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Abstract

A single-site Neyman-Scott Poisson cluster model of rainfall, with convective and stratiform cells, is fitted to
data for 112 sites scattered throughout the UK using harmonic variables to account for seasonality. The model is
regionalised by regressing the estimates of the harmonic variables on site dependent variables (e.g. altitude) to
enable rainfall to be simulated at any ungauged site in the UK. An assessment of the residual errors indicates
that the regression models can be used with reasonable confidence for urban sites. Furthermore, the regional
variations of the model parameter estimates are found to be in agreement with meteorological knowledge and
observation. Simulated 1 h extreme rainfalls are found to compare favourably with observed historical values,
although some lack-of-fit is evident for higher aggregation levels.

Introduction

Observational studies on precipitation fields have shown
that multiple types of rain cells exist within the same
storm (e.g. areas of heavy convective rain and larger
areas of lighter rain; Austin and Houze 1972). Further-
more, short-duration intense rain embedded within
lighter stratiform rain can also be seen in plots of fine
resolution data (e.g. see Fig. 1). Consequently, it is
advantageous to generalize existing Poisson cluster mod-
els of rainfall by allowing the parameters of a rain cell to
depend on the ‘type’ of cell (Cowpertwait, 1994). For
example, in a generalized point process model convective
rain could be represented by cells of short duration and
high intensity whilst stratiform rain could be represented
by cells of longer duration and lighter intensity.

Whilst the physical process can be used to guide the
formulation of an appropriate Poisson cluster model,
there is no guarantee that the fitted model will necessar-
ily give insight into the underlying physical process. In
particular, there is no guarantee that convective cells in
the fitted model will correspond with those studied in
meteorology. However, if the fitted model parameters
compare favourably with some known physical proper-
ties, e.g. the expected lifetime of a convective cell
obtained by radar or satellite, then this would suggest
that a suitable stochastic model has been formulated.

Most applications of Poisson cluster models are based
on the work of Rodriguez-Iturbe ez al. (1987) and range
from disaggregating daily data to hourly data (Glasby ez
al. 1995) to simulating rainfall scenarios for future cli-
mates resulting from the steady increase of greenhouse
gases (Burlando and Rosso, 1991). Onof and Wheater
(1993) and Khaliq and Cunnane (1996) have reported
applications of the Bartlett-Lewis model to rainfall data
from the UK and Ireland, while the single cell Neyman-
Scott model has been regionalized over the UK for
application in urban drainage studies (Cowpertwait et al.,
1996). The work in this last paper is further developed
here to consider the regional variation of the parameters
of stratiform and convective rain cells in the generalized
Neyman-Scott model described by Cowpertwait (1994).

The paper is structured as follows. The generalised
Neyman-Scott model is defined and its statistical proper-
ties given: a model with two cell types is fitted to data
taken from 112 sites scattered throughout the UK and
harmonic parameter estimates are regressed on site vari-
ables. The residual errors are assessed, regional variations
in convective and stratiform cells across the UK are
explored, and some comparisons made with observed
extreme values. Finally some overall conclusions are
given.
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Fig. 1 Plots of fine resolution data taken from sites in the South-West of Bnmm The plots show intense short-duration rain (convective

cells) embedded within lighter long-duration rain (stratiform cells).

Generalized Neyman-Scott Model
and Derived Properties

Following Cowpertwait (1994), let storm origins oceur in a
Poisson process of rate A, each origin generating a random
number C of cell origins. Let the waiting tinve for edch cell
origin after a storm origin be exponential with parameter B,
no cell origin being located at the storm origin. Each cell
origin is classified as one of # types, where @ is the proba-
bility that a cell origin is of type i(; = 1, . . ., n). A rectan-
gular pulse (rain cell) is associated with each cell origin
and depends on cell type (see Fig. 2); the duration of the
pulse is an ‘independent -exponential random  variable with
parameter 1); for type i cell origins; the intensity of the
pulse is an independent random variable X; for type 7 cell
origins. Let the mean number of cells per storm be
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denoted as P, and E(X)) as ;. The cell origins thus follow
a Neyman-Scott point process, so that the model is a
Generalised form of Neyman-Scott Rectangular Pulses
(NSRP) model. This is abbrieviated to GNSRP(x) to
denote a model with 7 cell types.

To fit the model to data, some statistical properties,
e.g. second-order moments, are required. Let Y(z) be the
total rainfall intensity at time t given by the GNSRP(r)
model, and let X, ,(u) denote the rainfall intensity at
time ¢ due to a cell with origin at £~ «. Then,

M

X; with probability o;e ™%, ..., m;
t—-u(u) .
0 otherwise

The total rainfall intensity at time ¢, which is the sum-
mation of all cells active at time ¢, is given by:
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Type 1 cell : convective

Type 2 cells : stratiform

=

Time

)
)~

Cell origins

Fig. 2 Schematic showing two cell types. Type 1 cells are heavy
short-duration convective cells. Type 2 cells are lighter long-dura-
tion stratiform cells.

Y() = [ X, .@dN(-w), @

Now, let Si(k) be the aggregated rainfall depth in the
kth time interval of length %, so that:

&m:ﬁ Y()dt 3)
(k-1)A

The second-order properties of Si(k) were derived by
Cowpertwait (1994) and are given below:

E(S,(h)} = hML. Y 0L /T )
j=1
Var{Sy(h)} = Z{Z—CZL (Im; + e l)}
J=1 | M )

2C -
+—[_J)T(hB+e B —1)
and for / 2 1,

(¢ e |
Cov{Sy(h), Spa(h)} = Z{n—;e DR (N2

j=1

6
+C_[;e-[5(le—l)h(1__ £Ph)2 ©)
where C; and Cg are given in (7) and (8) below:
. 7‘“;0‘ E(X ) Mgzujoch(C -0 % z TR o
! n; p’ T\] perlli PR T

IPT VT Y Y i 6
P ’22{@ o O

i=l j=1

The probability that an arbitrary interval of length 4 is
dry, &(h) = pr{Si(h) = 0}, was also derived by Cowper-
twait (1994), under the assumption that the number of
cells per storm C is a geometric random variable with
parameter V;

.

o(h) = exp[-A[ {1 py)o)ar

oty o

where pi(f) = pr{no rain in time interval (¢, ¢ + 4) due
to a storm origin at time zero}

e AV
exp|:—7»h + BI-Y)

e PP 4 o1 Py
1- (1= V){e PP 1 (1 - 7P

and,

"
W= 20(,0),- where
i=1

B(e_ﬁl —e Ny
@ =1- ~¢ ) =1 .
m—p-c?y "

The integral in (9) requires numerical evaluation.
The transition probabilities follow immediately from
(9) as:
Ou(h) = pr{Si(h) =0} = 0(2h) / 6(A)} (10)

Oun(h) = priSeni(h) > 0| Si(h) > 0}
= {L-2¢(h) + 6(2h)} /{1 - &(h)}. 1)

=0 S:(h)

Regionalised GNSRP(2) Model
DATA ’

Hourly and dailyv rainfall déta from 112 sites scattered
throughout the UK were available for this study; details
of the data base can be found in Cowpertwait er al.,

(1996).

MODEL PARAMETERS

Guidance on the number of cell types to be included in
the model can be obtained by considering the physical
characteristics of the rainfall process and past observa-
tional studies of rainfall fields reported in the literature.
These studies suggest that the rainfall field can be
classified broadly into convective and stratiform rain.
Consequently, the simplest Neyman-Scott model taking
this information into account would be GNSRP(2),
where type 1 cells are interpreted as ‘heavy’ short-
duration convective cells and type 2 cells as ‘light’ long-
duration stratiform cells. This single-site model has a
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total of 8 parameters (Table 1), assuming the intensities.

of the heavy and light rain cells (Xj are X3) are expo-
nential random variables (with parameters &, and &),
and C is geometric with |; = v' and E(C*-C) =
2v{(v' ~1) in Equations (4)—(8).

Table 1. Parameters of GNSRP(2) Model

A the rate of storm origin arrival (per hour)

B the mean waiting time for the raincells after the
storm origin

Vv~ the mean number of raincells per storm

N1 the mean cell duration for heavy cells

M2~ the mean cell duration for light cells

1 the mean cell intensity for heavy cells

2° the mean cell intensity for light cells

o the proportion of heavy cells

To allow for seasonality, the model could be fitted to
each calendar month of a rainfall record, which would
result in 12 estimates per parameter, i.e. 96 estimates per
site. However, to simplify the regionalisation, it is advan-
tageous to reduce this number. An approach that also
ensures a smooth seasonal variation in the parameter esti-
mates is to assume that the parameters vary across the
year according to harmonic functions, ie. if 0; is a
parameter estimate of the GNSRP(2) model for the ith
calendar month, so ¢ € {A,B,n1,M2,v,£1€2,0}, then:

where my, Ay, and 6y are harmonic parameters. These

parameters can be estimated directly by minimising the -

following sum of squares:

sfsshae

=1 heH f,eF

(subject to: my >0, Ay 2 0, 210 2 0y 2 0, where F is a set
of aggregated second-order propertles for the GNSRP(2)
model (e.g. given by Eqns. 3-11), f ; denotes the sample
estimate of f; for the ith calendar month, which is
- obtained by pooling all the available data for the month,
and H is a set of aggregation levels (greater than or equal
to 1 for hourly data). :
Clearly there are many choices available for F and H,
here the 1 h mean, and the 1, 3, 6, 12, and 24 h variances,
proportion of dry intervals, and wet spell transition proba-
bilities are employed as in Cowpertwait et al. (1996).

REGRESSION ANALYSIS

A preliminary regression analysis showed that it was
reasonable to treat three of the parameters, f, M2, and &,
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as constants (i.e. these parameters appeared to have little
or no dependence on season or location). Consequently,
B, N2, and &; were fixed at their mean values of 0.24
(h™), 0.53 (h™) and 0.26 (h mm™) respectively.

The parameters of the GNSRP(2) model were esti-
mated for each of the 112 sites. For the sites having only
daily data, a regression relationship was used to predict
sample moments for aggregation levels less than 1h
(Cowpertwait et al. 1996).

For any UK site, the following variables could easily
be found or estimated: the mean annual rainfall AR (in
mm), the altitude A (in 10 m), the north grid reference
N (in 100km), and the east grid reference E (in 100km).

A ‘Stepwise’ regression was carried out for each of the
estimated harmonic variables, where interactive terms
were allowed to enter the different regression models
being considered. The best fitting regressmn models are
given below:

iy, =7.52%10™ x AR +0.00168 x N —2.19 x 1075

x N* +0.0140 (R? = 0.45, SE = 0.0025h7"); (13)

iy, = ~2.47 %10~ x AR + 0.489
(R® = 0.40, SE = 0.067); (14)

g, = 9.42x 107 x AR +1.53
(R? = 0.11, SE = 0.60h mm™); (15)

g = —0.0154 X N —1.07 X 10*AR + 4.64 x 107 x 4°
-731x107* x AX E +0.434
(R* = 0.41, SE = 0.058); (16)

Ay = —0.00125 % E +0.0109
(R? =0.18, SE =0.0029 h"); (17)

Ag, =0.46 (SE = 0.034 hr mm™); (18)

Ag = =137 x10™* x AR +0.356
(R* = 0.11, SE = 0.088); (19)

8, = 0.0146 x N? +1.37
(R* =0.13, SE = 0.66 rads); (20)

B, = —0.729 X E +5.20
(R* =0.24, SE = 1.4 rads); (21)

8, = 3.60 (SE = 0.041 rads); (22)
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Fig. 4 Spatial plot of percentage errors in the prediction of (which also shows the approximate locations of the sites).

RESIDUAL ERROR ANALYSIS

For each regression model (13-17, 19-21), the residual

errors (site estimate of parameter — regression estimate of -

parameter) were considered in a validation exercise to
check that the regression models were giving sensible
predictions and that there was no systematic bias in the
predicted values (Figs. 3(a)—(%)).

From Figs. 3(a)—(k), it can be seen that there is no
systematic bias in the prediction of the harmonic vari-
ables. Furthermore, there are no obvious outliers or
trends (although Ay in Fig. 3(e) is a possible exception),
indicating that the regression models do not require fur-
ther explanatory variables, such as higher povwers, and
can be applied with some confidence

To search for possible spatial dependencws in- the
residuals, percentage errors (100 x Residual / Site Esti-
mate) for m) were plotted against the East and North
grid reference (Fig. 4). Some weak spatial autocorrelation
can be seen in the plot, but no strong regional bias is
evident.

Using the regressions, the harmonic parameters can
thus be estimated for any site (gauged or ungauged) in
the UK with reasonable confidence. For the ith month,
the estimates of the GNSRP(2) model parameters are
then given by:
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AG) = iy + A, sin[% +6, j; BGi) = 0.24;
M) =3 My() = 0.53; V() = ra;
E,() = riig, +0.46 sin[% +6;, ); E.(1) = 0.24;

(23)
6(i) = g + Ay s (%+36)

It should be noted that the regression equations are
not appropriate for extrapolation beyond the range of the
explanatory variables used. In particular, the highest site
available had altitude 380 m, so the equations would not
be appropriate for simulating rainfall in mountainous
catchments. Nevertheless, the equations can be used with
reasonable confidence for sites lower than 400 m, and
this includes most urban catchments in the UK.

SOME EXTREME VALUES GENERATED BY THE
REGIONALISED MODEL

The parameters of the GNSRP(2) model were estimated
using site variables for a 30-year record of hourly data
(Farnborough: Altitude: 69 m; North Grid reference:
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1544 (0.1 km); East ‘Grid reference: 4867: (0.1 km); Mean
annual- rainfall:: 750 mm). A - synthetic -time series :of
thirty- years: of rainfall data’ was:then generated for Farn-
borough ‘using the (GNSRP(2) model with /parameters
estimated: via: Equations (23), :and: maximum: annusl totals
extracted : and: plotted: and compared with thc observed
historical:values (Figi 5).-. ~

Gmdx agmementzriwds‘ obtumdf fon: thm d hr and 6 hr

annual maxima (Fig. 5(z) and:5(%) respectively). How-
ever, there :was :some evidence of -underestimation of the
daily maxima for:lower: return-periods (Fig. 5(c)) - -

-+ As a further: validation' exercise, ‘the ‘parameters of the
regression ‘models ‘were re-estimated with'the: data from a
30-year: record: takeni:: from HMHampstead ' (the' second
longest. ;.recoid 1'of: hotrly.: data: after ~Famborough)
removed: from ‘the. regression: analysis. ' The.. GNSRP(2)

i ST } SV b
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1h annual maxima / mm
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351 .
30 .o
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20 o8 %
o0 S&m{ & X < simulated
IS
p 35
51
! o + ;
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6h annual maxima / mm
70 o
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ést
R T J[
- 5 " ) 4
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24h annual maxima / mm
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607 o o 8
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50 . )< . .
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><><><><><>§Q>5>oo<><>’>‘>>(x°°°<> ¢ simulated -
% ©000°%
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o }
2 -1 0 1 2 3. 4
standardised Gumbel variate

Fig. 5 Annual maximum rainfall totals for Famborough plamd against the standardised Gumbel variate: (a) hourly maxima, (b) 6-

hourly maxima, and (¢) daily: maxima.
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moddl parameters -far./Himpstead weve then.estimated
fram. equations. {22): by’ inputting ;site: variables -ifito « the
revised regnéssion equations. A time seties iof: thirty yéars
of : hourly;.rainfa]l - data.-was- then:geherated: using /the
GINSRP(2) model.: The maximum hourly, sixshourly, and
dailyvaluds: fobeachsyear weve! plotted againat: the stan-
dardised; €Himbelivariate, toghthet with ithe equivalent
valuei’edtvactad fromy thre:hissoricak-recadd (Figi 6). .

Fig. 6(a) suggests that the regionalised model shows a

good fit:to: the; observed annual ‘1 h maxima.: However, &
tendency to:undersestimate ‘the: largést annual; maxima. at
the: 6 and: 24 h:levels:iof .aggregationiis evident (Figs.
6: (b and:«). (I géniral; the'ivégionalized model shows.d
good: fit; ter chisterical arinual | bigxima 1at  the:il b level iof
aggregdtiony: buti shasoa:tenderioy; to: uniderbestitmate the
largest annual maxima at the 24 [ levels -of aggregation.
To-allow for ither'samplinhg error of the maxima; paratet-
ric tests on fitted generalised extreme value distributions
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Fig. 6 Annual max;mum minﬂl” totals for Hémj)sted: (a) hourly mﬁma; (b) Ghourly maxima, and (c) daily- maxima,
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could be carried out, but this was beyond the scope of
the present paper.

More complex regionalisation procedures may give
better representations of the extreme rainfall events. For
example, the country could be divided into a number of
non-overlapping regions, such as those used by Dales
and Reed (1989), and separate regression models fitted
within each region. However, to obtain reliable regres-

()

sion equations, numerous sites per region would be
needed and these were not available for this study.

VARIATION IN MODEL PARAMETERS ACROSS THE
UK

Some further confidence in the regionalisation can be
gained by noting that the predicted GNSRP(2) model

Mean Waiting time / days

2.2“

2

| —
1871 1 di
.

1.4

1.2

1
1 2 3 4 5
Easting (100km)

(b)

Mean number of cells per storm
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1 2 3 4 5

Easting (100km)
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Proportion of convective cells
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Northing (100km)

Fig. 7 Regional variation in the parameters: (a) mean waiting time between storm origins, (b) mean number of raincells per storm, and

(¢) proportion of heavy convective raincells.
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parameters vary across the UK in agreement with meteo-
rological knowledge and observations. To amplify inter-
pretation of the regional variations in the parameters, a
simple regression model was fitted to each of the har-
monic variables, where the explanatory variables were
non-interactive site variables only. Regional trends were
then investigated by considering changes in mg, where ¢
was a parameter of the GNSRP(2) model, ignering sea-
sonal variations. The most significant regional trends
were then plotted against North and East grid references,
where the reciprocals of the parameter estimates were
taken for ease of interpretation (Fig. 7).

The following deductions can be made from Fig. 7.
Moving from West to East, the model predicts an
increase in the waiting times between storm origins and a
decrease in the mean number of raincells per storm (Fig.
7 (a and b)), ie. the model predicts fewer rainfall
‘events’ in the East of Br;tain. This is in accord with
meteorological knowledge and observations because the
East of Britain is in a rain shadow due to the Welsh and
Pennine mountain ranges, and frontal systems tend to
move across the country in an easterly direction. Now
moving from South to North, the proportion of heavy
raincells decreases, so that the model predicts that storms
in the North of Britain will be longer and contain more
light stratiform rain than storms in the South (Fig. 7(c)).
This variation is supported by a physical interpretation
based on temperature differences between the North and
South of Britain: higher temperatures in the South lead
to more convective rainfall.

Conclusions

A Generalised Neyman-Scott Rectangular Pulses model
of rainfall, taking into account some of the physical pro-
cesses observed and measured in precipitation fields, was
fitted to data taken from 112 sites scattered throughout
the UK and harmonic parameter estimates regressed on
site variables. An analysis of the residual errors showed
that the regression equations could be used with reason-
able confidence for urban sites. Furthermore, a good fit
to observed extreme values at the 1 h aggregation level
was found. However, there was a tendency for the model
to under-estimate extreme values at higher aggregation
levels. Overall the fit to the extreme values seemed good

given the simplicity of the regionalization procedure and

that properties of extreme values had not been used in
the fitting procedure.
An interesting area of research is extending point pro-
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cess models into the spatial domain, to allow realistic
series of multi-site rainfall to be simulated. Recent
research (Cowpertwait 1995) has provided properties
(e.g. the cross-correlation function) which enable the
model to be fitted to multi-site data. The model thus has
the potential to provide a complete description of space-
time rainfall. Further work is needed to assess the per-
formance of the spatial model against‘ multi-variate
extreme values.
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