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Abstract

A new approach is developed for the specification of the plotting positions used in the frequency analysis of extreme flows, rain-
falls or similar data. The approach is based on the concept of maximum likelihood estimation and it is applied here to provide
plotting positions for a range of problems which concern non-standard versions of annual-maximum data. This range covers the
inclusion of incomplete years of data and also the treatment of cases involving regional maxima, where the number of sites con-
sidered varies from year to year. These problems, together with a not-to-be-recommended approach to using historical infor-
mation, can be treated as special cases of a non-standard situation in which observations arise from different statistical

distributions which vary in a simple, known, way.

Introduction

The uses of plotting positions in the context of frequency
analysis of annual maximum flow and rainfall data are
well-known: see, for example, NERC (1975, Section 1.3)
and Stedinger ez al. (1993, Section 18.3). In the standard
situation, where the assumption of statistically indepen-
dent and identically distributed observations can be made,
plotting positions can be used in four ways:

(a) informal, graphical estimation of a distribution func-
tion;

(b) formal fitting of a parametric distribution function;

(c) informal assessment of how well a fitted distribution
matches the data;

(d) formal testing of the fit of a given parametric family of
distributions.

The assumptions involved in the standard situation are
plausible enough to cover a wide range of applications of
plotting positions in hydrology. However, there are a num-
ber of potential applications for which the assumptions are
no longer plausible, but for which it would be nice to be
able to derive the equivalents of plotting positions which
would then be potentially available for the above uses.
This paper develops a way of calculating plotting posi-
tions which are appropriate for situations in which the
observations, while still independent, are no longer identi-
cally distributed. Such non-standard situations arise in a
number a practical problems and two simple examples are
outlined in the next paragraphs: discussion of these exam-
ple is continued later. It will be obvious that, for a

plotting-position procedure to be meaningful for non-
identically distributed observations, the assumptions
adopted must be such as to provide both a strong connec-

, tion between the distributions of individual observations

and a clear definition of the specific distribution to which
the plotting positions are to relate and, of course, they
must be realistic for the situation being modelled.

EXAMPLES OF NON-STANDARD SITUATIONS

Consider the analysis of annual maximum floods or rain-
falls in a case where records for some years are incomplete.
A standard approach is to discard the records for such
years unless data are available for ‘most’ of the year. In the
latter case, the incompleteness of the year is effectively
ignored: the maximum value found in the available record
for that year is treated exactly as if the record were com-
plete. It may be possible to argue that the maximum value
observed in the available portion of an incomplete year of
record has distribution function F*, where F is the distri-
bution function for maxima in complete years and where s
is the fraction of the year covered by the record. One could
argue for this on two bases. Firstly, one could say that,
since the distribution functions of maxima over 1, 2, 3,
...yearsare F, F2, F3 .. . the distribution for fractional-
record years should be of the same form. Secondly, one
could start from a ‘peaks-over-threshold’ approach to
deriving the distribution of annual maxima, which yields
the form F* for fractional years if the assumption of non-
seasonality is made. It also yields the same form, with a
version of s based on relative rates of occurrence of events,
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if seasonality is allowed in the event-occurrence process
but not for the event-sizes.

Thus, in the case of annual maxima for possibly incom-
plete years, an appropriate model might be to say that a
given observation arises from distribution function F,
where s is a known value measuring completeness of the
data-record for the given year and where s = 1 for a com-
plete year. The problem is to assign to the observations a
set of plotting positions appropriate to the underlying dis-
tribution function, F, which in this case is the distribution
of annual maxima for complete years. A similar form of
model is also appropriate for the problem of treating
regional-maxima. Here an annual observation would be the
largest daily or instantaneous value observed at any site in
a region. Since the number of sites within a region varies
from year to year, the observations are not identically dis-
tributed but, on the basis of empirical studies reported else-
where (Dales and Reed, 1989), the distribution function of
a regional-maximum can be related to the distribution
function of annual maxima at a single site via a power-
relationship. In this case, the power, s, would be a value
depending on the number and density of the sites available,
with s = 1 for a single-site region so that the underlying
distribution being estimated by the procedures here would
be the distribution of single-site annual maxima.

PrLoTTING POSITIONS

The chapter by Stedinger et a/. (1993) provides a detailed
review of the frequency analysis of extreme events for
hydrological applications and, since this includes coverage
of work on plotting positions, there seems little point in
duplicating this effort here. For practical application in
standard situations, no improvements have been found
over the simple plotting position formulae recommended
by Cunnane (1978).

For present purposes, the question of defining plotting
positions will be taken to mean providing, for each x(r) in
a set of ranked observations {x(¢); i = 1, ..., N}, a value
b» which estimates the value of the ‘underlying’ distribu-
tion function F at x(r). That is,

pr = Flx(n)}. (1)

This interpretation is one of the usual interpretations given
to plotting positions. The alternative interpretation, not used
in the derivations here, is that used to define ‘unbiased’ plot-
ting positions: this requires that p, should be the value of F
evaluated at the mean or median value of x(r) evaluated over
the distribution of possible outcomes. This approach is dif-
ficult in the present, non-standard, case both because of the
non-identically distributed observations and because it
would be necessary to decide whether or not to work with
distributions conditioned on the pattern found in the
ordered list {x(:)} for the different original distributions. In
contrast, the approach via Eqn. (1) is straightforward.
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In the standard situation, a plotting position formula of
the general form

pr=(r—a)/(N + 1 - 2a), 2)

is often used (Cunnane, 1978), where 4 is a constant deter-
mining which one of a variety of specific plotting position
formulae is actually used. Values of 4 in the range 0.375 to
0.50 are usually recommended and individual countries or
organisations typically have specific favoured values. For
example, Cunnane (1978) suggests using the Gringorten
plotting positions, which result from choosing 4 = 0.44, if
the EV1 distribution is likely to be appropriate, and sug-
gests @ = 0.40 as a simple, general purpose choice. Note
that, in a recent review from a statistical viewpoint
(Hyndman and Fan, 1996), the value @ = % is suggested.
The plotting positions derived in this paper for the non-
standard case can not be expressed in a simple explicit
formula similar to Eqn. (2), but instead require the itera-
tive solution to a simple non-linear equation.

Even in the standard case, there are no straightforward
theoretically-based procedures for deriving plotting posi-
tions. Theoretical analysis via the unbiased plotting posi-
tion approach indicates that the ‘best’ plotting positions
depend upon the form of the common or underlying dis-
tribution function F. Such results are thus of little use in
deriving plotting positions when, as is usual, the form of
the distribution function is unknown and, indeed, is the
subject of the investigations in which they are to be used.
Guo (1990a) discusses plotting positions specifically tar-
geted at the General Extreme Value distribution, and con-
cludes that the best results are obtained with the simple,
non-distribution-specific, formula in Eqn. (2).

For the non-standard case dealt with here, an approach
based on maximum-likelihood theory has been adopted.
While this theory is straightforward in itself, it does not
provide a direct route to an estimate of the required quan-
tity, as expressed by Eqn. (1): rather, a somewhat arbitrary
modification of the approach has to be made involving the
weighting of estimates of F just below and just above each
observation. It turns out that weights can be chosen in
such a way as to yield identical results to Eqn. (2) when
the approach is applied in the standard case. In the absence
of alternative suggestions, it seems reasonable to adopt the
same type of weights in deriving plotting positions for the
non-standard situation on the basis that the overall proce-
dure will then produce the accepted plotting positions
when applied in the standard situation. The new proce-
dure, while not yielding a simple expression directly com-
parable to Eqn. (2), retains the desirable feature that no
assumption is needed about the form of the underlying
distribution.

One interpretation of the procedure being suggested is
that ‘maximum-likelihood’ is used to guide the combina-
tion of the information provided by the original,
unordered, observations which arise from different-but-
related distributions, while the use of weights is a minor
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but important feature which allows the usual plotting posi-
tions to be recovered in the standard situation. It should
be recalled that the ‘good” properties of the standard plot-
ting position formulae in Eqn. (2) are very often assessed
in a context which emphasises the ‘unbiased’ approach to
interpreting plotting positions. This is not necessarily a
contradiction to the discussion above: any seemingly neg-
ative comments about requirements of unbiasedness for
plotting positions relate only to their usefulness in deriv-
ing ways of calculating plotting positions for non-standard
situations, not to assessing how they perform.

Model Formulation
ASSUMPTIONS

It is convenient to begin by outlining the statistical model
being used. Some practical situations in which such a
model may be appropriate have already been described,
and some further discussion is given later. Note that this
model is only one special case of a class of models for non-
identically distributed observations. Let {X;; i =1, .. .,
N} denote statistically independent random variables cor-
responding to a set of observations {x;}, and let the obser-
vations be complemented by a set of known values or
covariates {s;}, so that the observed data set actually con-
sists of the set of pairs:

D={x,',s,';i=l,...,N}.

The random variables {X;} are assumed to be related to a
common underlying distribution function F in the follow-
ing way: the random variable X = X; with covariate s =
s;, has distribution function F* (ie. the s’th power of F). In
the applications here, the covariates used are proportional
to an underlying notional sample size attributable to each
observation, so that covariate s; refers to a ‘size’ or ‘size
parameter’ associated with observation ;. The distribution
function F is unknown, but the assumption is made that it
has no discrete components. This means that, under the
assumptions of the model, ties have zero probability. For
practical purposes any ties in the x-values may be broken
arbitrarily: however, the results for plotting positions
would depend on how this is done, unless the size para-
meters are also identical. Suppose that the data-set of
pairs, D, is rearranged so that the observations {x;} are in
increasing order, giving the ordered data-set:

D, = {x(),s);i=1,...,N}

The aim of the procedure is to use the ordered data set D,
to calculate a set of values {p;} such that p, estimates F,
evaluated at x(r). Thus the distribution being estimated
corresponds  directly to the value of the size parameter
s = 1. A case in which all the size parameters are unity is
the same as the standard situation of identically distributed
observations. The discussion at the end of this section
indicates a situation in which an alternative to the assump-

tion that an observation has distribution function F* arises
in a natural way: still other forms of relationships between
the distributions of observations are possible.

Application 1: Annual Maxima with Incomplete Records

The arguments presented in the initial description of
this problem suggest that the proposed method should
be useful in taking account of incomplete years of record
in frequency analyses of annual maxima. However, cau-
tion is needed because reliance is being placed on
assumptions or arguments of the type outlined, which
are not required for ordinary annual-maxima analyses.
Particular caution would be needed in the presence of
strong seasonality.

By considering this type of example application, it is
possible to gain an idea of the effects on the plotting posi-
tions that might arise from certain extreme patterns of the
sizes {s;}. In the present application, the sizes are simply
the fractions of a year of record available for each annual
maxima. Suppose that out of the total of N years, N, have
complete data, while the remaining years have records for
very small fractions of the year. Suppose that the pattern
of observations is such that the incomplete-record years
provide the highest observations overall: then one might
expect the assigned plotting positions to be rather similar
to those that would be derived for N complete years. In
contrast, if the incomplete-record years provide the lowest
observations overall, the plotting positions assigned to the
N, complete-record years should be close to those that
would have been assigned if only the complete-record
years had been available. While the approach to calculat-
ing plotting positions suggested here does not lead to
explicit formulae, the approximations presented in the
Appendix tend to verify these speculations.

Application 2: Regional Maxima

The second application suggested in the introduction was
that concerned with regional maxima. In this case the basic
data available consist of a set of values {z;}, where z;
denotes the annual maximum rainfall at site j in year 7.
Here ; denotes the site-number in the full network of sites,
but not all sites are available for every year: let C; denote
the set of sites available for year i. It is assumed that the
values {z;;} have been standardised to remove site-depen-
dent scale effects. Suppose that a new data-set, {,}, is
constructed, consisting of the yearly network-maxima
defined by

x; = max{z;; j € C}.

In practical cases, there is statistical dependence between
the annual maxima for different sites within the same year.
However, a model developed by Dales and Reed (1989)
suggests that the effect of this dependence can be allowed
for by calculating a size parameter, s;, for each year which
provides a measure of the effective number of independent
sites in that year. The values s; depend upon the number
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of gauges, and the effective areal-extent of the gauges, in
the set C; and are calculated according to a simple formula
given by Dales and Reed (1989, Table 8.5). This suggests
that a model for the data-set of pairs {x;, 5;} is that the net-
work-maximum in a given year, «, is the realisation of a
random variable with distribution function F*, where F is
the distribution function of the annual maximum, z, for a
single site. Thus F, the distribution of single-site maxima,
is the ‘typical’ distribution in the terminology of Dales and
Reed (1989).

As part of an analysis of the overall data-set, {z;}, with
the intention of estimating return periods for single-site
maxima, it may be reasonable to consider what informa-
tion about this can be derived from the yearly network-
maxima alone. The idea here is that an analysis of
network-maxima will tend to concentrate more on higher
values of rainfall than does the overall analysis. An exam-
ple of such an analysis would be a graphical display of the
network-maxima using plotting positions relating to the
typical (single-site) distribution F.

Application 3: Historical Data

As is perhaps implicit in Application 1, the model might
be applied to certain types of ‘historical data’, where part
of the information in a data-set consists of one, or perhaps
several, items which specify the maximum values recorded
in certain given (long) time-periods. This type of problem
will not be discussed at length here, since usually other
information about the ‘historical period’ would be available
which should be included in any analysis: this information
might be of the form °. . . and all other yearly values were
below . . .’. The treatment of this type of historical infor-
mation, whilst outside the scope of the model used here,
is discussed by Hirsch and Stedinger (1987), Guo (1990b)
and Stedinger ez al. (1993, Section 18.6.3). Use of the plot-
ting positions derived in this paper is not recommended
for ‘historical data’ unless one can be certain that all of the
information available is represented within the underlying
model.

DISCUSSION

All of the applications outlined here have related to
annual-maxima. The corresponding model for annual-
minima is that an observation with size parameter s has
distribution function equal to 1 — (1 — F)*. Plotting posi-
tions for this case could be developed by a parallel argu-
ment to that employed here, or else via the usual steps that
are used to derive results for minima from those for max-
ima. However, the applicability of this type of model for
the incomplete-record case for annual minima is more
doubtful than for maxima because one would expect sea-
sonality to have a stronger effect. At present, there are no
models for regional extremes of drought indices similar to
those for high rainfalls developed by Dales and Reed
(1989).
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Plotting Positions for the Standard
Situation

As already discussed, the standard case is first examined
separately in order to develop an approach to deriving
plotting positions which match those used in practice. The
approach chosen is based on maximum-likelihood estima-
tion and is developed by considering first the question of
providing an estimate of p = F(x), for a given fixed value
of x: this x is any arbitrary value but, specifically, cannot
be chosen on the basis of the sample data {x,}. The initial
analysis here is fairly standard, but is given in a little more
detail than strictly necessary in order to provide a simple
guide to the steps used later for the non-standard case.

The first step is to write down the likelihood function
of the data, which represents the information contained in
the data-set about the unknown parameter p. Because of
the non-parametric nature of the assumptions being made,
all of the information in the data about p is contained in
the set of indicator random variables {7}, which have
observed values {j;}, where

]i = 1) Xi = x,
=0, otherwise. 3)

In the standard situation the random variables {7} are
independent and identically distributed with

Prob {# =1} = p = F(x). | Q)

Hence the contribution to the likelihood function from the
1’th observation is either a factor of p, if j; = 1, or a fac-
tor of (1 — p), if j; = 0. Suppose now that exactly r of the
observations satisfy x; =< x or, equivalently, j; = 1. Suppose
also that one now chooses to work with the ordered data
x(1), with corresponding indicator variables, j(z): then

j)y=1, i=1,...,r
=0, i=r+1,..., N

Hence the log-likelihood, denoted by L,(p), is given by

L(p) = = log[pP@{1 — p} 5],
=2 log p + 241 log(1 — p), ©)]

where the first summation, 27, is over = 1, . . ., r and the
second, Z,+1,isover i =r + 1, ..., N, and where the value
of the second summation is zero for » = N. Note that this
notation for the summations is used again later. Eqn. (5)
simplifies is an obvious way, but for later purposes it is
convenient to rearrange it as follows.

Li(p) = rlog p + (N — ) log(1 - p),
=Nlog p + (N —1) {log(l — p) - log p}, (6)

It is further convenient to work with a modified form of
the likelihood equation, defined by equating to zero the
expression for p times the derivative of the log-likelihood
with respect to p. This yields

N-(N-n{l/(1-p)} =0. @
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These slightly unusual steps are chosen to give a simple
way of overcoming certain numerical difficulties experi-
enced with the solution for the non-standard situation dis-
cussed later, where an iterative solution technique is
required.

The log-likelihood function is maximised at the value
p = r/N, and the same estimated value for F(x) is found
for any value of x between the observations at rank r and
(r + 1). This means that the estimated value changes from
(r — 1)/N to /N when moving from just below to just
above x(r). In a sense, no estimate is produced for a value
of x strictly equal to x(r), although formally the value /N
could be used. However, it seems reasonable to attempt to
use some compromise between the estimates applicable on
either side of x(r). One possibility is to use a straight-
forward weighted average of the separate maximum-
likelihood estimates. However, the averaging-of-estimates
approach suffers from the difficulty that the results are not
invariant to simple transformations: for example, different
results would arise from averaging estimates of p compared
with working with ‘return-period’ 1/(1 — p), averaging the
estimated return-periods, and converting back to probabil-
ities. Note that, for graphical purposes using an EV1
reduced-variate scale, the transformed variable of principal
concern is the ‘reduced variate’ y = —log(—log »).

An alternative approach is to argue as follows, and work
with a weighted log-likelihood function. The log-
likelihood function L, 1(p) summarises the information in
the data about p for a value of x immediately below the 7’th
observation, while L,{p) summarises the information for a
value immediately above. Thus one could argue for taking
a (weighted) average of the two functions to form an objec-
tive function to maximise in order to define an estimate for
» at a given observation. In the standard case, it turns out
that the estimate obtained is exactly the same as that
obtained by averaging the separate individual estimated
probabilities (with the same weights), but this is no longer
true in the non-standard case. If weights 4 and (1 — ) are
used, the objective function to be maximised is

L) = b La(p) + (1 - b) Li(p),
=Nlogp+ {(N—r+1)+(1-5N-r}
{log(1 — p) — log 2},
= Nlog p + {N~r+b}{log(l -p)—log p}, (8)

which is maximised at p, = (r — )/ N. There is no reason
why different weights should not be used in the estimation
of p for different points x(r): thus # may be a function of
r and N. One way of choosing & is to ensure that the
results produced for plotting positions agree with those
obtained from the usual formula, Eqn. (2). Thus & is
defined by

2= (r—b)/N=(r—a)/(N+1-2a),
which yields
b= {aN + (1 - 2a)r}/{N + 1 — 2a}. )

It can seen that & varies from approximately 4 to (1 — 4) as
7 varies from 1 to N.

Plotting Positions for the Non-
Standard Situation

A special case of the non-standard situation which can be
readily dealt with arises when all of the size parameters are
equal, but not unity: that is, s; = .S for all 7. In this case,
the procedure for the standard case can be used to create
estimates appropriate for the distribution function
{F(x)}%, and these can then be transformed to estimates
appropriate for F(x). For example, the weighted-likelihood
procedure yields plotting positions of the form

pr={(r - b)/N}V5, - (10)

while, depending on the order in which the averaging and
transformations are done; the averaging-of-estimates
approach might yield a formula such as

Pr=0b{(r—1)/N}VS + (1 - b){r/N}/S. (11)

In the more general non-standard situation, the likeli-
hood-based approach can readily be developed in a similar
manner to that given for the standard case. In this situa-
tion, the indicator random variables {;} are independent
but no longer identically distributed. In fact, the indicator
variable 7 for a random variable with size s has

Prob {7 =1} = p = {Fx)}, (12)

where s varies from observation to observation. This
means that, written in terms of the indicators and sizes, j(7)
and s(7/), when ordered in terms of the observations, the
log-likelihood function appropriate to a fixed x for which
exactly 7 observations are less than x, is given by

LAp) = = logl {p0}o{1 - po}150],
= 3 5(0) log p + Sou1 log(l - ), (13)

where the summations are as described following Eqn. (5).
It is convenient to rearrange this to a form corresponding
to eqn. 6: to do this, define N; to be

N; = Zs(s), (14

where this summation ranges over all N observations. In
the case of annual maxima with incomplete years, N; mea-
sures the total overall record length, while for the regional
maxima problem it measures the total effective number of
independent site-years in the data-set. Then the re-
arranged expression for the log-likelihood is

LAp) = Nilog p + 241 {log(1 - @) - 5(3) log p}.  (15)

The expression, corresponding to Eqn. (8), for the
weighted log-likelihood to be used for estimating p at x(r),
is given by

Lp) = b Lia(p) + (1 - b) L),
= Nslog p + b {log(1 — p?) — s(r) log p}
+ 21 {log(1 - p9) - s(3) log p}, (16)
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where the summation Z,+; again ranges over i = r + 1 to
N. Then the modified likelihood equation for the weighted
likelihood can be derived by following the same procedure
as used in treating the standard case: ie. equating to zero
the expression for p times the derivative of the log-likeli-
hood with respect to p. This gives

Ni=b {s(r)/ (1 = pO)} = 21 {s()/(1 - p®)} = 0. (17)

This equation has a simple explicit solution in the case of
the highest observation, » = N, which yields

PN = {1 = b S(N)/ NG/, (18)

In other cases, Eqn. (17) can be solved for p = p, by stan-
dard numerical algorithms. It can be shown that the equa-
tion always has a single solution in the range 0 to 1. Hence,
bisection root-finding procedures or the Newton-Raphson
method can be used. The Appendix discusses a number of
cases in which one can find either explicit formulae or
approximations for the plotting positions.

If a way is required to express the uncertainty with
which the plotting positions can be estimated, then it
seems reasonable to apply the usual likelihood-based tech-
niques to the weighted likelihood function even though it
is not a likelihood function in the usual sense. However, if
the uncertainty is required for incorporating into graphi-
cal displays, then it would actually be preferable to give
this information for the probability, p, associated with any
x, not just the observations. In this case the ordinary log-
likelihood function, Eqn. (15), would be used. It is sug-
gested that confidence limits be constructed so as to
include values of p for which the log-likelihood function is
sufficiently close to the value attained at the maximum-
likelihood estimate, where the criterion for closeness is cal-
culated as one-half times the appropriate percentage point
of the x? distribution with one degree of freedom.

Choice of the Weights b

As in the standard case, a choice for the weights 4 = 4, 5
has to be made. It was found earlier that the weights &
required to reproduce the standard plotting position for-
mulae would vary around the value %, and one possibility
for the non-standard case would be to adopt # = /5 as a
~ standard choice. In the standard case this would yield the
Hazen plotting positions. However, considerable effort has
in the past been devoted to developing plotting position
formulae (Cunnane, 1978) and it seems sensible to try to
take this into account in any procedure developed for the
non-standard case.

On the basis of Eqn. (9), the following choices appear
reasonable:

B = {gN + (1 - 2a)r}/{N + 1 - 2a}; (19)
b® = (4N, + (1 - 2a) 3 5(i) }/{N, + 1 — 2a},
= {(1 = &)N; — (1 — 2a) =41 5(6) }/{N; + 1 — 2a}.
(20)
362

If one considers the case of the plotting position for the
largest observation (r = N), for which an exact solution of
the likelihood equation is known, and which is given by
Eqn. (18), it is possible to conclude that Eqn. (20) provides
a better choice for the weighting coefficient 4 than does
Eqn. (19). In particular, it may be argued that the plotting
position assigned to this observation should be very simi-
lar to that obtained for the largest observation in the stan-
dard case, but where the sample size is counted as being
Nj. According to the non-standard model, the distribution
function of the largest observation is F(x) raised to the
power Ni: this is the same as the distribution function of
the largest of N, observations having the underlying dis-
tribution function F(x). It therefore follows that the for-
mula for 4 should be chosen so that py, given by Eqn. (18),
also satisfies

v~ (Ny—a) /(N; +1-24)
=1-(1-a) /(N; +1-2a). (1)

When Eqn. (20) is used to define b, the result for py is
given by

oy = {1 = (1 - a) (NY/ (N + 1~ 2a) }1/s,

and it is clear that this matches the right hand side of Eqn.
(21), exactly if s(N) = 1, and to a good approximation if
N; is moderately large compared to s(N). It is of course
possible to choose 4 for the highest observation in such a
way that the required plotting position is exactly repro-
duced: this gives

bn.N = [1 = {(Ns — a)/(N; + 1 = 2a)}MIN/s(N).  (22)

While it might be possible to develop an appropriate
extension of this to a more general one for 4,y, there
seems no convincing argument for adopting an expression
of this complexity in preference to the simpler choice
given by Eqn. (20).

Expression (20) for the weighting coefficient was con-
structed on the basis of a simple analogy with Eqn. (9)
which gives the formula for # required in the standard case
to reproduce the usual plotting positions. As before, the
values of & vary in a fairly narrow range as r varies. It
seems that the exact values used for 4 should not matter too
much provided that they are reasonably close to %. In some
sense, the final plotting positions are mainly determined
by the solution of the likelihood equation, rather than
by #.

Given the simplicity of the proposed formula for 5, it is
natural to wonder whether some simple direct formula for
the plotting positions can be found, thus avoiding the
problem of finding the numerical solutions of the likeli-
hood equations entirely. However, there seems to be no
simple, potentially appropriate, formula for plotting posi-
tions which meets the two requirements:

(1) values should be between 0 and 1;
(i) the formula should reproduce the value (N; — a) /(N
+ 1—2a) forr = N.
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Given that the numerical solution of Eqn. (17) is easy, its
use to derive plotting positions can be regarded as reason-
ably practicable. There is only a slight inconvenience
attached to using such numerical procedures which might
be overcome by an explicit formula, if one could be found.

An Example

The following example of the outcome of the procedure
described here for deriving plotting positions has been cre-
ated on the basis of randomly generated data, since then
the ‘true’ plotting positions of the data-points are known,
and can be compared with those calculated using the pro-
cedure. Results for two samples from the same model are
shown in Table 1 so that some appreciation of the random
sampling effects can be gained.

The situation being modelled is essentially that of the
‘Regional Maxima’ application discussed above. In this
instance it is assumed that 20 years of data are available
and that in each year the network-maximum value derives
from 1, 3, 5, . . ., 39 effectively independent sites. The
underlying distribution is considered to be either a uni-
form distribution or a standard EV1 distribution, the cases
being considered in parallel. Thus in year 7, the data value
is either #;, the maximum of s; independent uniform vari-
ates, or x;, the maximum of s; independent EV1 variates.
The usual transformation between uniform and EV1 vari-
ates is used to cover both cases simultaneously. Table 1
shows the results in terms of the variables s(7), etc.,
ordered in terms of x or #. The results use Eqn. (20) to
specify the weights 4, with 2 = 0.44, to correspond to the
Gringorten plotting positions, and they consist of the cal-
culated plotting positions p; and the corresponding EV1
‘reduced variates’ y;. In this case, the “true” plotting posi-
tion of the 7’th ordered observation, u(z), is #(s) since this
is the non-exceedence probability of this value under the
underlying distribution. Similarly, the “true” reduced
variate for the 7’th ordered data point is x(s). It can be seen
that there is a reasonable match between {p;} and {u(s)},
and between {y;} and {x(7)}.

It is of a little interest to note the difference in the
results from the two samples. Each sample resulted in a
different ordering of the sizes {s(?)}, and thus different sets
of plotting positions are suggested in the two cases. As
would be expected, the largest network-maximum values
tend to occur in years for which most sites are operating.

A limited set of somewhat more extensive simulation
studies has been performed for examples similar to that
given here. These have confirmed that the plotting posi-
tions given by the weighted likelihood method behave rea-
sonably, in that scatter plots of the ‘true’ against the
suggested plotting positions or reduced variates are cen-
tred about a one-to-one line, as would be hoped.

Table 1. Results for plotting positions for some simulated
samples of data. Values # and x represent data-values,
while p and y are the assigned plotting positions on uni-
form and EV1 scales, respectively

Sample 1
rank ¢ s(7) u(?) i x(1) Vi
1 7 0.695 0.640 1.012 0.807
2 1 0.738 0.756 1.191 1.272
3 3 0.788 0.806 1.435 1.535
4 9 0.833 0.851 1.699 1.826
5 17 0.853 0.887 1.843 2.121
6 25 0.878 0.913 2.035 2.396
7 33 0.921 0.932 2.502 2.649
8 15 0.936 0.943 2.709 2.836
9 5 0.948 0.950 2.926 2.963
10 11 0.954 0.956 3.049 3.090
11 21 0.973 0.962 3.580 3.245
12 27 0.979 0.968 3.868 3.425
13 29 0.980 0.974 3.923 3.619
14 39 0.987 0.979 4.314 3.835
15 35 0.987 0.983 4.329 4.071
16 31 0.989 0.987 4.537 4.325
17 37 0.992 0.990 4.792 4.624
18 13 0.994 0.993 5.154 4.992
19 23 0.996 0.996 5.518 5.509
20 19 0.999 0.999 7.069 6.558
Sample 2
rank 7 5(7) u(s) i x(t) Vi
1 1 0.562 0.399 0.551 0.084
2 5 0.655 0.707 0.859 1.060
3 9 0.874 0.812 2.006 1.571
4 3 0.876 0.853 2.023 1.836
5 23 0.937 0.889 2.733 2.142
6 15 0.939 0.912 2.762 2.389
7 19 0.942 0.927 2.824 2.580
8 7 0.944 0.937 2.850 2733
9 25 0.962 0.946 3.261 2.898
10 33 0.968 0.956 3.412 3.098
11 13 0.970 0.963 3.484 3.272
12 17 0.974 0.968 3.621 3.427
13 39 0.976 0.974 3.716 3.621
14 31 0.976 0.979 3.727 3.839
15 11 0.991 0.983 4.732 4.048
16 21 0.991 0.986 4.736 4.276
17 35 0.994 0.990 5.037 4.570
18 27 0.994 0.993 5.125 4.949
19 29 0.994 0.996 5.164 5.484
20 37 0.999 0.999 6.945 6.545
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Appendix A: Exact and Approximate
Solutions

Explicit formulae for solutions, or approximate solutions,
to the likelihood equation for the plotting position can be
found in a few special cases. The plotting position, p,, is
the solution to Eqn. (17). Besides those cases outlined
here, there are a few other special cases in which explicit
solutions can be obtained, but they are omitted for brevity.
In particular, if the set of sizes {s;} consists of values all of
which are either a basic size or twice the basic size, then
solution of Eqn. (17) becomes equivalent to the solution of
a quadratic equation, while if the sizes are all either a basic
size or three-times the basic size, then a cubic equation is
involved. Other cases can be found which reduce to the
solution of a quartic, for which an explicit solution could
in principle be given. For present purposes it is convenient
to treat the weight & as if it were constant, rather than
varying with » as it would if the suggested weighting
according to Eqn. (20) were adopted.

Case (i)
Suppose that the pattern of observations is such that,

beyond the K’th ordered value of x(:), all have equal val-
ues of s(7):

s(@) = s(N),
Then, as an extension of formula (18),

p=[1—{b+N-r} s(NY/NJV®, r=K+1, .., N.
(A2)

i=K+1,...,N. (A1)

One would expect this case to arise frequently in problems
for which most of the size parameters take the same value:
for example in Application 1 dealing with incomplete
records for annual maxima, in which case the largest
observations would often arise from complete years,
specifically those with size parameters equal to unity. Note
. that the plotting positions for the highest values do not
depend on the number of the highest ranking values which
share the size s(N).

Case (ii)
As an extension of case (i), suppose that in addition, the
lowest K observations have equal values of s(¢): that is

s =s(1), i=1,..,K. (A3)
Then Eqn. (A.2) becomes

br = [{(r = K = B)s(N)}/ {(N — K)s(N) + K s(1)}]1/*™,
7=K+1,...,N. (A4)
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It can be seen from this that, if s(1) is small compared with
s(N), the plotting positions assigned to the largest obser-
vations will be essentially the same as would have been
produced if the smallest observations had not been
included in the data-set.

Case (1it)
As a different extension of case (i), suppose that the size

s(N) shared by the highest observations is close to zero.
Then power series expansions lead to the approximation

pr=exp{—(b+ N—-1r)/Ngj} = {1-(b+ N-r)/Ng},
r=K+1,...,N. (A.5)

This indicates that the highest observation is given a plot-
ting position which is a distance 4/N; below 1, and that
the next highest observations have plotting positions at
steps of 1/N;. Consider now the K’th observation: an
approximation for the plotting position for this observation
can be developed from the likelihood equation in two
steps. First the contributions of the (K+1)’st to N’th
observations are approximated using

(1 — p*M)/s(N) = —log p, for small s(N),
and then by
—log p = [Hog p*®1/s(K) = [-log{11 - p*®)}1/5(K)
=~ (1 - p®)/s(K), (A7)

where the assumption that  is close to 1 is made. It then
follows that

PN = [1 - {b + N — K}s(K)/ N, V<&,

(A.6)

(A.8)

which shows that the plotting position assigned to this
observation is similar to that which would have been
obtained if the highest observations had all had size para-
meters equal to s(K), apart from a possibly small effect on
the total of the sizes, N,.

The result (A.8) may also be compared with the result
that would be obtained for the K’th observation if the
higher observations, with small sizes s(s), had been
ignored. If the approximation is made that N, is effectively
unchanged, then

prx = [1 = b s(K)/ N ]'/*5.

It can therefore be seen that including high observations
with small values of the size parameter s(s) has a substan-
tial effect on the plotting position of the next highest
observation, compared with the effect of omitting them. In
fact, if the further assumption is made that the highest
remaining observations would have equal size parameters,
then a useful estimate of the effect of omitting the highest
observations can be obtained. Suppose that initial esti-
mates are obtained by omitting the L = N — K highest
observations with equal but small values of s(s). Then the
approximations here suggest that the plotting position that
would be assigned to the highest remaining observation, if
all observations were included, would be close to that

(A.9)
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assigned to the (K — L)’th highest observation out of the
reduced set of K values.

Case (iv)

Suppose that the pattern of observations is such that the
smallest K values of x(¢) all have equal values of s(), and
that in total K™ values share this value of s(7). Suppose that
this common value is very much smaller than all of the
other values of s(s). Then an approximate formula for the
lowest plotting positions is given by

pr={(1-B/(K"+1-n}0 r=1.., K (Al0)

This formula is derived by retaining only the dominant
(lowest) powers of p, assuming p is small, in an approxi-
mation for the likelihood equation.

Case (v)

In a similar way to case (iv), an approximation for the plot-
ting position when p is close to one can be derived by sub-
stituting the leading terms of a power-series expansion in
(1 — p) into the likelihood equation. This yields

pr= {1—(b+N—-r)/Ng, (A.11)

provided that p, is close to 1. A slightly more formal

approach, which involves assuming that p, has a power-

series expansion in terms of € = 1/N, gives
pr={l—-e@+ N-r(l+1e}, (A.12)

where

t, = b{s(r) — 1} + Zp41 {s() — 1}. (A.13)

Here the assumption made in the power-series expansion
is that N; becomes large while (N — r) and the contribu-
tions {s(r), . . ., s(V)} are fixed. Note that, in contrast to
Egn. (A.11), the higher order approximation used for
Eqn. (A.12) shows an effect on the plotting position result-
ing from the ordering of the sizes {s(¢)}, via Eqn. (A.13).
A similar power-series expansion for log p, can be derived.
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