has a thinner tail than the one observed in the 'daily
amounts. The mixed exponential distribution was explored
by Smith and Schreiber (1973), Woolhiser and Pegram
(1979), and Roldan and Woolhiser (1982), among others.

The probability of ¥ = 0 in windows of length #, can
easily be derived from Eqn. (3) for 4 = 0, given that when
the total amount of rainfall x is equal to zero, also the
number of rainy spells 4 must be null.

Pr{x =0|n}=Prid =0|n,r,s,}
_ T, +5,)(n+7r,)

T T()T(n+7, +5,) ®)

On the contrary, when x > 0, the probability of the rain-
fall totals can only be derived if a probability density func-
tion of x, conditional upon 4 and #, can be derived. To do
this, the probability distribution of the sum of 4 indepen-
dent, equally distributed negative exponential random
variables is first expressed as a Gamma distribution:

edxd—le—e,,x
—n "

')

where 0, is a parameter which depends on the window
length #. To obtain the probability density of the rainfall
totals, according to rainfall observations, Eqn. (6) is
assumed to be valid for all », once the value for 6,, which
represents the inverse of the average rainfall total in the
time window, is known. In other words, it is assumed here
that, conditional upon the knowledge of the value for 6,,
the rainfall quantities falling in the different time intervals
are independent and identically distributed: this hypothe-
sis is known in statistics as ‘exchangeability’ (Berger,
1985). The fact that the rainfall quantities do not appear
to be independent is expressed here by the assumption
(similar to what was done for the probability of the num-
ber of rainy intervals) that what is really observed is the
result of a mixture of different processes, all expressed by
equation (6), but each with a different value of the para-
meter 6,, which is now taken as a random variable dis-
tributed according to a natural conjugate prior of the
Gamma distribution, that is 2 Gamma distribution on 6,:

f(x18,,d,n) = (6)

n @b, =1 24,485
end e

by
Qi
0, 1d,n,84,,05,) =—
f0,1d,n,a:,b,) TG,

)

Equation 7 expresses the fact that the growth rate of the
inverse of the average value of 6, is a function of two sets
of parameters 44, and b;, which are a function of the
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number of rainy spells 4 and of the dimension of the time
window #. The actual distribution for the rainfall totals is
then derived as the expected value of the mixture of dif-
ferent processes. For x > 0 the following expression is
therefore obtained:

S 1y a8,) =
[ 100d,mr®, 1d,n,,.,0,.)08, =
8,y 4,0 81,) ®)
where:

Td+b) s
T(@)T() (a + x)**

g(x,d,a,b) = &)

The resulting expression is in practice another special

case of the Generalized Beta of the Second Kind (GB2), -

which was also found by Mielke and Johnson (1974) to be
appropriate for rainfall modelling, the parameters of which
are here expressed as a function of 4 and #.

Given Eqns (3) and (9), the derivation of the proba-
bilistic model of rainfall totals in a window of length nA¢
is now straightforward:

é) f(x | n)rmsmﬂd,mbd,n) =

Prid =0 |n,r,,s,} x=0

D Prid | 7, 5,38(x,d 0,0, 000) x>0 (10)

d=1

For x > 0, the probability distribution function of the rain-
fall totals conditional upon the number of rainy time inter-
vals can be derived by integrating Eqn. (8) to give:

F(x | d)”7rnysn)ad,n1bd,n) =

[ietndsaun iy = 6y, D)

b+i
I'(d+b) a
F(d)]"(b)z( D ( i Jb+z (a+x)
(12)
Using Eqns (3) and (12), the probability distribution func-
tion of the rainfall totals in a window of length nA¢ can
also be derived as:

Prid =0|n,r1,,s,}
F(x | nvrmsmad,mbd,n) =
d=1
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Prid =0\ nr,s,} + Y Prid | n,1,,5,)G(x,d,a,,,b, )

The dependence of the model parameters on the win-
dow size 7 gives rise to a potentially intractable parameter
estimation problem. However, this can be resolved by tak-
ing advantage of the scaling properties of rainfall.

The parameter estimation problem

The model represented by Eqns (10) and (13) requires the
estimation, for each window length 7, of the two parame-
ters 7, and s, required for the definition of the probability
distribution of 4 given #, and, in addition, 2z parameters
a4y and by, are required to define the probability distrib-
ution of x conditional upon 4. The number of parameters
required to define all the window lengths from / to # hours
is np = 2n + 2n(n + 1)/2 = n2 + 3n. For instance if
n = 24 the number of parameters to be estimated becomes
n, = 648.

Fortunately, as reported in several works on the fractal,
or multi-fractal, nature of rainfall (Lovejoy and
Mandelbrot, 1985; Lovejoy and Schertzer, 1993; de Lima
and Bogardi, 1995), the scaling properties of rainfall can be
used to reduce the number of parameters. In addition,
although Maximum Likelihood (ML) would have been the
most appropriate estimation technique, the large number
of available observations (in this case > 26,000) made it
unnecessary and allowed the method of moments to be
used, thus avoiding ML computational complexity. As a
result, only three moments and three scale parameters are
needed for all the possible time scales (or values
of n) at which the validity of the model can be proved. The
estimation of r, and s, at all time scales can thus be
reduced to the estimation of one moment and one scale
parameter, and the estimation of a;, and bin can be
reduced to the estimation of two moments and two scale
parameters.

SCALE INVARIANCE PROPERTIES

Sampling the rainfall records on the basis of increasing size
windows, a scale effect can be observed, both in terms of
number of rainfall intervals and of rainfall totals. Figures
3 and 4, where the increasing order moments of variables
d and x are presented as a function of the natural log of #,
show the following properties:

— The growth of the first order moment (both of 4 and )
is linear as a function of #.

— The growth of all moments (both of 4 and ¥) is linear as
a function of the natural log of the window dimension
n, allowing for the variability of moments at high values
of n.

(13)
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PRECIPITATION AT PORRETTA
Moments of Number of Rainy Spells
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Fig. 3 Increasing k-order moments of number d of rainy intervals versus In n, with n the size of the time window.

— All the moments of 4 are identical when n = 1, because
in that case the series becomes a succession of zeroes and
ones and therefore 0¢ = 0, 1* =1,

After analyzing several rainfall records, it has been found
that a very general expression can be used to reproduce all
the #* order sample moments, namely m® | at the differ-

ent time scales (values of #) as a function of the sample
moments estimated for » = 1:

m® =m® n k=1
m® = m®, e Durol-nl p 5 g (14)

where % and v are parameters. Fig. 5 shows the relation-

o

PRECIPITATION AT PORRETTA
Moments of Rain Totals
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Fig. 4 Increasing k-order moments of rainfall totals x versus

In n, with n the size of thé time window.
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PRECIPITATION AT PORRETTA

Slope of Moments of Rainy Spells — GObserved
-+ Computed
‘o e
d // -1
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Slope in Log Space
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Order of Moment

Fig. 5 Comparison between observed (solid line) and modelled (dashed line) scaling function of . equation (14) for increasing
order moments of d, the number of rainy spells.

ship, expressed by Eqn. (14), which was derived for  ship found for 1, stnctly lmémv cerreaponds 0 a ﬂpecxatl
the moments of 4 while Fig. 6 shows the one derived for  case with v = 0.

the moments of «; it should be noted that, in both cases, For the reduction, of the, ,number of the rainfall modql
the explained variance is over .9999 and that the relation- parameters the scalmg prgpertles of the first two, momenl;s

PRECIPITATION AT PORRETTA
Slope of Moments of Rain Totals — Observed

-+- Computed

Slopes in Log Space

2 2 4 6 8 10
Order of Moment

Fig. 6 Comparison between observed (solid line) and modelled (dashed line) scaling function of equatzon (. 14) Jor increasing
order moments of x, the rainfall totals.
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in terms of 4 and the first two in terms of x are necessary
and can be expressed as follows:

—
=
=

)

Myl = M= B
@ _

My = md|n=1 n'*® (15)
o _ .0

mxln - mxln-l n

(16)
2
m = my n'*?

The two parameters « and B can easily be estimated by
means of the following least squares fitting based upon the
second order moment. In the case of « this gives :

N
2
. 2 @ 1
min 2 [m§|)n - mdl)n i m] 17)
¢ n=1

with N a sufficiently large integer (in this paper N was
taken as 24), and where m,(f,),, is defined as:

1 .
bo=—) di 18
O n 2 i (18)

n, being the number of non-overlapping windows of
length # in the record and d; the number of rainy spells in
the generic window.

Similarly, B is estimated by minimizing

mmZ[mﬁL mGy T (19)

with: | &
mp=— Y 20)

» =1

x; being the rainfall total in a generic non-overlapping
window of length #.

ESTIMATION OF THE POLYA PROCESS
PARAMETERS R, AND S, BY THE METHOD OF
MOMENTS.

The Polya process parameters 7, and s, can be performed
by matching moment estimates given by Eqn. (15), to the
expected values of the number 4 of rainy time intervals in
a window of length #, and of its square:

ns,

E{d = —t—
{d|n} v +5)
1
E dl - ” f,, +ﬂ($,, + 21
wlin=q +s,,)[r,,+s,,+1 @
to give:
@ nsy
T e s)
m§2|)n=1”1+a _ s, r, +n(s, +1) (22)
(r,+s,)| r,+s,+1

The values of the two parameters for » > 1 are then
obtained as:

(l—mﬁ?ﬂ )n® —n)
mdln (n=1)—-(n*-1)
Mipue1)(n® = 1)
mdln- (n=-D)-@*-1

S

23)

n

For the case of n = 1, Eqn. (23) are undetermined and so
de ’Hépital’s rule is used to take the limit for » — 1 to
give:

(1= m)@ =1

n = hmr m
Mjjp=1 — O
. my, (o —1
5 =lims, = d'(—"l)l(——) 249
n—1 mdln- -

It is worthwhile noticing that the ratio between the two
parameters: -

)
te _ 1 — e
o i @)
n d|n=1

is constant and therefore independent of #.

ESTIMATION OF PARAMETERS 44, AND bd,,, BY THE
METHOD OF MOMENTS

To estimate the parameters of the probability distribution
of the rainfall totals conditional upon the number of rainy
spells, it is necessary to reduce their number; therefore,
two simplifying hypotheses have to be formulated. The
first is that the parameter 5, is constant for a given win-
dow of length #, so that only the variability of the expected
value of 6, is taken into account. The second is that there
is a relationship between the expected values of the para-
meters 6, and 4. After several trials, a suitable form for
this relationship has been found to be:
1 1
B4} ==
This hypothesis corresponds to the following growth of
the first order sample moment of x with :

(26)

1 1 1
a(:l)d s = J(rl)d LndY+ (27)

In practice it allows for a linear growth of the first order
moment of the rainfall totals with /# 4, similarly to what
was observed as a function of #, but at larger rate, since
only the rainy spells are accounted for in this case, after
elimination of the zero events.

On the basis of this assumption, a value for y can be
derived by means of the following weighted least squares
fitting, where the weights will account for the different
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Fig. 7 Hourly precipitation recorded at Porretta (1990—1991-1 992).
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Fig. 8 Comparison between the observed frequencies (solid line) and the probability of rainfall 0ccurrénces estimated using

equation (3) (dashed line), for n = 6, 12, 18, 24.

levels of probability Pr{d|n,r,sn} as well as for the differ-
ent numbers of samples (1/# is proportional to the num-
ber of non-overlapping windows in the record):

N

minz‘l Pr{d | n,r,, s, (mS O )
v d=1

n 2ld,n “Mxld=1n
n=1 (28)
Given v, the estimation of the parameters 2, and &, can
be performed by matching the sample moment estimates
given by Eqn. (16), to the expected value of the total

quantity of rainfall ¥ in a window of length #, and of its

square:

Ege |y < 2B 1)

E{s* |n} =

which gives:

b, -1
aL[E@ | n} + E@™ | m)]
(bn - l)(bn - 2)

29)
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o mf E@* |} =) Prid|nr,,5,1d",
T LB
n (30) L :
1 where Pr{d|n,r,,s,}d* is given by Eqn. (3) as a function of
b, =1+ . 7, and s,, one obtains:
with ¢, defined as: o = ”mﬂ)ﬂl
—1_ (m3,)* E@™! | ) + E@Y? | m} c,,z Pr{d | n,r,,s,}d"!
' m, (EW@d™! | m)* 31) =
. , b=1+1 (32)
Finally, substituting for mﬂ),, and for m,f,a, from eqn. 16, Cy

and bearing in mind that E{d*|n} can be estimated as
376
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(mnr) ZPr{d | 7,7,5,3d*7(d +1)

c, =1- n'P

2
& {EPr{d In, r,,,s,,}d*“] ¢3)

Finally, under the stated assumptions, @4, and b,;,, can

then be derived as: _
a5, = a,d’
bd,n = bn (34)

Summary of parameter estimation

The results can be now summarized. On the basis of the
model hypotheses and of the scaling properties, all the
parameters relevant to the different time windows are in
fact be expressed in terms of the five parameters 75,84, @n,bn
and g which can be explicitly derived from three moment
estimates: m{},.1, m{,_,, m%,_,, relevant to windows of
duration 1A¢, plus the three parameters: «, B, v, which

reflect the scaling properties of the rainfall records.

Application of the proposed model

The model assumptions have been tested on several rain-
fall records, but, for the sake of clarity, only data from a
single recording raingauge, the station of Porretta, located
in Central Italy on the Appennines, are used for illustrat-
ing the properties of the proposed model. A three year
(1/1/71990-31/12/1992) long record of hourly sampled
rainfall (see Figs 7, 8, 9) was used to estimate: m,(11|)”=1,
m£1|),,=1, mf,zl),,=, , & B, 7y Using these parameters,
the values for 7, s,, a, and b, were computed and used to
evaluate the probability of the rainfall totals in increasing
size windows.

Figures 10 to 13 compare the probability of rainfall
occurrences estimated using Eqn. (3) and the observed fre-
quencies for n = 6, 12, 18, 24 hours, while Fig. 9 shows a
comparison between the observed cumulated frequencies
of the rainfall totals and the probability distribution of eqn.
13 for n = 1, 3, 6, 12, 18, 24 hours.

The results show, at all time scales, an extremely high
degree of agreement between model and observation.

Conclusions

The analytical model presented in this paper, which takes
advantage of the time scaling properties of rainfall to
reduce the number of model parameters to six, has repro-
duced the observed rainfall frequencies at all time scales
ranging from one hour to twenty-four hours. Its proba-

bilistic formulation allows for the development of a condi-
tional probability model at the different time scales;. this
can be used either for the calculation of the expected con-
ditional probabilities and conditional moments or for the
generation of traces of rain, conditional on the latest obser-
vations, within the frame of real-time forecasting applica-
tions. At present research is being carried out in order to
develop the at-site conditional generator as well as its
multi-site version.

Finally, given that the proposed model performs
particularly well in the tail of the distribution, research has
being conducted in order derive the probability distribu-
tion of yearly maxima of precipitation from one hour to
twenty-four hours, starting from the assumption that the
probability distribution of rainfall at the different time
scales is known and given by the model: interesting early
results were found and will be reported after additional
extended testing.
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