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Abstract

The increasing incidence of groundwater pollution has led to recognition of a need to develop objective techniques for design-
ing remediation schemes. This paper outlines one such possibility for determining how many abstraction/injection wells are
required, where they should be located etc., having regard to minimising the overall cost. To that end, an artificial neural net-
work is used in association with a 2-D or 3-D groundwater simulation model to determine the performance of different com-
binations of abstraction/injection wells. Thereafter, a genetic algorithm is used to identify which of these combinations offers
the least-cost solution to achieve the prescribed residual levels of pollutant within whatever timescale is specified. The resultant
hybrid algorithm has been shown to be effective for a simplified but nevertheless representative problem; based on the results
presented, it is expected the methodology developed will be equally applicable to large-scale, real-world situations.

Introduction

The widespread occurrence of problems associated with
subsurface contamination has resulted in the development
of various methodologies for groundwater remediation. In
designing practical programmes to restore aquifers which
are contaminated by leachates from landfills, illegal tipping
or accidental spillages, groundwater-resource managers
face a wide range of technical options. The choice of which
method is best for a given site is a multi-step decision-
making process that seeks to define, implement and oper-
ate the most appropriate and economical solution to
restore groundwater quality to the standards set by the
regulatory agency.

Probably the most common method of groundwater
remediation that has been applied in practice is the so-
called ‘pump-and-treat’ system (Bardos, 1994); the
abstraction well field is configured to contain and subse-
quently remove the contaminant plume from the aquifer.
Once the flow rate and contaminant concentrations of the
extracted water are determined, a treatment system can be
designed to remove enough of the contaminants to meet
the effluent-quality standards suitable for reinjection or
discharge to the nearest watercourse. When reinjection is
used to dispose of the effluent, an injection well field needs
to be designed to aid the process of isolating the plume
hydraulically as remediation proceeds. Obviously, the
treatment system used to remove contaminants from the
groundwater, the abstraction well field and reinjection well
field are intimately inter-related. Even though this tech-

nology has been developed extensively, it is still difficult
to design a system that will minimise the amount of water
recirculated’ within the contaminated region during the
remediation process (Hoffman, 1993).

When designing a pump-and-treat remediation system,
a manager must decide, among other things, how many
remediation wells to install, where to locate the wells and
what pumping rate to assign to each well. On a more
objective basis, this problem can be defined as the selec-
tion of optimal number, location and pumping rates for the
remediation wells, so that the prescribed residual level of
contaminant is achieved within a given period of time.
This requires the formulation of mathematical models
which simulate both groundwater flow and contaminant
transport, making it possible to predict the effects of
pumping on contaminant movement under various condi-
tions. Moreover, some form of optimization procedure
needs to be incorporated to operate in conjunction with
the simulation model, if an optimal solution is to be
achieved.

In the past, conventional optimization methods have
been used for the design of groundwater remediation
schemes and there exists a large body of literature related
to the applications (Gorelick, 1983; Yeh, 1992, Wagner,
Shamir and Hemati, 1992; Ahlfeld et al. 1995). Typically,
groundwater remediation system designs are formulated as
a mixed-integer programming model involving both con-
tinuous and integer variables. These formulations have
included mixed-integer linear (MILP) and nonlinear
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programming (MINLP) in which the selection of well
locations is regarded as integer decision-variables and the
assignment of pumping rates as continuous decision-vari-
ables. Willis (1976) used MILP to determine the optimal
treatment processes associated with a well field for the dis-
posal, by underground injection, of municipal wastewater
effluent after treatment. Linear programming was used by
Lefkoff and Gorelick (1986) in which pumping, injection
and treatment costs were considered. Here, a linear treat-
ment-cost function was used which essentially models the
cost of a generic solution rather than the actual physical
process. This approach is equivalent to a multiobjective
programming problem using weighting functions which
shift the solution from a well field cost-dominated solution
to a treatment cost-dominated solution. In their dynamic
programming method, Culver and Shoemaker (1992)
assumed treatment costs were linearly related to abstrac-
tion rate but capital costs were not considered. However,
Lee and Kitanidis (1991) included both capital and opera-
tion costs of treatment, pumping and injection in an opti-
mal control formulation of the pump-and-treat design
problem. Sawyer and Ahlfeld (1995) used MILP to mini-
mize the cost of installing and operating a large-scale
hydraulic plume containment scheme. The cost function
included fixed and simplified linear costs of well installa-
tion and operation, respectively. Karatzas and Pinder
(1994) approximated the discontinuous fixed charges by
an exponential penalty coefficient and used an outer-
approximation method to solve a concave nonlinear prob-
lem. Apart from the mixed-integer nonlinear formulation,
these problems typically exhibit non-convexities and
multiple, locally optimal solutions.

Owing to the difficulties in handling integer variables in
the mixed-integer linear and nonlinear problem, ground-
water remediation design problems are frequently simpli-
fied by neglecting the discontinuous variables associated
with the fixed costs of installing wells and treatment sys-
tems which are assumed to be small in comparison with
the pumping costs over a prolonged period. When the
integer variables are neglected in the formulation, the
methods often reduce to a standard nonlinear problem
which can be solved by nonlinear programming (Gorelick
et al., 1984; Ahlfeld, 1990). These methods employ gradi-

ent-based algorithms to adjust decision variables so as to

. optimize the objective function of the model. Such algo-
rithms require computing the sensitivities of state vari-
ables, e.g., head or concentration, at certain locations.
Sensitivities are difficult to programme, as in the case of
the adjoin-sensitivity method, or computationally expen-
sive to generate, as in the case of perturbation methods and
in general, are not particularly robust. Furthermore, the
cost functions of typical groundwater system components
may be either discontinuous or highly complicated, mak-
ing it difficult to calculate or estimate the derivatives of
these functions with respect to the decision variables. As a
result, there is no guarantee that a global optimum of a
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groundwater remediation design model will be found by
non-linear programming methods.

Concerns about the computational burden associated
with field-scale applications, global optimality and the dif-
ficulty of handing discontinuous variables have led some
researchers to continue seeking improved methods for
optimising the design of groundwater remediation
schemes. In recent years, for solving complex optimization
problems, alternative algorithms have been developed that
are applicable to groundwater management problems,
including combinatorial optimization methods such as
genetic algorithms (McKinney and Lin, 1994; Rogers and
Dowla, 1994), simulated annealing (Dougherty and
Marryott, 1990; Kuo et al., 1992; Marryott ez al., 1993),
and neural networks (Ranjithan ez 4/, 1993; Rogers and
Dowla, 1994), etc. These new methods all have a high
degree of inherent parallelism and are readily adaptable to
massively-parallel computers.

This paper demonstrates the applicability of a hybrid
artificial neural network and genetic algorithm for opti-
mising the system design of a groundwater pump-and-
treat remediation scheme. Once the potential sites for
remediation (abstraction and injection) wells have been
identified, an artificial neural network is used to conjunc-
tion with a groundwater flow and contaminant-transport
simulation model to capture the knowledge for predicting
the effectiveness of different combinations of abstrac-
tion/injection sites. Thereafter, a genetic algorithm is used
to identify the optimal pumping regime, with a view to
determining the most cost-effective solution for achieving
the prescribed residual level of pollutant within whatever
timescale is specified.

Groundwater Remediation Design

OPTIMIZATION MODEL FOR GROUNDWATER
REMEDIATION DESIGN

In most cases, pumping greater amounts of water adds to
the expenses of remediation. Therefore, the sum of pump-
ing rates is frequently used as the measure of remediation
efficiency, or surrogate for costs, and taken to be the objec-
tive of the optimization models. The sum of pumping vol-
umes is another commonly used objective function. Both
these objective functions assume a linear relationship
between the amount of water pumped and the cost of
remediation. Other possible choices for the objective func-
tion are the time of cleanup, pumping costs, well con-
struction costs, water treatment costs, or some combination
of these. It is also possible to consider maximization of con-
taminant removal. Here, the goal of the remediation is
often incorporated into the constraints of the optimization
model. Possible remediation goals are hydraulic contain-
ment of the plume, complete removal of detectable conta-
mination, or prevention of increases in down-gradient
contaminant concentrations above a chosen level.



The use of neural networks and genetic algorithms for design of groundwater remediation schemes

As mentioned previously, the integer variables associ-
ated with fixed costs of installing wells -are frequently
omitted from the models, implying that the costs associ-
ated with these factors are small when compared with
long-term operating costs (Ahfleld, 1990). The resulting
designs have been defended as appropriate for remediation
problems where plumes are ill-defined and cleanup periods
are long, since inefficient wells can be removed or relo-
cated after a time. This simplification can lead to designs
that rely on a large number of wells pumping at small rates
over long time periods. However, in an era when remedi-
ation costs are increasing exponentially and remediation
periods are progressively shorter, as a result of chemical,
physical, and biological enhancements to pump-and-treat
systems, these simplifications are no longer warranted and
may lead to inefficient and ineffective system designs as
these fixed costs may have a significant effect on the opti-
mal design.

If the objective function of the design model is to min-
imize the total cost of pump-and-treat remediation of a
contaminated aquifer, including the capital and operating
costs of the treatment system in addition to the abstraction
and injection well fields, the conventional approach would
have been to use a mixed-integer nonlinear model in which
the total cost is defined as:

C = Cost of abstraction and treatment
+ Cost of injection
+ Cost of well installations and treatment plants

Thus, the formulation of the optimal groundwater reme-
diation model may be expressed mathematically as follows:

Agn{F(q, W= D ha)+ c:y,-]} )

ieEul

Where C; is the net present value of the cost for abstrac-~

tion facilities (inclusive of treatment) or injection well
installation; £;(g) is the net present value of the cost func-
tion for abstraction well and treatment operations or for
injection well operation; 7 is the number of wells that can
be considered as remediation wells for injection; E is the
number of wells that can be considered as remediation
wells for abstraction; ¢ = (q1, 42, - . -, gE+I), ¢i is the
abstraction or injection pumping rate at location 7; y = (y,
V2, <+« YE+I), Yi is a binary variable indicating whether the
well is selected at location ¢ which, if selected as a pump-
ing site y; = 1, otherwise y; = 0.

It is assumed that each potential remediation well site
either for abstraction or injection is predefined; thus the
total number of well sites is N = E + I. Therefore, Eqn..
(1) can be rewritten as:

N
Mini Fg,3) = Y {£(a) + C} M
e i=1

The constraints within the design model include the fol-
lowing:

(1) Upper bound on concentration at regulatory compli-
ance points in the aquifer at the end of the remediation
period (0, T)

crigpSec* jeQ, @

where ¢j1(g) is the concentration in the aquifer at location
7 at the end of the remediation period; the computation of
¢j7(q) requires evaluation of the dynamic simulation model
to time T ¢* is residual level of pollutant prescribed by
the regulatory authority; and €2, is a set of locations where
compliance standards are enforced.

(2) Upper and lower bounds on the abstraction and
injection rates k

yidi® <4, <yq i=1,2 .., N ©)
where g#” and g are lower and upper pumping rate
bounds, respectively.

GROUNDWATER FLOW AND CONTAMINANT
TRANSPORT SIMULATION MODEL

The movement, accumulation, and transformation of a
contaminant in an aquifer can be predicated by a simula-
tion model approximating the governing flow and mass
transport equations. For the purpose of groundwater
remediation design, the simulation model is employed to
evaluate the effects of alternative remediation (abstraction
and injection) strategies on hydraulic heads and contami-
nant concentrations at particular locations.

Changes in the aquifer hydraulics as a result of pump-
ing (abstraction and injection) are assumed to be rapid
compared to corresponding changes in contaminant con-
centration, so steady-state flow conditions are assumed in
the aquifer during remediation. If confined flow is
assumed, the physics of the groundwater system can be
captured using a vertically-averaged (two-dimensional)
representation of the coupled partial differential equations
describing fluid flow, velocity and solute transport (Bear,
1972):

) oh 2”
axj [b Jk axk) + & qts(nl) ( )
K.

v, = _Tjk%}: )

0 oc o 1w , ¢
— | Dy — =0, — + — (c - ¢ Y=RZL
% [Dﬂz ax,j %5 0 ;q,(c o(m) | = RS,
(6)

where Einstein’s convention for tensor notations applies to
the indices j and %2 (5, # = 1, 2 designates the two-
dimension coordinates, x1, 42, respectively); b is saturated
thickness of the aquifer; 4 is vertically averaged hydraulic
head; K is hydraulic conductivity tensor; N is the total
number of locations for abstraction/injection wells in the
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aquifer; Dy is tensor of hydrodynamic dispersion coeffi-
cients; ¢; is pump rate (< 0 for abstraction or > 0 for injec-
tion) for pumping well i located at node point, n;; 8(n;) is
Dirac delta function evaluated at nodal point, #;; R is retar-
dation coefficient; v; is j-direction component of ground-
water pore velocity; ¢ is porosity of aquifer medium; ¢ is
contaminant concentration in the aquifer; ¢! is the conta-
minant concentration in water injected or abstracted by
well 4.

Equation (4) describes the changes in hydraulic head
distribution over time as a result of boundary conditions,
abstraction and injection rates, and the values of head at
the beginning. Equation 5 is Darcy’s law by which the
seepage velocity is calculated. Equation 6 is a solute mass
balance which describes spatial redistribution of solute due
to advection, dispersion, and retardation. The governing
equations are usually discretised using a Petrov-Galerkin
finite-element method for the spatial derivatives and an
implicit finite-difference approximation for the temporal
derivations.

In the context of groundwater-remediation design, the
parameters in Eqns (4)—(6) that are considered to be con-
trollable are the pump rates ¢; and pump locations, #;, { =
1, 2, ..., N. These parameters serve as the decision-vari-
able with »; implicitly constrained to lie within a set of pre-
defined nodal locations. All other aquifer parameters are
assumed known from model calibration.

Mapping Groundwater Flow and
Contaminant Transport Simulation
Using ANNs

Having described a groundwater remediation optimization
model as defined by Eqns (1)(6), it is evident there would
be substantial opportunities for achieving computational
efficiency if Eqn. (2) (i.e., the relationships between con-
centration at the monitoring points ¢; (j = 1, 2, . . ., M)
and the pumping rates ¢; (/ = 1, 2, . . ., N) as defined by
Eqns (4)—(6) could be mapped approximately using a mul-
tivariate function. The key concept that makes it possible
is the use of artificial neural networks (ANNS).

An ANN is a nonlinear mathematical structure which is
capable of representing arbitrarily complex nonlinear
. processes that relate the inputs and outputs of any system.
Mathematicians have shown that multilayer feed-forward
ANNSs have the powerful capability to be ‘universal func-
tion approximators.” Hecht-Hiesen (1990) proved that a
three-layer feed forward ANN meets the requirements to
be a universal mapping function and that any multivariate
function can be approximated by an ANN having only a
finite number of nodes in the hidden layer.

The architecture of ANNS is inspired by models of bio-
logical neural networks which can recognise patterns and
learn from their interactions with the environment. The
most widely researched and used structures are multilayer

348

feed-forward networks which are ideally suited for model-
ling input-output relationships such as the response of the
hydraulics and solute transport in the aquifer with respect
to the abstraction and injection during remediation.

Output Layer

<1

% §\v
L3R
: \)s}.‘,\/“\)sy‘( :
WANYA N

%

Input Variables
Output Variables

\/
jﬂ%% N

Fig. 1 The architecture of an ANN

.

For the purpose of remediation-scheme designs, an arti-
ficial neural network can be considered as a mapping func-
tion between an input and an output set. The input set
represents the combination of pumping rates in N poten-
tial well sites while the output set corresponds the conta-
minant concentrations at the M monitoring points at the
end of the remediation period, with respect to the pump-
ing combinations. The three-layer neural network ANN
(N, K, M) is constructed (see Fig. 1) with N neurons in
the input layer, K neurons in the hidden layer, and M neu-
rons in the output layer. The network is fully connected
between adjacent layers. Each node # receives input from
every node i in the pr:vious layer. Associated with each

2]

input (¢;) is a weight (w;). The effective input (Sk) to node

# is the weighted sum of all the inputs:
N .
S =Y why, ™
=0

where g and w% are called the bias (g0 = 1.0) and the bias
weights, respectively. The effective input, S, is passed
through a nonlinear activation function (sometimes called
a transfer function or threshold function) to produce the
output (k;) of the node.

The most commonly-used activation function is the sig-
moid function. The characteristics of a sigmoid function
are that it is bounded above and below, it is monotonically
increasing, and it is continuous and differentiable every-
where. The sigmoid function most often used for ANNs
is the logistic function:

1
1+¢5%

b= f(S) = k=12, ..., K (8

in which S; can vary on the range too, but #; is bounded
between 0 and 1. The output neuron
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K N
6 = f{ZWE/’:f{Z w::'q,}},j =1,2,..,M (9
k=0 =0

where wZ is a weight between the ith input neuron and the
kth hidden neuron, mj'.’,:' is a weight from the kth hidden
neuron to the jth output neuron, and f'is a sigmoid func-
tion as defined by Eqn. (8).

The identification of the structure of the ANN, i.e., the
value of KX, is usually done using a strategy of progressively
adding nodes to the hidden layer until a structure appro-
priate to the complexity of the problem is achieved, and
values for the network weights WZ and wj'?;’ are estimated
by means of backpropagation algorithms so that the pred-
icated error is minimised.

Groundwater Remediation
Optimization Using GAs
GENETIC ALGORITHMS

Genetic algorithms are a family of combinatorial optimiza-
tion methods that search for near-optimal solutions of
complex problems using an analogy between optimization
and natural selection, developed by Holland (1992) and his
associates.

The GAs are able to search complex multimodal deci-
sion space and can efficiently handle nonconvexities that
cause difficulties for traditional optimization methods. As
stated by Goldberg (1989), the structure of the genetic
algorithms differs from more traditional optimization
methods in four major ways: (1) the GA typically uses a
coding of the decision-variable set, not single variables
themselves; (2) the GA searches within a population of
decision-variable sets, not a single decision-variables set;
(3) the GA uses the objective function itself, not deriva-
tive information; and (4) the GA uses probabilistic, not
deterministic, search rules.

The procedures for a simple genetic algorithm can be
depicted as in Fig. 2.

| code decision-variables |
¥

| initialise population |

| decoge decision-varisbles |

[ evaluate fitness ]

| select fitness chromosomel

Fig. 2 A flowchart describing a simple genetic algorithm

DECODE AND ENCODE DECISION VARIABLES

The genetic algorithm requires that the decision variables
describing trial solutions to the pumping realisation be
represented by a unique coded string of finite length. This
coded string is-similar to the structure of a chromosome of
the genetic code. On the basis of Goldberg’s recommen-
dation, a binary coding was adopted (see Fig. 3). For each
potential site, a single bit describes pumping (abstrac-
tion/injection) flag, i.e., the values of the variable y; and
a series of n bits represents the pumping rate at that loca-
tion. The number of bits # used to represent each pump-
ing rate is a binary resolution and is designed as a GA
input parameter. Another two GA input parameters, the
minimum and maximum pumping rates per well, are used
to decode the binary representations of the pumping rates
into real values and which allows the explicit incorporation
of the constraint set (3) in the mathematical model. The
binary resolution # is chosen, in conjunction with the min-
imum and maximum pumping rates, so that the desired
pumping-rate precision is achieved. The number of genes
per string m (the string length) is a function of the num-
ber of potential well sites, N and the binary resolution for
each well, n, i.e., m = (n + 1)N.

According to Eqn. (3), the value of pumping rate for the
generated string is decoded as follows:

4= y;(qf‘"" +%(4§" —q!”"’)) i=1,2 .., N

where A =2"—1land A4;, 1= 1,2, ... N is the actual

decimal value of the corresponding binary substring of the

pumping well :.
Well #1

Well #2 Well #V

/—_’\—_—“
Ll 2] of¢ & [ =T of2$ §[ 2] ¢ Saf [ 1f oo
Vi 9 I . YNI N

Pumfpingﬂag(l bit) : (n+1) bits

Binary coding of the pumping rate ( bits)

Fig. 3 String structure for the genetic algorithm formulation

For example, if there are four potential wells as shown
in Figure 4, and each well has a binary substring of three
bits, the following 12-gene string might occur:
000101110111, Assuming a maximum pumping rate per
well of one unit and a minimum pumping rate of zero, the
string, once decoded, represents a well system where well
1(000) is a predefined injection site and has no pumping;
well 2(101) is also an injection well but has one third of a
unit of pumping; well 3(110), an abstraction well, has two-
thirds of a unit of pumping, and the well 4(111), another
abstraction well, has one unit of pumping.

PROCEDURES

The procedures of the genetic algorithm employed in this
application can be derived as follows:
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LWell#l l Well #2 | Well #3 LWell#4 '

LoJofolaToTaala Tolala] 1]
!YIL q; y4=v|'=q4'!

injection sites abstraction sites

}’zl 92 )’3| 93
T >

Fig. 4 An example string for a GA coding and decoding

Step 1. Generation of initial population.

The GA randomly generates an initial population of coded
strings representing realisation of pumping of population
size P (typically in the range of 100 to 200) as described
above.

Step 2. Groundwater flow and contaminant simulation and
training of an ANN.

As described previously, the behaviour of complex
groundwater scenarios with spatially variable transport
parameters and contaminant plume is simulated with a
specific simulation model to develop the set of samples
upon which the neural network is trained. The input of
the ANN characterise the different configurations of
pumping wells and their pumping rates. The output is
contaminant concentration at the monitoring points at the
end of the remediation period.

Step 3. Computation of system cost.

The GA considers each of the P strings in the population
in turn. It decodes each substring into the corresponding
pumping locations and their pumping rates, then com-
putes the total cost of each trial realisation in the current
population. The total cost is composed of (1) the capital
and operating costs of the pumping configuration accord-
ing to Eqns (1) and (2), the penalty cost assigned by the
GA if there is a violation of the regulatory concentration
standard at any monitoring point at the end of the reme-
diation period. The concentration at the monitoring point
at which the concentration deficit is maximum is used as
the basis for computation of the penalty cost. The maxi-
mum deficit is multiplied by a penalty factor A, which is
a measure of the cost for a deficit of one unit concentra-
tion.

" Step 4. Computation of the fitness.

The fitness of the coded string is taken as some function
of the total system cost. The GA computes the fitness for
each proposed pumping configuration in the current pop-
ulation as the inverse of the total cost from Step 3.

Step 5. Generation of new population using the selection
operator.

The GA generates new members of the next generation by
a selection scheme. The selection probability of string ¢, p;,
to go into the next generation of P members using pro-
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portionate selection methods is given by f/ 2 J; where f;,

=

is the fitness of string / (determined in Step 4).

Step 6. The crossover operation.

Crossover is the partial exchange of bits between two par-
ent strings to form two offspring strings. Crossover occurs
with some specified probability of crossover p, for each
pair of parent strings selected in Step 5. To perform one-
point crossovers, a crossover point is randomly selected
along the strings. The crossover operator exchanges the
bits after the crossover point between the two selected par-
ent strings.

Step 7. The mutation operation.

Mutation occurs with some specified probability p,, for
each bit in the strings which have undergone crossover.
The bitwise mutation operator changes the value of the bit
to the opposite value (i.e., 0 to 1 or 1 to 0).

Step 8. Production of successive generations.

The use of the three operators described above produces a
new generation of pumping realisation using Steps 2 to 7.
The GA repeats the process to generate successive gener-
ations. The least cost strings (e.g., the best 5) are stored
and updated as cheaper cost alternatives are generated.
Typically, a GA will evaluate between 100 and 1000 gen-
erations.

Application Example
AQUIFER DESCRIPTION

The model described has been used to design a pump-and-
treat remediation scheme for a simplified approximation of
a real aquifer contaminated with chlorinated solvents. For
the purpose of this exercise, the aquifer is assumed to be
confined, homogeneous and isotropic with dimensions of
500 by 500 metres as shown in Fig. 5. This aquifer is mod-
elled using a uniformly-spaced grid consisting of 51 by 51
nodes, 2500 finite-difference grid evenly spaced at 10-
metre interval. In the model runs, the solutions were con-
strained to meet a regulatory contaminant concentration of
20 ppb in the effluent from the treatment facility and in the
aquifer at the end of remediation. Abstraction and injec-
tion rates were constrained between a minimum of 0 and
a maximum of 2.0 /s'. The remediation time period was
assumed to be 20 years with a discount rate of 10 percent.
In the model runs, 16 wells were available for pumping
and 25 nodes were used as compliance points. The aquifer
properties used in the model are listed in Table 1.

The goal of remediation is to keep the contaminant-
mass concentrations from moving off site, i.e., past the line
of monitor wells in amounts that are above the regulatory
concentration limit. The measure of remediation efficiency
(i.e., objective function) is to minimise the total cost of
installation, pumping (abstraction and injection) and treat-
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Fig. 5 Groundwater remediation problem schematic

Table 1. Aquifer and contaminant transport parameter
values

Parameter Value
Hydraulic conductivity (K) 6.0 X 10 m/s
Longitudinal dispersivity(er.) 25m
Transverse dispersivity(eT) 2.5m

Porosity () 0.2

Diffusion coefficient (Dg) 2.6 x10° m?/s
Saturated thickness (b) 50 m
Time step for mass transport (At) 7.884 x 10%

Number of time steps 80
Density of soil 2.69 g/cm3
Bulk density of aquifer material 2.23 g/cm3

ment. It is assumed that the pumping rates will be kept
constant during the remediation period.

DEVELOPMENT OF TRAINING AND TESTING
PATTERNS

A 2-Dimensional hybrid finite-difference/finite-element
flow and transport code, FDMOD, was used to simulate
numerically the effects of different pumping patterns,
thereby establishing a knowledge base for training and
testing the neural networks. The patterns represented not
only a random sample from the domain of possible subsets

for all potential locations but also patterns thought to
reflect important boundary conditions and good pumping
strategies from a hydrological standpoint. The results from
these simulations provided the estimates of the contami-
nant concentrations at the monitoring point at the end of
the remediation period with respect to the various pump-
ing configurations. Utilising a neural network in place of
the simulation model during the optimization phase
reduces the computational burden by more than two
orders of magnitude.

To achieve best results, the orthogonal array method
(Taguchi, 1987) was adopted to design the simulation
experiments. For each simulation run, the pumping rate
for each well (abstraction or injection) takes one of three
values (1, 2 or 3) corresponding to non-pumping, half-
maximum and full-maximum pumping respectively.

Three training and testing pattern sets containing a total
of 500 pumping configurations were developéd. The sets
were not homogenised in order to ascertain whether cer-
tain methods for generating training sets had advantages
over others. The first set of 300 was formulated using a

‘randomly-generated orthogonal array. The second set of

50 was created using hydroegeological insight to choose
likely pumping regimes and variations thereof. The third
set was contrived by adding/deleting pumping wells to
examples of high-ranking pumping realisations from the
first two sets. Although a two-dimensional model has been
used here for illustration purposes, a three-dimension
model could have been used just as easily.

TRAINING OF NEURAL NETWORKS

The type of neural network used in this study was chosen
as a three-layer, feed-forward perceptron trained with the
use of a back-propagation learning algorithm. The initial
approach was to have the input vector represent a possible
configuration of the pumping wells. As 16 possible pump-
ing wells were being considered, each input was a row vec-
tor of 16 variables; a variable value of 1 indicates that the
well was chosen as a pumping well with full maximum
pumping rate and 0 indicated it was not selected. The out-
put vector comprises 25 variables corresponding to the
contaminant concentration at the monitoring points at the
end of the remediation period. The number of the hidden
nodes was identified using the strategy of progressively,
adding nodes to the hidden layer until the best result is
achieved. The appropriate structure for this example was
ANN(16, 8, 25).

During the course of training, 400 out of the 500 pat-
terns developed were used to train the neural network and
the remaining 100 patterns which were not involved in the
training were used to test the neural network. The perfor-
mance accuracy of the trained network was 100% for the
first test pattern set and the generalisation performances
were 88% and 93% for the test pattern sets 2 and 3
respectively.
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SEARCH FOR OPTIMAL PUMPING PATTERNS

Once the network has been trained to a predefined level of
performance, it can be used to examine as many combina-
torial possibilities as desired. Theoretically, all possibilities
could be examined to ensure a global minimum but obvi-
ously that is impossible in practice. Therefore, a genetic
algorithm was employed to search for optimal pumping
patterns. An initial population of 200 successful patterns
evolved through 300 generations according to a simple
three-generator genetic algorithm to produce some 60, 000
pumping patterns (see Table 2 for parameters). Finally,
three highest-ranking pumping patterns were selected as
the most successful remediation schemes for the aquifer
under study as listed in Table 3.

Table 2. Input parameter set for the GA

Parameter Value

Binary resolution per well 8 (plus one for abstrac-

tion/injection)
Population size © 200
Number of genes per string 144
Generations 300
Mutation probability 0.04
Crossover probability 0.85
Selection ratio 0.90

CONFIRMATION OF REMEDIATION SCHEMES

The recommended pumping configurations were con-
firmed as successful with the aid of the groundwater flow
and transport simulation model. If no remediation were

undertaken, plots of the concentration contours over time
(Fig. 6) indicated initial contaminant concentrations
approaching the monitoring-well line exceed 100 ppb.
Similar plots produced following the implementation of
the recommended optimal design showed no concentra-
tions above 20 ppb reaching the monitoring wells (Fig. 7)
at the end of the 20-year remediation period.

Conclusion and Discussion

An optimization model based on a hybrid neural net-
work/genetic algorithm was used to investigate the mini-
mum-cost design of a pump-and-treat aquifer remediation
scheme. This mixed-integer nonlinear approach has been
devised to find the least-cost solution for both pumping
and treatment components which include the fixed costs of
construction and the variable costs associated with opera-
tion/maintenance. To that end, an artificial neural net-
work is trained to predict the performance of a particular
configuration of the abstraction and injection wells and
their possible pumping rates combinations. After the net-
work has been suitably trained, the GA searches through
possible combinations of the pumping wells, using the
trained neural network to predict the performance and
subsequently the merit rating of each configuration.

This hybrid algorithm has several advantages. Firstly,
the algorithm involves less computational burden and
more flexibility. In this approach, the groundwater flow
and contaminant simulations, usually the time-consuming
components, are not coupled with the optimization scheme
as subroutines as they should be in conventional optimiza-
tion techniques but are used to establish a knowledge base
for training the neural network. Moreover, the increased
flexibility provided by parallel processing of the simula-
tions and ‘recycling’ of the simulation, results in the

Table 3. Three recommended remediation schemes

Scheme No. Nodes Pumping rate (1/s) Normalised total cost
Injection Abstraction
1 (4, 25) 2.00 1.00
(11, 25) 1.68
(14, 25) 1.68
(17, 25) 1.04
2 (1, 25) 1.28 1.036
4, 25) 2.00
(11, 25) 2.00
(17, 25) 1.68
3 4, 25) 2.00 1.053
(11, 25) 2.00
(17, 22) 1.68
(17, 28) 1.68
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Fig. 6 Concentration contours over time—Without remediation
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Fig. 7 Concentration contours over time—Optimal remediation
scheme
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reduction of computational burden which is usually an
obstacle to field-scale applications. In addition, the algo-
rithm provides more independence from the simulation
model structures and simulation methods. This indepen-
dence has the subsequent advantage of incorporating any
appropriate groundwater flow and solute transport simula-
tion code, ranging from 1 to 3-dimensional, according to
the specific site conditions and data availability, etc.

The algorithm has been shown to be effective in a series
of simplified but representative problems. Based upon the
preliminary results presented here, it is expected that the
proposed methodology will behave similarly in large-scale,
real-world applications. Therefore, this methodology is to
be made available through WaterWare (Jamieson and
Fedra, 1996), a comprehensive decision-support system
for river-basin planning. In the fullness of time, other
groundwater remediation processes, such as engineering
barriers, in-situ treatment, etc., will be included, recognis-
ing that the pump-and-treat methodology may not be the
most appropriate in all circumstances.
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