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Abstract

A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the boson random point fields methods. We prove that
in the Weak Harmonic Trap (WHT) limit there are two phases distinguished by
the boson condensation and by a different behaviour of the local particle density.
For chemical potentials less than a certain critical value, the resulting Random
Point Field (RPF) coincides with the usual boson RPF, which corresponds to a
non-interacting (ideal) boson gas. For the chemical potentials greater than the
critical value, the boson RPF describes a divergent (local) density, which is due
to localization of the macroscopic number of condensed particles. Notice that it is
this kind of transition that observed in experiments producing the Bose-Einstein
Condensation in traps.
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1 Introduction and Main Results

1.1 Weak Harmonic Traps

We consider the quantum statistical mechanical models of boson gas equipped with a
κ-parameterized family of one-particle Hamiltonians of harmonic oscillators:

hκ =
1

2

d∑

j=1

(
− ∂2

∂x2
j

+
x2
j

κ2
− 1

κ

)
, (1.1)

which are self-adjoint operators in the Hilbert space H := L2(Rd).
In this setup a ”thermodynamic limit” corresponds to κ → ∞ (i.e. the ”opening”

of the trap [DGPS]), which we call the Weak Harmonic Trap (WHT) limit. Notice that
the set C∞

0 (Rd) is a form-core of the operator (1.1) and that this set is also a form-core
for the operator (−∆)/2. Here ∆ is the standard Laplace operator in Rd. Then (see
e.g. [Ka]) one obtains the strong resolvent convergence:

lim
κ→∞

hκ = (−∆)/2 . (1.2)
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In spite of convergence (1.2), there is a drastic difference between the properties of the
infinite Ideal Boson Gas (IBG) systems prepared via the WHT limit and via standard
thermodynamic limit (TDL) limL→∞ ΛL = Rd with the one-particle operators tL :=
(−∆/2)L with a ”non-sticky” (e.g. Dirichlet) boundary conditions [VVZ]. Here ΛL=1 ⊂
Rd is a bounded open region of unit volume |ΛL=1| = 1 containing the origin x = 0
whose boundary ∂ΛL=1 is piecewise continuously differentiable and

ΛL := {x ∈ R
d|L−1x ∈ ΛL=1} , L > 0. (1.3)

In fact, it is known that the Bose-Einstein Condensation (BEC) occurs for dimensions
d > 1 in the IBG via WHT limit κ→ ∞, while for dimensions d > 2 in the IBG via TDL,
see (1.13) and [DGPS], [PeSm]. Similarly, it is well-known that thermodynamic proper-
ties of the boson gases are very sensible to different ways of taking the thermodynamic
limit [LePu] or to the different choices of the boundary conditions [VVZ].

The purpose of the paper is to examine the position distribution of the mean field
boson model in WHT limit and to compair its behaviour to those of the mean field
boson models in TDL or ideal boson models in WHT limit.

Our method is based on the theory of Random Point Fields (RPFs) (see e.g. [DV]).
The usual boson and the fermion RPFs [Ly, M75, M77] have been formulated in a
unified way in terms of the Fredholm determinant together with other related RPFs,
which are indexed by fractional numbers, in [ShTa]. They have been re-derived as
theories which describe position distributions of the constituent particles of quantum
gases in the thermodynamic limit for canonical ensembles in [TIa]. It was shown that
the Random Point Field (RPF) corresponding to fractional numbers [ShTa], describes
the gases which consist of particles obeying the parastatistics [TIc]. The RPF describing
a homogeneous Bose-Einstein condensation have been studied for the first time in [TIb],
where the RPF is given by the convolution of usual boson RPF and another RPF. The
latter one seems to describe position distribution of the condensed part of the constituent
bosons. This RPF has been re-formulated using the Cox process.[EK]

These theories of RPFs yield a precise information about the position distribution
of the constituent quantum particles, although they are not suitable to characterize the
quantum systems completely (however see [FF, F]).

1.2 Ideal and Mean-Field Boson Gases in the WHT

Recall that in the grand-canonical Gibbs ensemble the partition function of the IBG
trapped by harmonic potential (1.1) is given by

Ξ0,κ(β, µ) :=

∞∑

n=0

eβµn Tr Hn
symm

[⊗nGκ(β)] . (1.4)

Here Hn
symm := (⊗nL2(Rd))symm is the n-fold symmetric Hilbert space tensor product of

H := L2(Rd), Gκ(β) = e−βhκ the one particle Gibbs semigroup. The zeroth term in (1.4)
equals to 1 by definition. We consider the case of positive inverse temperature β > 0
and of negative chemical potential µ < 0.
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The spectrum of the operator (1.1) is discrete and has the form:

Spec(hκ) = { ǫκ(s) := |s|1/κ | s = (s1, · · · , sd) ∈ Z
d
+ } (1.5)

where |s|1 :=
∑d

j=1 sj and Z1
+ is the set of all non-negative integers. The normalized

eigenfunctions of the states for s ∈ Zd
+ are given by

φs, κ(x) =
1

κd/4
φs(x/

√
κ) =

d∏

j=1

1

κ1/4
φsj

(xj/
√
κ) , (1.6)

where for each component j, φsj
is related to the Hermite polynomials Hsj

(z) by

φsj
(xj) = (2sj sj!

√
π)−1/2Hsj

(xj)e
−x2

j/2, j = 1, . . . , d . (1.7)

The ground state is denoted in this paper by

Ωκ(x) =
1

(πκ)d/4
e−|x|2/2κ ≡ φs=0, κ(x) , (1.8)

where x = (x1, · · · , xd) ∈ Rd, |x|2 :=
∑d

j=1 x
2
j .

Integral kernel of Gκ(β) = e−βhκ has the explicit form (the Mehler’s formula for
oscillator processes):

Gκ(β; x, y) =
exp{−(2κ)−1tanh(β/2κ)(|x|2 + |y|2) − |x− y|2/(2κ sinh(β/κ))}

{πκ(1 − e−2β/κ)}d/2 . (1.9)

Here the operator Gκ(β) belongs to the trace-class C1(L
2(Rd)), with the trace-norm

equals to TrGκ(β) = 1/(1 − e−β/κ)d = O(κd) for large κ. The largest eigenvalue of
Gκ(β) coincides with the operator norm ‖Gκ(β)‖ = 1. We write all the eigenvalues of
operator Gκ(β) in decreasing order:

g
(κ)
0 = 1 > g

(κ)
1 = e−β/κ > g

(κ)
2 > · · · .

The expectation value of total number of particles is given by

Nκ(β, µ) =
1

β

∂ lnΞ0,κ(β, µ)

∂µ
=

∑

s∈Z
d
+

1

eβ(ǫκ(s)−µ) − 1
. (1.10)

Since the value (1.10) diverges in the WHT limit κ → ∞ as κd , one introduces the
scaled quantity [DGPS], [PeSm]:

ρκ(β, µ) :=
1

κd

∑

s∈Z
d
+

1

eβ(ǫκ(s)−µ) − 1
, (1.11)

which is a Darboux-Riemann sum for the integral

ρ(β, µ) = lim
κ→∞

ρκ(β, µ) =

∫

[0,∞)d

dp

eβ(|p|1−µ) − 1
=

∞∑

s=1

eβµs

(βs)d
. (1.12)
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Since κd may be interpreted as the effective “volume” (cf. Remark 1.1), ρ(β, µ) and
ρκ(β, µ) are regarded as the expectation value of effective space-averaged density of the
system, which has non-homogeneous space distribution. One defines its critical value as
usual:

ρc(β) := sup
µ<0

ρ(β, µ) = ζ(d)/βd. (1.13)

Notice that (1.13) is bounded for d > 1. Therefore, if ρ > ρc(β), the IBG in the
WHT limit κ→ ∞ manifests a BEC in the scaled oscillator ground state (1.8) with the
expected space-averaged condensate density:

ρ0(β) := ρ− ρc(β) = lim
κ→∞

1

κd
1

e−βµκ(β,ρ) − 1
. (1.14)

Moreover the expected local density ρ0(β)(x) can be defined such that

ρ0(β)(x) = lim
κ→∞

1

κd
Ωκ(x)

2

e−βµκ(β,ρ) − 1
(1.15)

holds. Here µκ(β, ρ) is the unique root of the equation, ρ = ρκ(β, µ) cf. (1.11). Their
limits satisfy

lim
κ→∞

µκ(β, ρ < ρc(β)) < 0 and lim
κ→∞

µκ(β, ρ > ρc(β)) = 0, (1.16)

especially

µκ(β, ρ > ρc(β)) = − 1

β(ρ− ρc(β))κd
+ o(κ−d) . (1.17)

The integrated density of states Nκ(E) for the operator hκ is given by

Nκ(E) =
1

κd

∑

s∈Z
d
+

θ(E − |s|1/κ).

Then from its Laplace transform
∫ ∞

0

e−tEdNκ(E) = [κ(1 − exp(−t/κ))]−d,

we obtain the κ→ ∞ limit

dN (E) =
Ed−1

Γ(d)
dE . (1.18)

In terms of these density of states, (1.11) and (1.12) are written as

ρκ(β, µ) =

∫ ∞

0

dNκ(E)

eβ(E−µ) − 1
, ρ(β, µ) =

∫ ∞

0

dN (E)

eβ(E−µ) − 1
.

It is instructive to compare these results with properties of the IBG “prepared” via
standard thermodynamic limit L → ∞ (1.3) for e.g. Dirichlet boundary conditions. It
is well-known [ZB] that in this case the expected boson density is

ρΛL
(β, µ) =

1

|ΛL|
∑

j∈Z+

1

eβ(εL(j)−µ) − 1
. (1.19)
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Here {εL(j)}j>0 is the spectrum of the one-particle operator tL and µ < minj>0 εL(j) →
0 as L→ ∞. It also has the expression

ρΛL
(β, µ) =

∫ ∞

0

dÑL(E)

eβ(E−µ) − 1
(1.20)

in terms of the integrated density of states {ÑL(E)}L>0. The thermodynamic limit

Ñ (E) = limL→∞ ÑL(E) is independent of ”non-sticky” boundary conditions [RSIV]
and given by

dÑ (E) =
E(d−2)/2

(2π)d/2Γ(d/2)
dE . (1.21)

Then we get the limit of the expected density

ρ̃(β, µ) = lim
L→∞

ρΛL
(β, µ) =

∫ ∞

0

dÑ (E)

eβ(E−µ) − 1
. (1.22)

The critical particle density for the IBG is

ρ̃c(β) := sup
µ<0

ρ̃(β, µ) =

∫ ∞

0

dÑ (E)

eβE − 1
= ζ(d/2)/(2πβ)d/2 . (1.23)

Note the difference between ρ̃c(β) and ρc(β). In particular (1.23) is bounded only when
d > 2. Thus thermodynamic properties of the IBG in the standard TDL ΛL → Rd and
the WHT limit κ → ∞ are different in spite of delusive impression that they have to
produce identical systems.

Now we consider the mean-field interacting bosons trapped in the harmonic potential
(1.1). Its grand-canonical partition function is given by

Ξλ,κ(β, µ) :=
∞∑

n=0

eβ(µn−λn2/2κd) Tr Hn
symm

[⊗nGκ(β)] . (1.24)

We consider the case of β > 0, λ > 0 and arbitrary µ ∈ R. Hereafter, we suppress the
symbol λ from the left-hand side of (1.24), since we fix λ > 0 in the rest of the paper.

Remark 1.1 The scaling with the ”volume” κd (imposed by the WHT) is a conven-
tional way to consider the Bose-Einstein condensation in traps, see [DGPS], [LSSY],
[PeSm]. Our definition of the MF interaction in WHT applies a space-average over the
”volume” κd, which plays the same rôle as |ΛL| in the standard mean field model where
the interaction has the form λn2/2|ΛL|, see e.g. [ZB].

Notice that λ > 0 corresponds to repulsive mean-field (MF) particle interaction,
whereas λ = 0 is the case of the IBG (1.4).

In the present paper we consider in (1.24) only the ”square” mean-field repulsive
interaction U2 := λn2/2κd . Although application of the Large Deviation technique makes
it possible to consider also the case of the general MF interaction UΦ := κdΦ(n/κd),
where Φ : R → R is a piece-wise differentiable continuous function bounded from below,
see [TZ].
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To study the non-homogeneous condensation and the space distribution of the con-
stituent bosons in the system (1.24) we use the RPF νκ,β, i.e., the probability measure
on the space of locally finite point measures with generating functional:

Eκ,β,µ(f) : = Eκ,β,µ

[
e−〈f,ξ〉

]
(1.25)

=
1

Ξκ(β, µ)

∞∑

n=0

eβµn−βλn
2/2κd

Tr Hn
symm

[⊗n(Gκ(β)e−f)] ,

where f ∈ C0(R
d), f > 0. Here Eκ,β,µ

[
·

]
stands for expectation with respect to

νκ,β,µ(dξ), and ξ denotes the integral variable which represents locally finite point mea-
sure, see [DV, TIa, TIb, TIc]. The measure νκ,β,µ describes a finite RPF whose Janossy
measure can be given explicitly, see Remark 2.1.

In the present paper we study the properties of the MF interacting boson RPF νκ,β,µ
in the WHT limit κ → ∞ by analyzing the generating functional (1.25). To this end
we first define the MF critical chemical potential

µλ,c(β) := λ

∫

[0,∞)d

dp

eβ|p|1 − 1
= λ

∫ ∞

0

dN (E)

eβ(E−µ) − 1
=
λζ(d)

βd
. (1.26)

This critical parameter is similar to the critical chemical potential µ̃c(β) := λ ρ̃c(β) for
the standard homogeneous MF boson gas via TDL, see e.g. [ZB] and (1.23).

1.3 Main Results

Now we can formulate our main theorem:

Theorem 1.2 (i) Let µ < µλ,c(β) (normal phase). Then the RPF νκ,β,µ defined by
(1.25), converges weakly in the WHT limit κ→ ∞ to the boson RPF νβ,r∗ corresponding
to the generating functional:

Eβ,r∗(f) : = Eβ,r∗

[
e−〈f,ξ〉

]
(1.27)

= Det
[
1 +

√
1 − e−f r∗G(β)(1 − r∗G(β))−1

√
1 − e−f

]−1
.

Here Eβ,r∗

[
·
]

denotes expectation with respect to the measure νβ,r∗, Det stands for the

Fredholm determinant, G(β) := eβ∆/2 is the heat semigroup on H and r∗ = r∗(β, µ, λ) ∈
(0, 1) is a unique solution of the equation :

βµ = log r + λβ

∫ ∞

0

dN (E)

r−1eβ E − 1
. (1.28)

(ii) For µ > µλ,c(β) (condensed phase), the generating functional (1.25) has the following
asymptotics:

lim
κ→∞

1

κd/2
logEκ,β,µ(f) = − µ− µλ,c(β)

πd/2λ
(
√

1 − e−f , (1 +Kf )
−1

√
1 − e−f ), (1.29)

where Kf :=
(
G(β)1/2(1 −G(β))−1/2

√
1 − e−f

)∗ (
G(β)1/2(1 −G(β))−1/2

√
1 − e−f

)
is

a positive trace-class operator on H = L2(Rd) for d > 2.
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Remark 1.3 For dimensions d > 1 the integral (1.26) is finite. This gives an idea
that the BEC is possible for the case µ > µλ,c(β) and dimensions d > 1. However, in
the present paper we assume d > 2 to be able to prove our main theorem. In fact for
d = 2, the operator Kf is not a trace-class operator and the Fredholm determinant is
not well-defined, see [TIb].

Remark 1.4 Because of a technical difficulty, actually we do not have results for the
critical case µ = µλ,c(β).

Remark 1.5 The heat semigroup G(β) is appeared here since its kernel

G(β; x, y) = (2πβ)−d/2e−|x−y|2/2β

is the point-wise limit of the Mehler kernel (1.9), as κ → ∞. Therefore the generating
functional of the resulting RPF (1.27) in (i) has exactly the same form as that for the
standard homogeneous IBG in the non-condensed phase, see eq.(2.13) in [TIa], see also
[ShTa]. That is, the position distribution of the model in the non-condensed phase is
coincides with that of the standard IBG. However, it is the integrated density of states
N (E) that is appeared in (1.28), instead of Ñ (E). It implies that the dependence of r∗
as a function of parameters, especially β, is different from standard IBG or the standard
MF-model.

Remark 1.6 The RPF describing BEC for homogeneous IBG is given by the convolu-
tion of two RPFs [TIb]. One convolution component is the usual boson RPF, while the
other component seems to describe the position distribution of the condensed part of the
constituent bosons. The behaviour of the generating functional in case (ii) shows that
the latter component overwhelms the former in the present model. It is to be noted here
that the latter can not be explained by the particles in the ground state alone, it contains
the effect of the interference between “the condensed part” and “the normal part” [EK],
although the intensity of the RPF is proportional to the square of the ground state wave
function, as (1.15).

The sharp contrast between two regimes (i) and (ii) in Theorem 1.2 may be seen by
the expectation values.

Corollary 1.7 For the case (i) µ < µλ,c(β) (normal phase )

Eβ,r∗

[
〈f, ξ〉

]
= Tr [f r∗G(β)(1 − r∗G(β))−1] = ρr∗

∫

Rd

dx f(x)

holds, where ρr∗ is given by

ρr∗ = r∗G(β)(1 − r∗G(β))−1(x, x) =
∞∑

n=1

rn∗ /(2πβn)d/2.

For the case (ii) µ > µλ,c(β) (condensed phase),

lim inf
κ→∞

Eκ,β,µ,λ

[
〈f, ξ〉

]

κd/2
>
µ− µλ,c(β)

πd/2λ

∫

Rd

dx f(x) (1.30)

holds, where f ∈ C0(R
d).
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The weak limits of the RPFs concerns the limit of the local position distribution
of particles. In this sense, the results of Theorem 1.2 and Corollary 1.7 in regime (i)
may be interpreted as follows: in the WHT limit the position distribution of the MF
interacting bosons in neighbourhoods of the origin of coordinates (i.e. the bottom of
the WHT potential) is close to that of a free IBG corresponding to the unconventional
parameter (1.28). The information about the particle position distribution in domains
distant from the bottom of the WHT are missing in the limit νβ,r∗ . In order to take this
“tail” particles into account we use the standard definition of the grand-canonical total
number of particles for our model :

ρ
(tot)
κ,λ (β, µ) :=

1

κd β

∂ ln Ξκ(β, µ)

∂µ
(1.31)

=
1

κd Ξκ,λ(β, µ)

∞∑

n=0

n eβ(µn−λn2/2κd) Tr Hn
symm

[⊗nGκ(β)] .

Since κd is interpreted as the effective volume of the model, ρ
(tot)
κ,λ (β, µ) represents the

effective total space-averaged density of the non-homogeneous system (1.24).

Theorem 1.8 The WHT limit of (1.31)

ρ
(tot)
λ (β, µ) = lim

κ→∞
ρ

(tot)
κ,λ (β, µ) = lim

κ→∞
κ−dTr [r∗Gκ(1 − r∗Gκ)

−1] (1.32)

exists and satisfies :
(i) (µ ≤ µλ,c(β))

ρ
(tot)
λ (β, µ) =

∫

[0,∞)d

dN (E)

r−1
∗ eβE − 1

and βµ = log r∗ + λβρ
(tot)
λ (β, µ) ; (1.33)

(ii) (µ > µλ,c(β))

ρ
(tot)
λ (β, µ) = µ/λ . (1.34)

It also holds that

ρ(tot)
c (β) := lim

µ→µc(β)
ρ

(tot)
λ (β, µ) = ζ(d)/βd . (1.35)

Remark 1.9 The readers should not to confuse two “densities” : ρr∗ in Corollary 1.7

and ρ
(tot)
λ (β, µ) defined above. The ρr∗ can be interpreted as the limit of the “local”

density around the origin of coordinate of non-homogeneous RPF νκ,β,µ, on the other

hand the ρ
(tot)
λ (β, µ) retains the information about the expectation of the total number of

particles with respect to νκ,β,µ through the WHT limit.

Note that ρ
(tot)
c (β) coincides with (1.13) of IBG in the WHT.

Remark 1.10 Qualitatively different behaviour of the space distributions of bosons de-
scribed in Theorem 1.2 can be understand heuristically with the help of Theorem 1.8 in
the following way. Consider the WHT limit κ→ ∞:
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In case (i) the bosons are distributed almost uniformly in the region of radius κ
according to the kernel (1.9).

On the other hand, in case (ii) (condensed phase) the condensed part of particles

κd(ρ
(tot)
λ (β, µ)− ρ

(tot)
λ,c (β)) = κd(µ−µλ,c(β))/λ is localized in the region of radius O(κ1/2)

according to the profile of the square of the ground state wave function Ωκ. Whereas the
particles outside of the condensate essentially spread out over the region of radius κ.

The paper is organized as follows. Preliminary estimates and results concerning the
WHT limit for the mean-field interacting boson gas (λ > 0) are collected in Section 2.
Section 3 and 4 are dedicated to the proof of Theorem 1.2 and 1.8, respectively. We
reserved Section 5 for summary and conjectures.

2 Preliminary Arguments and Estimates

In this section, we write the expectation (1.25) as the ratio Ξ̃κ(β, µ)/Ξκ(β, µ). The
representations of Ξ̃κ(β, µ) and Ξκ(β, µ) are given in the form of integration of Fredholm
determinants. We also give the miscellaneous estimates needed for the evaluation of
these integrals.

2.1 Ξκ(β, µ) and Ξ̃κ(β, µ)

In terms of the projection operator on Hn = ⊗nL2(Rd) onto its subspace Hn
symm, the

grand-canonical partition function can be written as

Ξκ(β, µ) =
∞∑

n=0

eβµn−βλn
2/2κd 1

n!

∑

σ∈Sn

Tr ⊗nL2(Rd)

[(
⊗n Gκ(β)

)
U(σ)

]
,

where the second sum is taken over the symmetric group Sn and

U(σ)ϕ1 ⊗ · · · ⊗ ϕn = ϕσ−1(1) ⊗ · · · ⊗ ϕσ−1(n) for σ ∈ Sn, ϕ1, · · · , ϕn ∈ L2(Rd).

Hence we have

Ξκ(β, µ) =

∞∑

n=0

eβµn−βλn
2/2κd

n!

∑

σ∈Sn

∫

(Rd)n

( n∏

j=1

Gκ(β)(xj, xσ−1(j))
)
dx1 · · · dxn

=
∞∑

n=0

eβµn−βλn
2/2κd

n!

∫

(Rd)n

Per
{
Gκ(β)(xi, xj)

}
16i,j6n

dx1 · · · dxn ,

here Per stands for the permanent of the matrix
{
Gκ(β)(xi, xj)

}
16i,j6n

.

Remark 2.1 The point field νκ,β,µ of (1.25) can also be defined in terms of Janossy
measures or exclusion probability [DV]. This means that νκ,β,µ is a finite point field,
which assigns the probability

Pr{dXn} :=
eβµn−βλn

2/2κd

n! Ξκ(β, µ)
Per

{
Gκ(β)(xi, xj)

}
16i,j6n

dx1 · · ·dxn
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to the event {dXn}: there are exactly n points, one in each infinitesimal region∏d
i=1(x

(i)
j , x

(i)
j + dx

(i)
j ),

(
xj = (x

(1)
j , · · · , x(d)

j ), j = 1, · · · , n
)
.

As in [TIa, TIb], we use the generalized Vere-Jones’ formula [ShTa, V] in the form

1

n!

∫
Per {J(xi, xj)}16i,j6n dx1 · · ·dxn =

∮

Sr(0)

dz

2πizn+1Det(1 − zJ)
,

where r > 0 satisfies ||rJ || < 1. Sr(ζ) denotes the integration contour defined by the
map θ 7→ ζ + r exp(iθ), where θ ranges from −π to π, r > 0 and ζ ∈ C. Then we obtain

Ξκ(β, µ) =

∞∑

n=0

eβµn−βλn
2/2κd

∮

Sr(0)

dz

2πizn+1Det(1 − zGκ(β))
,

where r ∈ (0, ||Gκ(β)||−1) = (0, 1). Note that the zeroth term is 1 in this expression.
Let us substitute

e−βλn
2/2κd

=

√
βλ

2πκd

∫

R

dx exp
(
− βλ

2κd
((x+ is)2 − 2in(x+ is))

)
. (2.1)

If s > 0 satisfies
eβµ−βλs/κ

d

< r,

we can take the summation over n together with the complex integration and a scaling
of x to get

Ξκ(β, µ) =

√
βλ

2πκd
eβλs

2/2κd

∫

R

dx

∮
dz

2πi

e−βλ(x2+2isx)/2κd

(
z − eβµ+βλ(ix−s)/κd

)
Det[1 − zGκ(β)]

=

√
κd

2πβλ
eβλs

2/2κd

∫

R

dx
e−isx−κ

dx2/2βλ

Det[1 − eβµ+ix−βλs/κdGκ(β)]
. (2.2)

Note that after z-integration, r disappears and (2.2) is valid for any s satisfying exp(βµ−
βλs/κd) ∈ (0, ||Gκ(β)||−1). We will estimate the integral in the spirit of saddle point
method. Here, we extract the main part from the integral. Let s = sκ, r = rκ be the
unique solution of the system:

{
r = exp

(
βµ− βλs/κd)

s = Tr [rGκ(β)(1 − rGκ(β))−1].
(2.3)

Obviously, the condition rκ ∈ (0, ||Gκ(β)||−1) is fulfilled. Hence, we can substitute in
(2.2) s by sκ. Using the product property of the Fredholm determinant, we get for
denominator of (1.25) the representation:

Ξκ(β, µ) =

√
κd

2πβλ

eβλs
2
κ/2κ

d

Det[1 − rκGκ(β)]

∫

R

dx
e−isκx−κdx2/2βλ

Det[1 − (eix − 1)rκGκ(β)(1 − rκGκ(β))−1]

(2.4)

11



For the numerator of (1.25), we introduce bounded symmetric operators

G̃κ(β)(f) := Gκ(β)1/2e−fGκ(β)1/2 , (2.5)

indexed by function f ∈ C0(R
d), f > 0, which we skip below for simplicity. Then for

generating functional (1.25) one gets the form: Eκ,β,µ(f) = Ξ̃κ(β, µ)(f)/Ξκ(β, µ), where

Ξ̃κ(β, µ)(f) = Ξ̃κ(β, µ) =

∞∑

n=0

eβµn−βλn
2/2κd

Tr Hn
symm

[⊗nG̃κ(β)]

=

√
κd

2πβλ

eβλs̃
2
κ/2κ

d

Det[1 − r̃κG̃κ(β)]

∫

R

dx
e−is̃κx−κdx2/2βλ

Det[1 − (eix − 1)r̃κG̃κ(β)(1 − r̃κG̃κ(β))−1]
. (2.6)

Here (s̃κ, r̃κ) is the unique solution of

{
r̃ = exp

(
βµ− βλs̃/κd)

s̃ = Tr [r̃G̃κ(β)(1 − r̃G̃κ(β))−1].
(2.7)

Obviously, r̃κ ∈ (0, ||G̃κ(β)||−1). Note also that rκ and r̃κ satisfy the following conditions
respectively:

1

κd
Tr [rκGκ(β)(1 − rκGκ(β))−1] =

βµ− log rκ
βλ

, (2.8)

1

κd
Tr [r̃κG̃κ(β)(1 − r̃κG̃κ(β))−1] =

βµ− log r̃κ
βλ

. (2.9)

Since by definition (2.5) one obviously gets: G̃κ(β) 6 Gκ(β), the operator G̃κ(β)
also belongs to the trace-class C1(H). We put the eigenvalues of G̃κ(β) in the decreasing
order

g̃
(κ)
0 = ||G̃κ(β)|| > g̃

(κ)
1 > · · ·

Then, we have g
(κ)
j > g̃

(κ)
j (j = 0, 1, 2, · · · ) by the min-max principle.

2.2 Approximations of One-Particle Gibbs Semigroups

Here we establish some relations between Gibbs semigroup {Gκ(β)}β≥0 and the heat
semigroup {G(β)}β≥0. Let Pκ be the orthogonal projection on H onto its one-dimensional
subspace spanned by the vector Ωκ, and put Qκ := I − Pκ.

Lemma 2.2 For any r ∈ (0, 1),

||
√

1 − e−f
[
rGκ(β)(1 − rGκ(β))−1 − rG(β)(1 − rG(β))−1

]√
1 − e−f ||1 → 0, (2.10)

||
√

1 − e−fQκGκ(β)Qκ(1 −QκGκ(β)Qκ)
−1

√
1 − e−f −Kf ||1 → 0 (2.11)

hold in the limit κ→ ∞, where || · ||1 stands for the trace norm in C1(L
2(Rd)).
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Proof : First, we show the estimates

|Gn
κ(β; x, y) −Gn(β; x, y)| 6

A′

κnd/2−1

(
1 +

|x|2 + |y|2
κ

)
if nβ/κ 6 1, (2.12)

|Gn
κ(β; x, y) − Ωκ(x)Ωκ(y)| 6

B′e−nβ/2κ

κd/2

(
1 +

|x− y|2
κ

)
if nβ/κ > 1, (2.13)

where A′ and B′ depend only on d and β. In fact, by the Mehler’s formula one gets for
nβ/κ 6 1 the estimate:

|Gn
κ(β; x, y) −Gn(β; x, y)|

6
1

(2πnβ)d/2

∣∣∣∣
(

2nβ/κ

1 − e−2nβ/κ

)d/2

− 1

∣∣∣∣ exp
(
− tanh(nβ/2κ)

2κ
(|x|2 + |y|2) − |x− y|2

2κ sinh(nβ/κ)

)

+
1

(2πnβ)d/2

∣∣∣ exp
(
− tanh(nβ/2κ)

2κ
(|x|2 + |y|2)

)
− 1

∣∣∣ exp
(
− |x− y|2

2κ sinh(nβ/κ)

)

+
1

(2πnβ)d/2

∣∣∣∣1 − exp

(
−

(sinh(nβ/κ)

(nβ/κ)
− 1

) |x− y|2
2κ sinh(nβ/κ)

)∣∣∣∣ exp
(
− |x− y|2

2κ sinh(nβ/κ)

)

6
1

(2πnβ)d/2

(Anβ
κ

+
|x|2 + |y|2

2κ

nβ

2κ
+

(nβ
κ

)2 |x− y|2
2κ sinh(nβ/κ)

)
exp

(
− |x− y|2

2κ sinh(nβ/κ)

)

6
A′

κnd/2−1

(
1 +

|x|2 + |y|2
κ

)
.

Here we have used (A.2) for the first term, (A.4, A.6) for the second term and (A.4,
A.8) for the third term at the second inequality and (A.8) at the last inequality.

On the other hand for nβ/κ > 1, we obtain:

|Gn
κ(β; x, y) − Ωκ(x)Ωκ(y)|

6
1

(πκ)d/2

∣∣∣∣
(

1

1 − e−2nβ/κ

)d/2

− 1

∣∣∣∣ exp
(
− tanh(nβ/2κ)

2κ
(|x|2 + |y|2) − |x− y|2

2κ sinh(nβ/κ)

)

+
1

(πκ)d/2

∣∣∣ exp
(
− tanh(nβ/2κ)

2κ
(|x|2 + |y|2)

)
− exp

(
− |x|2 + |y|2

2κ

)∣∣∣ exp
(
− |x− y|2

2κ sinh(nβ/κ)

)

+
1

(πκ)d/2
exp

(
− |x|2 + |y|2

2κ

)∣∣∣ exp
(
− |x− y|2

2κ sinh(nβ/κ)

)
− 1

∣∣∣

6
1

(πκ)d/2

(
Be−2nβ/κ +

1

e

(
coth

(nβ
2κ

)
− 1

)
+

|x− y|2
2κ sinh(nβ/κ)

)

6
B′e−nβ/2κ

κd/2

(
1 +

|x− y|2
κ

)
,

where we have used (A.3) for the first term, (A.5,A.7) for the second term and (A.4,A.9)
for the third term.
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Now, let us show the second limit (2.11), notice that the inequality:

∞∑

n=1

|Gn
κ(β; x, y)−Gn(β; x, y)− Ωκ

0(x)Ω0,κ(y)|

6

⌈κ/β⌉∑

n=1

(
A′

κnd/2−1

(
1 +

|x|2 + |y|2
κ

)
+

1

(πκ)d/2

)

+
∞∑

n=⌈κ/β⌉+1

(
B′e−nβ/2κ

κd/2

(
1 +

|x− y|2
κ

)
+

1

(2πnβ)d/2

)

6 C ′(κ1−d/2 ∨ κ−1 log κ)
(
1 +

|x|2 + |y|2
κ

)
,

holds for C ′, which depends only on d and β. The integer part is denoted by ⌈·⌉. Here
we used the estimates (2.12), (2.13) and

N∑

n=1

1

nd/2−1
=





O(1) (d/2 > 2)

O(N2−d/2) (1 <)d/2 < 2

O(logN) d/2 = 2

and so on. Now put

A(κ) :=
√

1 − e−fQκGκ(β)Qκ(1 −QκGκ(β)Qκ)
−1

√
1 − e−f .

Then, since ||QκGκ(β)Qκ|| = e−β/κ < 1, one gets in the limit N → ∞ the operator-norm
convergence:

A
(κ)
N =

√
1 − e−f

N∑

n=1

QκGκ(β)nQκ

√
1 − e−f → A(κ) ≥ 0 . (2.14)

Recall that Theorem 3.1(i) and Proposition 2.3(i) of [TIb] yield the strong convergence:

KN =
√

1 − e−f
N∑

n=1

G(β)n
√

1 − e−f → Kf ≥ 0 (2.15)

for N → ∞. Moreover, we also have the following estimate for the operator norm.

||A(κ)
N −KN || = sup

||φ||=1

|(φ,
√

1 − e−f
N∑

n=1

(QκGκ(β)nQκ −G(β)n)
√

1 − e−f φ)|

6 sup
||φ||=1

∫

supp f

dx

∫

supp f

dy
√

1 − e−f(x)
√

1 − e−f(y)|φ(x)φ(y)|

×
N∑

n=1

|Gn
κ(β; x, y) −Gn(β; x, y) − Ωκ(x)Ωκ(y)|

14



6 ||
√

1 − e−f ||2 sup
x,y∈supp f

∞∑

n=1

|Gn
κ(β; x, y)−Gn(β; x, y)− Ωκ

0(x)Ω0,κ(y)| → 0

for κ → ∞ uniformly in N . Here ||
√

1 − e−f || stands for the L2 norm of the function.
We have used Cauchy-Schwarz inequality at the second inequality. The standard 3ǫ-
argument yields that A(κ) → Kf strongly when κ→ ∞.

On the other hand, since the operators A(κ), Kf are non-negative, we have for κ→ ∞
the limit:

||A(κ)||1 − ||Kf ||1 = TrA(κ) − TrKf =

∞∑

n=1

(φn, (A
(κ) −Kf)φn)

=

∞∑

n=1

∞∑

l=1

(φn,
√

1 − e−f (QκGκ(β)lQκ −G(β)l)
√

1 − e−fφn)

=

∞∑

l=1

∞∑

n=1

(φn,
√

1 − e−f (QκGκ(β)lQκ −G(β)l)
√

1 − e−fφn)

=
∞∑

l=1

Tr
√

1 − e−f(QκGκ(β)lQκ −G(β)l)
√

1 − e−f

=
∞∑

l=1

∫

supp f

(1 − e−f(x))(Gl
κ(β; x, x) −Gl(β; x, x) − Ωκ(x)

2) dx→ 0,

where {φn}∞n=1 is an arbitrary complete ortho-normal system in H. Note that we can
exchange the order of summations over n and l, since

TrA(κ) =
∑

n,l

(φn,
√

1 − e−fQκGκ(β)lQκ

√
1 − e−fφn)

and
TrKf =

∑

n,l

(φn,
√

1 − e−fGl(β)
√

1 − e−fφn)

are convergent non-negative sequences. Here we used (2.14) and (2.15) in the third
equality above. Thus, we get limκ→∞A(κ) = Kf in C1(H) by the Grümm convergence
theorem, see e.g. [Z].

Let us consider the first limit (2.10). Since the identity rGκ(β)(1 − rGκ(β))−1 =∑∞
n=1 r

nGκ(β)n holds in the operator norm topology and Gn
κ(β; x, y) > 0 ,(by virtue of

Lemma 2.2(ii) in [TIb]) we get the representation:

[
rGκ(β)(1 − rGκ(β))−1

]
(x, y) =

∞∑

n=1

rnGn
κ(β; x, y).

Similarly, one gets the representation:

[
rG(β)(1 − rG(β))−1

]
(x, y) =

∞∑

n=1

rnGn(β; x, y) .
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In fact the series in the right-hand side of the above representations are point-wise
convergent because the uniform estimates

Gn
κ(β; x, y) 6

( 1

πβ
∨ 2

πκ

)d/2
, Gn(β; x, y) 6

( 1

2πβ

)d/2

hold for all κ > 0, x, y ∈ Rd and n ∈ N. Here we used (A.1) for the first inequality.
Hence we obtain the estimate

∣∣[rGκ(β)(1−rGκ(β))−1
]
(x, y)−

[
rG(β)(1−rG(β))−1

]
(x, y)

∣∣ 6

∞∑

n=1

rn|Gn
κ(β; x, y)−Gn(β; x, y)|

6

⌈κ/β⌉∑

n=1

rn
A′

κnd/2−1

(
1 +

|x|2 + |y|2
κ

)
+

∞∑

n=⌈κ/β⌉+1

rn
[( 1

2πβ

)d/2
+

( 1

πβ
∨ 2

πκ

)d/2]

6
A′

κ(1 − r)

(
1 +

|x|2 + |y|2
κ

)
+ C

r⌈κ/β⌉+1

1 − r

which tends to zero when κ → ∞, uniformly in x, y ∈ C for any compact set C, where
C denotes a constant which depends only on d and on β.

Thus,

sup
x,y∈supp f

∣∣[rGκ(β)(1 − rGκ(β))−1
]
(x, y) −

[
rG(β)(1 − rG(β))−1

]
(x, y)

∣∣ → 0

holds. We get the first of the announced limits (2.10) by the similar (even simpler)
argument to the second one. This finishes the proof of the lemma. 2

2.3 Estimates for the Scaled Mean-Field Interaction

In the followings, we use the notation Bκ := Ô(κα), which means that there exist two
numbers c1 > c2 > 0 such that

c1κ
α

> Bκ > c2κ
α.

Next, we put Wκ := (Gκ(β))1/2
√

1 − e−f and define Dκ := Gκ(β) − G̃κ(β) = WκW
∗
κ .

Lemma 2.3 For large κ > 0, the following asymptotics hold:

(Ωκ, DκΩκ) = ||W ∗
κΩκ||2 = ||

√
1 − e−f ||2(1 + o(1))/(πκ)d/2,

TrDκ =
||
√

1 − e−f ||2(1 + o(1))
(
πκ(1 − e−2β/κ)

)d/2

and

g
(κ)
0 − g̃

(κ)
0 = (Ωκ, (Dκ −DκQκ[g̃

(κ)
0 −QκG̃κ(β)Qκ]

−1QκDκ)Ωκ)

=
1 + o(1)

(πκ)d/2
(
√

1 − e−f , [1 +W ∗
κQκ[1 −QκGκ(β)Qκ]

−1QκWκ]
−1

√
1 − e−f)

= Ô(κ−d/2) .
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Proof: For simplicity of notation we suppress everywhere below the index κ in g
(κ)
j , g̃

(κ)
j ,Ω(κ)

and in Qκ.
Note that the first equality is a straightforward consequence of definitions (1.8),

(2.5). The second equality can be derived directly from the Mehler’s formula.
Now by the min-max principle, for d > 2 and κ large enough, we obtain from the

value g1 = exp(−β/κ) the following estimates:

g0 = 1 > g̃0 > (Ω, G̃κ(β)Ω) = 1 − (Ω, DκΩ) (2.16)

= 1 − Ô(κ−d/2) > g1 = 1 − Ô(κ−1) > g̃1 .

Hence the eigenspace of the operator G̃κ(β) for its largest eigenvalue g̃0 is one-dimensional.
Let Ω̃ be the normalized eigenfunction corresponding to g̃0 and let Ω̃ = aΩ + Ω′ , with
(Ω,Ω′) = 0. Then G̃κ(β)Ω̃ = g̃0Ω̃ yields

aG̃κ(β)Ω + G̃κ(β)Ω′ = ag̃0Ω + g̃0Ω
′ .

Applying to this relation orthogonal projector P (on Ω) and Q = I − P , we obtain:

ag0 − a(Ω, DκΩ) − (Ω, DκΩ
′) = a g̃0 ,

−aQDκΩ +QG̃κ(β)QΩ′ = g̃0 Ω′ .

Since QG̃κ(β)Q 6 QGκ(β)Q 6 g1 < g̃0, the operator g̃0 − QG̃κ(β)Q is positive and
invertible. It follows from the second identity that

Ω′ = −a[g̃0 −QG̃κ(β)Q]−1QDκΩ. (2.17)

Together with the above first identity,

g0 − g̃0 = (Ω, (Dκ −DκQ[g̃0 −QG̃κ(β)Q]−1QDκ)Ω)

= (W ∗
κΩ, (1 −W ∗

κQ[g̃0 −QG̃κ(β)Q]−1QWκ)W
∗
κΩ) (2.18)

follows.
For brevity, we put

X ′ := W ∗
κQ[g̃0 −QGκ(β)Q]−1QWκ , X := W ∗

κQ[1 −QGκ(β)Q]−1QWκ

and
X̃ := W ∗

κQ[g̃0 −QG̃κ(β)Q]−1QWκ .

Then we get
X̃ −X ′ = −X̃X ′,

and hence
X̃ = X ′(1 +X ′)−1 and 1 − X̃ = (1 +X ′)−1. (2.19)

By definition of Wκ and (1.8) one gets for large κ the asymptotic:

W ∗
κΩ =

√
1 − e−f(πκ)−d/4(1 +O(κ−1)) .
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By virtue of (2.18) it implies the representation:

g0 − g̃0 = (πκ)−d/2(
√

1 − e−f , (1 +X ′)−1
√

1 − e−f )(1 +O(κ−1)) . (2.20)

Now, we want to replace in the right hand side of this representation the operator
X ′ by X . Note that (2.11) yields ||X −Kf || 6 ||X −Kf ||1 = o(1). Then by 1 − g̃0 =

O(κ−d/2), g̃0 − g1 = Ô(κ−1), 1 − g1 = Ô(κ−1) and ||W ∗
κΩ|| = Ô(κ−d/4), we find that

||X ′ −X|| = (1 − g̃0)||W ∗
κQ[g̃0 −QGκ(β)Q]−1[1 −QGκ(β)Q]−1QWκ||

6
1 − g̃0

g̃0 − g1
||W ∗

κQ[1 −QGκ(β)Q]−1QWκ||

= O(κ1−d/2)||X|| = O(κ1−d/2)||Kf || ,

which implies ||X ′|| 6 ||Kf ||(1 + o(1)). Hence (2.20) yields

(πκ)d/2(g0−g̃0) = (
√

1 − e−f , (1+X ′)−1
√

1 − e−f )(1+O(κ−1)) >
||
√

1 − e−f ||2
1 + ||Kf ||

(1+o(1)).

Since the upper bound (πκ)d/2(g0−g̃0) 6 (πκ)d/2(Ω, DκΩ) 6 ||
√

1 − e−f ||2 is obvious,
we get desired estimate g0 − g̃0 = Ô(κ−d/2). Notice that the proof of the equality

g0 − g̃0 =
1 + o(1)

(πκ)d/2
(
√

1 − e−f , [1 +X]−1
√

1 − e−f )

follows from (2.20) and the estimate:

|(
√

1 − e−f , (1 +X ′)−1
√

1 − e−f) − (
√

1 − e−f , (1 +X)−1
√

1 − e−f )|

6 ||
√

1 − e−f ||2||(1 +X)−1|| ||(1 +X ′)−1|| ||X −X ′|| = o(1) .

Here ‖
√

1 − e−f‖ stands for the norm in H = L2(Rd), while the other ‖ · ‖ for the
operator norm on H. This remark finishes the proof of the lemma. 2

2.4 Evidence of Two Thermodynamic Regimes

Now we return to the conditions (2.8). We need the behavior of rκ and r̃κ to prove the
main theorem. Here we consider the behavior of rκ, which classifies the phase separation.
That of r̃κ is postponed to Section 4.

Proposition 2.4 (a) {rκ} converges to r∗ ∈ (0, 1) for κ → ∞, where r∗ is the unique
solution of

µ

λ
=

log r∗
βλ

+
1

βd

∫

[0,∞)d

r∗dp

e|p|1 − r∗
, (2.21)

if and only if βdµ < ζ(d)λ .
(b) κd(1 − rκ) −→ βdλ/(βdµ − ζ(d)λ), and hence limκ→∞ rκ = 1, if and only if βdµ >
ζ(d)λ.
(c) limκ→∞ rκ = 1 and κd(1 − rκ) −→ +∞ , if and only if βdµ = ζ(d)λ.
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To this end let us introduce the notation:

2
(κ)
n : =

β

κ
(n+ [0, 1)d) for n ∈ Z

d
+,

and define for r ∈ [0, 1], ν = 1, 2 and κ ∈ [1,∞), the functions aν( · ; r), a(κ)
ν ( · ; r) on

[0,∞)d by

aν(p; r) :=
re−|p|1

(1 − re−|p|1)ν

and by

a(κ)
ν (p; r) :=

{
0 if p ∈ 2

(κ)
0

aν(βn/κ; r) if p ∈ 2
(κ)
n for n ∈ Zd

+ − {0}.
It is easy to show the following fact. (See [TIb] for detail.)

Lemma 2.5 There exists a constant c which depends only on d > 2 and β > 0 such
that

0 6 a(κ)
ν (p; r) 6 aν(c p; 1) ∈ L1([0,∞)d)

holds for r ∈ [0, 1] and ν = 1, 2.

Remark 2.6 If a series {rκ} ⊂ [0, 1] converges to r0 ∈ [0, 1], a
(κ)
ν (·, rκ) → aν(·, r0) holds

a.e.. Then the lemma and the dominated convergence theorem yield

Tr [rκQκGκ(β)Qκ(1 − rκQκGκ(β)Qκ)
−ν ]

κd
=

1

κd

∞∑

j=1

rκg
(κ)
j

(1 − rκg
(κ)
j )ν

=
( 1

βd

)∫

[0,∞)d

a(κ)
ν (p; rκ) dp→

( 1

βd

)∫

[0,∞)d

aν(p; r0) dp

as κ→ ∞.

Proof of Proposition 2.4: If rκ → r∗ ∈ [0, 1), then by (2.8) and the above remark one
gets:

µ

λ
=

log rκ
βλ

+
1

βd

∫

[0,∞)d

a
(κ)
1 (p; rκ) dp+

rκ
(1 − rκ)κd

−→ log r∗
βλ

+
1

βd

∫

[0,∞)d

a1(p; r∗) dp <
1

βd

∫

[0,∞)d

a1(p; 1) dp =
ζ(d)

βd
.

Since equality holds at the limit actually, (2.21) follows. Similarly, if rκ → 1 and
κd(1 − rκ) → ∞, then one obtains:

µ

λ
=

log rκ
βλ

+
1

βd

∫

[0,∞)d

a
(κ)
1 (p; rκ) dp+

rκ
(1 − rκ)κd

−→ 1

βd

∫

[0,∞)d

a1(p; 1) =
ζ(d)

βd
.
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Finally, if κd(1 − rκ) → α > 0, we get

µ

λ
=

1

α
+
ζ(d)

βd
>
ζ(d)

βd
and α =

βdλ

βdµ− ζ(d)λ
.

On the other hand, if {rκ} does not converge, by compactness we can take two convergent
subsequences {rκi

} (i = 1, 2) with different limits 0 < r(1) < r(2) < 1. Then above
arguments yield

log r(1)

βλ
+

1

βd

∫

[0,∞)d

a1(p; r
(1)) dp =

log r(2)

βλ
+

1

βd

∫

[0,∞)d

a1(p; r
(2)) dp ,

which contradicts to the strict monotonicity of the function

h(r) =
log r

βλ
+

1

βd

∫

[0,∞)d

a1(p; r) dp . (2.22)

Similar arguments are valid for the cases r(1) = 0 or r(2) = 1. If rκ → 1 but κd(1 − rκ)
does not converge, we again get a contradiction. 2

3 Proof of Theorem 1.2

3.1 The case µ ≤ µc(β) (normal phase).

Let us recall that for the weak convergence of random point fields, it is enough to
prove the convergence of the generating functionals. Therefore, we have to evaluate the
integral in (2.4). We begin with estimates of the Fredholm determinant in the integrand.
For all values of x, we have

∣∣∣∣Det

(
1 − (eix − 1)

rκGκ(β)

1 − rκGκ(β)

)∣∣∣∣
2

= Det

[(
1 − (eix − 1)

rκGκ(β)

1 − rκGκ(β)

) (
1 − (e−ix − 1)

rκGκ(β)

1 − rκGκ(β)

)]

= Det

[
1 + 4 sin2 x

2

rκGκ(β)

(1 − rκGκ(β))2

]
> 1. (3.1)

Set α ∈ (d/3, d/2). Then for |x| 6 κ−α, we have

Det
[
1−(eix−1)

rκGκ(β)

1 − rκGκ(β)

]−1

= exp
[
ixTr

rκGκ(β)

1 − rκGκ(β)
−x

2

2
Tr

rκGκ(β)

(1 − rκGκ(β))2

](
1+O(κd−3α)

)

(3.2)
In fact,

log of the l.h.s. = −
∞∑

n=0

log
(
1 − (eix − 1)

rκg
(κ)
n

1 − rκg
(κ)
n

)
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= (eix − 1)Tr
rκGκ(β)

1 − rκGκ(β)
+

(eix − 1)2

2
Tr

( rκGκ(β)

1 − rκGκ(β)

)2

+R1,

where R1 = O(κd−3α) since rκ → r∗ ∈ (0, 1) and

Tr
[ rκGκ(β)

1 − rκGκ(β)

]ℓ
6

( rκg
(κ)
0

1 − rκg
(κ)
0

)ℓ−1

Tr
rκGκ(β)

1 − rκGκ(β)
= O(κd).

For the last equality, we recall (2.8) and Proposition 2.4(a).
Similarly, we have

(eix − 1)Tr
rκGκ(β)

1 − rκGκ(β)
=

(
ix− x2

2

)
Tr

rκGκ(β)

1 − rκGκ(β)
+O(κd−3α)

and
(eix − 1)2

2
Tr

( rκGκ(β)

1 − rκGκ(β)

)2

= −x
2

2
Tr

( rκGκ(β)

1 − rκGκ(β)

)2

+O(κd−3α).

Thus we get (3.2) and the following lemma.

Lemma 3.1

Ξκ(β, µ) =
eκ

d(βµ−log rκ)2/2βλ
(
1 +O(κd−3α)

)
√

1 + βλκ−dTr [rκGκ(β)(1 − rκGκ(β))−2]Det(1 − rκGκ(β))

Proof : From the above estimates and (2.3), we have

∫

R

dx
e−isκx−κdx2/2βλ

Det[1 − (eix − 1)rκGκ(β)(1 − rκGκ(β))−1]

=

∫ κ−α

−κ−α

dx e−κ
dx2/2βλ−isκx+ixTr [rκGκ(β)(1−rκGκ(β))−1]−x2Tr [rκGκ(β)(1−rκGκ(β))−2]/2

(
1+O(κd−3α)

)
+R2

=

∫ ∞

−∞

dx exp
[
−

( κd
βλ

+ Tr
rκGκ(β)

(1 − rκGκ(β))2

)x2

2

]
(1 +O(κd−3α)

)
+R2 +R3,

where

R2 =

∫

|x|>κ−α

e−isκx−κdx2/2βλ

Det[1 − (eix − 1)rκGκ(β)(1 − rκGκ(β))−1]
= O(e−c̃κ

d−2α

)

for some c̃ > 0, thanks to (3.1), and

R3 = −
∫

|x|>κ−α

dx exp
[
−

( κd
βλ

+ Tr
rκGκ(β)

(1 − rκGκ(β))2

)x2

2

]
(1 +O(κd−3α)

)

= O(e−c̃
′κd−2α

)

for some c̃′ > 0. Then, the lemma follows from (2.4) and (2.3). 2

For Ξ̃κ(β, µ), we have the following asymptotics:
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Lemma 3.2

Ξ̃κ(β, µ) =
eκ

d(βµ−log r̃κ)2/2βλ
(
1 +O(κd−3α)

)
√

1 + βλκ−dTr [r̃κG̃κ(β)(1 − r̃κG̃κ(β))−2]Det(1 − r̃κG̃κ(β))

To show the formula, we note that ”tilded” quantities are close to corresponding ”un-
tilded” ones. In fact, the following asymptotics is established. Then it is obvious to get
Lemma 3.2 by a similar argument.

Lemma 3.3 For large κ one gets:

(i) r̃κ > rκ,

(ii) r̃κ − rκ = O(κ−d),

(iii) Tr
[ rκGκ(β)

1 − rκGκ(β)

]
= Ô(κd), Tr

[ r̃κG̃κ(β)

1 − r̃κG̃κ(β)

]
= Ô(κd),

(iv) Tr
[ rκGκ(β)

(1 − rκGκ(β))2

]
− Tr

[ r̃κG̃κ(β)

(1 − r̃κG̃κ(β))2

]
= O(1).

Proof : (i) Let hκ be the functions on (0, 1) defined by

hκ(r) =
log r

βλ
+

1

κd
Tr

rGκ(β)

1 − rGκ(β)
=

log r

βλ
+

r

κd(1 − r)
+

1

βd

∫

[0,∞)d

a
(κ)
1 (p; r) dp.

We also introduce the function h̃κ on (0, g̃
(κ)−1
0 ) by

h̃κ(r) =
log r

βλ
+

1

κd
Tr

rG̃κ(β)

1 − rG̃κ(β)
.

Since Gκ(β) > G̃κ(β), hκ > h̃κ follows. Obviously hκ and h̃κ are strictly increasing
continuous functions. Then we have rκ 6 r̃κ, because rκ and r̃κ are solutions of hκ(r) =
µ/λ and h̃κ(r) = µ/λ, respectively. (Recall (2.8) and (2.9).)

(ii) From h̃κ(r̃κ) = hκ(rκ), we have

1

βλ
log

r̃κ
rκ

6 h̃κ(r̃κ) − h̃κ(rκ) = hκ(rκ) − h̃κ(rκ)

=
1

κd
Tr

[ 1

1 − rκG̃κ(β)
(Gκ(β) − G̃κ(β))

rκ
1 − rκGκ(β)

]
= O(κ−d).

Here we have used Lemma 2.3 and the fact that rκ is bounded away from 1. The desired
estimate follows.

(iii) Since we already know that rκ, r̃κ → r∗ ∈ (0, 1), we get these estimates readily
from (2.8) and (2.9).
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(iv) This can be derived by the telescoping together with (ii) and Lemma 2.3. 2

Now, let us consider the limit of the ratio Ξ̃κ(β, µ)/Ξκ(β, µ) to derive (1.27). From
Lemma 3.1 and Lemma 3.2, we have

Eβ,r∗
[
e−〈f,ξ〉

]
= lim

κ→∞

Ξ̃κ(β, µ)

Ξκ(β, µ)
= lim

κ→∞

√
1 + βλκ−dTr [rκGκ(β)(1 − rκGκ(β))−2]

1 + βλκ−dTr [r̃κG̃κ(β)(1 − r̃κG̃κ(β))−2]

×Det[1 − r̃κGκ(β)]

Det[1 − r̃κG̃κ(β)]

Det[1 − rκGκ(β)]

Det[1 − r̃κGκ(β)]
eκ

d(2βλ)−1[(βµ−log r̃κ)2−(βµ−log rκ)2].

Lemma 3.3 yields that the first factor is equal to 1 +O(κ−d). For the second factor, we
note that

∥∥∥∥
√

1 − e−f
r̃κGκ(β)

1 − r̃κGκ(β)

√
1 − e−f −

√
1 − e−f

r∗Gκ(β)

1 − r∗Gκ(β)

√
1 − e−f

∥∥∥∥
1

=

∥∥∥∥
√

1 − e−f

√
r∗Gκ(β)

1 − r∗Gκ(β)

r∗ − r̃κ
r∗

1

1 − r̃κGκ(β)

√
r∗Gκ(β)

1 − r∗Gκ(β)

√
1 − e−f

∥∥∥∥
1

6
r∗ − r̃κ
r∗(1 − r̃κ)

∥∥∥∥
√

1 − e−f
r∗Gκ(β)

1 − r∗Gκ(β)

√
1 − e−f

∥∥∥∥
1

→ 0

holds, where ‖ · ‖1 stands for the trace norm. Together with (2.10),

Det[1 − r̃κG̃κ(β)]

Det[1 − r̃κGκ(β)]
= Det[1 + r̃κ(Gκ(β) − G̃κ(β))(1 − r̃κGκ(β))−1]

= Det[1 +
√

1 − e−f
r̃κGκ(β)

1 − r̃κGκ(β)

√
1 − e−f ] → Det[1 +

√
1 − e−f

r∗G(β)

1 − r∗G(β)

√
1 − e−f ]

follows. Similarly for the third factor, we have

Det[1 − r̃κGκ(β)]

Det[1 − rκGκ(β)]
= Det

[
1 − r̃κ − rκ

rκ

rκGκ(β)

1 − rκGκ(β)

]

= exp
(
− r̃κ − rκ

rκ
Tr

[ rκGκ(β)

1 − rκGκ(β)

]
+O(κ−d)

)
= exp

(
− r̃κ − rκ

rκ

κd

βλ
(βµ−log rκ)+O(κ−d)

)
,

where we have used Lemma 3.3 and (2.8). It also follows from Lemma 3.3 that the
fourth factor is equal to

exp
[ κd

2βλ
(2βµ−log rκr̃κ) log

(
1+

rκ − r̃κ
r̃κ

)]
= exp

[
− r̃κ − rκ

rκ

κd

βλ
(βµ−log rκ)+O(κ−d)

]
.

Thus we get (1.27). Since convergence of generating functionals yields the weak
convergence of random point fields, Theorem 1.2(i) follows. 2
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3.2 The case µ > µc(β) (condensed phase).

Let us put:

p
(κ)
j =

rκg
(κ)
j

1 − rκg
(κ)
j

, ε
(κ)
j = log

(
1 +

1

p
(κ)
j

)
and δ(κ) = log

(
1 +

1

2p
(κ)
1

)

for j = 0, 1, · · · . Then it follows from (2.3) and Proposition 2.4(b) that

sκ =

∞∑

j=0

p
(κ)
j , 1+p

(κ)
0 =

1

1 − rκ
=
κd(βdµ− ζ(d)λ)

βdλ
(1+o(1)) = Ô(κd), ε

(κ)
0 = Ô(κ−d).

Since g
(κ)
1 = e−β/κ, we have

p
(κ)
1 = Ô(κ), δ(κ) = Ô(κ−1), ε

(κ)
1 = Ô(κ−1)

and
ε
(κ)
0 < δ(κ) < ε

(κ)
1 6 ε

(κ)
2 6 · · · .

Note also that sκ = Ô(κd) holds because of (2.3), (2.8). By Remark 2.6 and rκg
κ
j ∈ (0, 1)

∞∑

j=1

p
(κ) 2
j = O(κd). (3.3)

and (A.10), we get

∞∏

j=1

(
1 − p

(κ)
j

p
(κ)
0

)
= exp

( ∞∑

j=1

log
(
1 − p

(κ)
j

p
(κ)
0

))
= exp

(
− sκ − p

(κ)
0

p
(κ)
0

+O(κ−d)
)
.

Similarly, we have

∞∏

j=1

(1 − p
(κ)
j (eδ

(κ) − 1)) = exp
(
−

∞∑

j=1

p
(κ)
j (eδ

(κ) − 1) +O(κd−2)
)

= exp
(
− δ(κ)(sκ − p

(κ)
0 ) +O(κd−2)

)

since p
(κ)
j (eδ

(κ) − 1) 6 p
(κ)
1 (eδ

(κ) − 1) = 1/2 for j = 1, 2, · · · .

Lemma 3.4 For large κ we have the asymptotics:

Ξκ(β, µ) =

√
2πβλ

e2κd
βd−1eκ

d(βµ−log rκ)2/2βλ

(βdµ− ζ(d)λ)Det(1 − rκGκ(β))
(1 + o(1)). (3.4)

Proof : As in the proof of Lemma 3.1, we start with the integral

I =

∫

R

dx
e−isκx−κdx2/2βλ

Det[1 − (eix − 1)rκGκ(β)(1 − rκGκ(β))−1]
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=

∫ ∞

−∞

dz
e−isκz−κdz2/2βλ

∏∞
j=0(1 − (eiz − 1)p

(κ)
j )

=

( ∫ ∞

−∞

−
∫ ∞−iδ(κ)

−∞−iδ(κ)

)
+

∫ ∞−iδ(κ)

−∞−iδ(κ)

= I1 + I2.

Since 1 + p
(κ)
0 − eizp

(κ)
0 = (1 + p

(κ)
0 )

(
1 − ei(z−2nπ+iǫ

(κ)
0 )

)
, the integrand of I1 has simple

poles at z = 2nπ − iǫ
(κ)
0 (n ∈ Z). Let us calculate I1 by means of residues:

I1 = −2πi
∞∑

n=−∞

Res
[ 1

(1 + p
(κ)
0 )

(
1 − ei(z−2nπ+iǫ

(κ)
0 )

)
e−isκz−κdz2/2βλ

∏∞
j=1(1 − (eiz − 1)p

(κ)
j )

; 2nπ − iǫ
(κ)
0

]

=
2πe−sκǫ

(κ)
0 +κdǫ

(κ) 2
0 /2βλ

(1 + p
(κ)
0 )

∏∞
j=1(1 − p

(κ)
j /p

(κ)
0 )

(
1 +O

(
e−2π2κd/βλ

))

=
2πβdλe−1+O(κ−d)

κd(βdµ− ζ(d)λ)
.

Here the pole z = −iǫ(κ)
0 gives the dominant contribution in the second equality. In the

third equality, we have used the relations above this Lemma.
On the other hand, we have

|I2| 6

∫ ∞

−∞

dx
e−sκδ(κ)−κd(x2−δ(κ) 2)/2βλ

∏∞
j=0 |(1 − (eix+δ(κ) − 1)p

(κ)
j )|

6

√
2πβλ

κd
e−Ô(κd−1)

(eδ(κ) − 1)p
(κ)
0 − 1

= o(I1),

where we have used
∞∏

j=0

|(1 − (eix+δ
(κ) − 1)p

(κ)
j )| > ((eδ

(κ) − 1)p
(κ)
0 − 1)

∞∏

j=1

|(1 − (eδ
(κ) − 1)p

(κ)
j )|

> ((eδ
(κ) − 1)p

(κ)
0 − 1) exp(−δ(κ)(sκ − p

(κ)
0 ) +O(κd−2)),

which follows from

1 − (eix+δ
(κ) − 1)p

(κ)
j = (1 + p

(κ)
j )(1 − eix+δ

(κ)−ε
(κ)
j )

and δ(κ)−ε(κ)
0 > 0, δ(κ)−ε(κ)

j < 0 (j = 1, 2, · · · ). Note also that δ(κ)p
(κ)
0 = Ô(κd−1) holds.

From (2.4) and the first equality in (2.3) one gets desired expression for the asymptotics
of Ξκ(β, µ). 2

In order to obtain the corresponding asymptotics for Ξ̃κ(β, µ), we use the following

estimates about p̃
(κ)
j = r̃κg̃

(κ)
j /(1 − r̃κg̃

(κ)
j ) (j = 0, 1, · · · ).

Lemma 3.5

1 − r̃κg̃
(κ)
0 =

βdλ(1 + o(1))

κd(βdµ− ζ(d)λ)
, |1 − r̃κ| = O(κ−d/2),

p̃
(κ)
0 = Ô(κd), p̃

(κ)
1 = Ô(κ),

∞∑

j=1

p̃
(κ)
j = Ô(κd),

∞∑

j=1

p̃
(κ) 2
j = O(κd).
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Proof : Proposition 2.4(b) , Lemma 3.3(i) and Lemma 2.3 yield

1 − Ô(κ−d) = rκ 6 r̃κ < g̃
(κ)−1
0 = 1 + Ô(κ−d/2), (3.5)

which implies |1 − r̃κ| = O(κ−d/2). Note that the argument which shows rκ 6 r̃κ in the
proof of Lemma 3.3 is also valid for the present case. In the variational formula

g̃
(κ)
1 = sup

ψ⊥Ω̃

(ψ, G̃κ(β)ψ)

(ψ, ψ)
= sup

ψ⊥Ω̃

[(ψ,Gκ(β)ψ) − (ψ,Dκψ)]

(ψ, ψ)
,

we can use as ψ a linear combination of two eigenfunctions κ−d/4φs(x/
√
κ) of Gκ(β)

perpendicular to Ω̃ (e.g., with s = (1, 0, 0, · · · ) and s = (0, 1, 0, · · · )). Then we get

g̃κ1 > 1 − Ô(κ−1). Together with g̃
(κ)
1 6 g

(κ)
1 = 1 − Ô(κ−1), g̃

(κ)
1 = 1 − Ô(κ−1) follows.

Thus Ô(κ) = p̃
(κ)
1 > p̃

(κ)
2 > · · · holds.

Now we get

|
∞∑

j=1

p̃
(κ)
j −

∞∑

j=1

g̃
(κ)
j /(1 − g̃

(κ)
j )| = |1 − r̃κ|

∞∑

j=1

g̃
(κ)
j /

(
(1 − r̃κg̃

(κ)
j )(1 − g̃

(κ)
j )

)

= O(κ1−d/2)

∞∑

j=1

g̃
(κ)
j /(1 − g̃

(κ)
j ),

which implies
∞∑

j=1

p̃
(κ)
j = (1 +O(κ1−d/2))

∞∑

j=1

g̃
(κ)
j /(1 − g̃

(κ)
j ).

On the other hand, because

|
∞∑

j=1

g̃
(κ)
j

1 − g̃
(κ)
j

−
∞∑

j=1

g
(κ)
j

1 − g
(κ)
j

| 6

∞∑

j=1

g
(κ)
j − g̃

(κ)
j

(1 − g
(κ)
1 )(1 − g̃

(κ)
1 )

6
TrDκ

(1 − g
(κ)
1 )(1 − g̃

(κ)
1 )

= O(κ2),

we have
1

κd

∞∑

j=1

g̃
(κ)
j

1 − g̃
(κ)
j

=
1

κd

∞∑

j=1

g
(κ)
j

1 − g
(κ)
j

+O(κ2−d) =
ζ(d)

βd
+ o(1),

where we recall Remark 2.6. Thus we have κ−d
∑∞

j=1 p̃
(κ)
j = β−dζ(d) + o(1). Using (2.9),

we get

r̃κg̃
(κ)
0

κd(1 − r̃κg̃
(κ)
0 )

= − log r̃κ
βλ

+
µ

λ
− 1

κd

∞∑

j=1

p̃
(κ)
j =

µ

λ
− ζ(d)

βd
+ o(1)

which yields the first and the third equality.
To prove the remaining last bound, it is enough to show that

p̃
(κ)
j 6 2p

(κ)
j (j = 1, 2, · · · ) (3.6)
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hold for large enough κ, because of
∑∞

j=1 p
(κ) 2
j = O(κd). In fact, in the expression

p̃
(κ)
j =

rκg̃
(κ)
j

1 − rκg̃
(κ)
j

1 + (r̃κ − rκ)/rκ

1 − (r̃κ − rκ)g̃
(κ)
j /(1 − rκg̃

(κ)
j )

,

(r̃κ − rκ)/rκ = O(κ−d/2) and |(r̃κ − rκ)g̃
(κ)
j /(1 − rκg̃

(κ)
j )| 6 (r̃κ − rκ)/(1 − rκg

(κ)
1 ) =

O(κ1−d/2) hold. Because of g̃
(κ)
j 6 g

(κ)
j , we also have rκg̃

(κ)
j /(1− rκg̃

(κ)
j ) 6 p

(κ)
j . Thus we

get (3.6). 2

It is obvious now that the next Lemma can be derived along the same line of reasoning
as the proof of Lemma 3.4.

Lemma 3.6 For large κ one gets the asymptotics:

Ξ̃κ(β, µ) =

√
2πβµ

e2κd
βd−1eκ

d(βµ−log r̃κ)2/2βλ

(βdµ− ζ(d)λ)Det(1 − r̃κG̃κ(β))
(1 + o(1)). (3.7)

In order to calculate the limit of Ξ̃κ(β, µ)/Ξκ(β, µ), we use the following lemma,
where we put

ĝ
(κ)
0 := (Ωκ, G̃κ(β)Ωκ) + r̃κ(Ωκ, G̃κ(β)Qκ(1 − r̃κQκG̃κ(β)Qκ)

−1QκG̃κ(β)Ωκ).

Lemma 3.7 For large κ one gets:

(i) r̃κ − rκ = (1 − g̃
(κ)
0 )(1 + o(1)) = Ô(κ−d/2),

(ii) 1 − r̃κĝ
(κ)
0 = (1 − r̃κg̃

(κ)
0 )(1 + o(1)).

Proof: From Lemma 3.5 and Proposition 2.4(b), we have r̃κg̃
(κ)
0 − rκ = o(κ−d). Hence

(i) follows from r̃κ − rκ = r̃κ(1 − g̃
(κ)
0 ) + r̃κg̃

(κ)
0 − rκ, r̃κ = 1 +O(κd/2) and Lemma 2.3.

By virtue of Lemma 2.3 we get

g̃
(κ)
0 − ĝ(κ)

0 = (W ∗
κΩκ,W

∗
κQκ[(g̃

(κ)
0 −QκG̃κ(β)Qκ)

−1− (r̃−1
κ −QκG̃κ(β)Qκ)

−1]QκWκW
∗
κΩκ)

= (W ∗
κΩκ,W

∗
κQκ(g̃

(κ)
0 −QκG̃κ(β)Qκ)

−1(r̃−1
κ − g̃

(κ)
0 )(r̃−1

κ −QκG̃κ(β)Qκ)
−1QκWκW

∗
κΩκ),
(3.8)

which yields g̃
(κ)
0 − ĝ

(κ)
0 > 0 since r̃κ < g̃

(κ)−1
0 . Recall that ||X̃|| 6 1 and ||W ∗

κΩ
(κ)
0 || =

O(κ−d/4). ( See (2.19) and its next line.) Then we also get from (3.8) that

g̃
(κ)
0 − ĝ

(κ)
0 6

1 − r̃κg̃
(κ)
0

1 − r̃κg
(κ)
1

(W ∗
κΩ

(κ)
0 ,W ∗

κQκ(g̃
(κ)
0 −QκG̃κ(β)Qκ)

−1QκWκW
∗
κΩ

(κ)
0 )

6
1 − r̃κg̃

(κ)
0

1 − r̃κg
(κ)
1

||X̃||||W ∗
κΩ

(κ)
0 ||2 = (1 − r̃κg̃

(κ)
0 )O(κ1−d/2).
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Hence we obtain the asymptotics (ii):

1 − r̃κĝ
(κ)
0 = 1 − r̃κg̃

(κ)
0 + r̃κ(g̃

(κ)
0 − ĝ

(κ)
0 ) = (1 − r̃κg̃

(κ)
0 )(1 + o(1)). 2

Now, taking into account (3.4) and (3.7), we can find the asymptotics of the gener-
ating functional (1.25):

Eκ,β,µ
[
e−〈f,ξ〉

]
=

Ξ̃κ(β, µ)

Ξκ(β, µ)
= exp

( κd

2βλ
(2βµ− log rκr̃κ) log

rκ
r̃κ

)Det[1 − r̃κQκG̃κ(β)Qκ]

Det[1 − r̃κG̃κ(β)]

×Det[1 − r̃κQκGκ(β)Qκ]

Det[1 − r̃κQκG̃κ(β)Qκ]

Det[1 − rκQκGκ(β)Qκ]

Det[1 − r̃κQκGκ(β)Qκ]

Det[1 − rκGκ(β)]

Det[1 − rκQκGκ(β)Qκ]
(1 + o(1)).

(3.9)
By virtue of Lemma 3.7(i), for the exponent of the first factor, we have

κd

2βλ
(2βµ− log rκr̃κ) log

rκ
r̃κ

= −µκ
d

λ
(1 − g̃

(κ)
0 )(1 + o(1)) .

For the second factor, we use the Feshbach formula, which claims

DetA = DetBDet(C −KTB−1K),

where

A =

(
B −K

−KT C

)
=

(
1 0

−KTB−1 1

) (
B 0
0 C −KTB−1K

) (
1 −B−1K
0 1

)
.

This formula and Lemma 3.7(ii) yield

Det[1 − r̃κQκG̃κ(β)Qκ]

Det[1 − r̃κG̃κ(β)]
=

1

1 − r̃κ(Ω
(κ)
0 , G̃κ(β)Ω

(κ)
0 ) − (Ω

(κ)
0 , r̃κG̃κ(β)Qκ(1 − r̃κQκG̃κ(β)Qκ)−1Qκr̃κG̃κ(β)Ω

(κ)
0 )

= 1/(1 − r̃κĝ
(κ)
0 ) = (1 + o(1))/(1 − r̃κg̃

(κ)
0 ).

Since
Det[1 − rκGκ(β)]

Det[1 − rκQκGκ(β)Qκ]
= 1 − rκ,

then Proposition 2.4(b) and Lemma 3.5 yields for the product of factors in (3.9):

(the 2nd factor) × (the last factor) → 1

in the limit κ→ ∞.
Now, since Lemma 3.5 and (2.11) give

||
√

1 − e−f
r̃κQκGκ(β)Qκ

1 − r̃κQκGκ(β)Qκ

√
1 − e−f −Kf ||1
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6 ||
√

1 − e−f
r̃κQκGκ(β)Qκ

1 − r̃κQκGκ(β)Qκ

√
1 − e−f −

√
1 − e−f

QκGκ(β)Qκ

1 −QκGκ(β)Qκ

√
1 − e−f‖1

+||
√

1 − e−f
QκGκ(β)Qκ

1 −QκGκ(β)Qκ

√
1 − e−f −Kf ||1

6 |r̃κ − 1| ||
√

1 − e−f
QκGκ(β)Qκ

1 −QκGκ(β)Qκ

√
1 − e−f ||1||(1 − r̃κQκGκ(β)Qκ)

−1||

+||
√

1 − e−f
QκGκ(β)Qκ

1 −QκGκ(β)Qκ

√
1 − e−f −Kf ||1 → 0

for κ→ ∞, we obtain the limit:

Det[1 − r̃κQκGκ(β)Qκ]

Det[1 − r̃κQκG̃κ(β)Qκ]
=

1

Det[1 + r̃κQκ(Gκ(β) − G̃κ(β))Qκ(1 − r̃κQκGκ(β)Qκ)−1]

= Det[1 + r̃κ
√

1 − e−fQκGκ(β)Qκ(1 − r̃κQκGκ(β)Qκ)
−1

√
1 − e−f ]−1 → Det[1 +Kf ]

−1

for the third factor in (3.9). Here we have used the cyclicity of the Fredholm determinant.
Lemma 3.7(i), (3.3), (2.3) and Proposition 2.4(b) yield

Det[1 − rκQκGκ(β)Qκ]

Det[1 − r̃κQκGκ(β)Qκ]
=

1

Det[1 − (r̃κ − rκ)QκGκ(β)Qκ(1 − rκQκGκ(β)Qκ)−1]

= exp
( r̃κ − rκ

rκ
Tr

rκQκGκ(β)Qκ

1 − rκQκGκ(β)Qκ

+O(1)
)

= exp
(
(1−g̃(κ)

0 )
[
κd
βµ− log rκ

βλ
− rκ

1 − rκ

]
+O(1)

)

= exp{(1 − g̃
(κ)
0 )κdζ(d)(1 + o(1))/βd}.

Thus, by Lemma 2.3 and (2.11) we get for the product in (3.9):

(the 1st factor) × (the 4th factor)

= exp
(
− κd/2(1 + o(1))

πd/2
βdµ− ζ(d)λ

βdλ
(
√

1 − e−f , (1 +Kf )
−1

√
1 − e−f )

)
.

Now Theorem 1.2(ii) follows by collecting in (3.9) the asymptotics of factors that we
find above. 2

4 Proof of Theorem 1.8

We start with the grand-canonical expectation value of the total number of MF inter-
acting bosons in the WHT (1.31):

Nκ,λ(β, µ) := κd ρ
(tot)
κ,λ (β, µ) =

1

β Ξκ(β, µ)

∂

∂µ
Ξκ(β, µ) ,

where we use for Ξκ(β, µ) the expression (2.2) after the z-integration where the values
of s and r are not fixed yet. The differentiation with respect to µ can be converted
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into differentiation with respect to x in the Fredholm determinant. Then integrating by
parts we obtain

Nκ,λ(β, µ) = s− iκd

βλ
R(r, s) ,

where

R(r, s) :=

∫

R

dx
x e−isx−κ

dx2/2βλ

Det[1 − (eix − 1)rGκ(β)(1 − rGκ(β))−1]
(4.1)

×
[ ∫

R

dx
e−isx−κ

dx2/2βλ

Det[1 − (eix − 1)rGκ(β)(1 − rGκ(β))−1]

]−1

.

Then we put s = sκ and r = rκ such that (2.3) holds, and if we prove R(rκ, sκ) = o(1),
then (1.32) follows as a consequence of this asymptotics.

To this end notice that for the case (i) µ < µc(β), we get R(rκ, sκ) = O(κ−d/2) from
the estimates in the proof of Lemma 3.1.

For the case (ii) µ > µc(β), using the notations of the proof of Lemma 3.4, one
obtains for the first factor in (4.1):

∫

R

dx
x e−isκx−κdx2/2βλ

Det[1 − (eix − 1)rκGκ(β)(1 − rκGκ(β))−1]
= −iε0I1 + o(I1) .

Therefore, we get that R(rκ, sκ) = O(κ−d).
The other properties stated in the Theorem 1.8 follow straightforwardly from Section

2.4 and the line of reasoning developed for the proof of Proposition 2.4. 2

5 Concluding Remarks and Conjectures

In the present paper we consider a model of mean-field interacting boson gas in traps
described by the harmonic potential. For this model we study the position distribution
of the constituent bosons in the WHT limit by means of the RPF method.

It is shown that there are two phases distinguished by the boson condensation. In
one domain of parameters, the resulting generating functional for the RPF is the same
as for the non-interacting boson gas, for unconventional values of the IBG parameters.
Whereas in another domain, the generating functional describes divergence of the density
due to the localization of macroscopic number of particles.

Our results are obtained via analysis of the generating functional. We do not intend
to start the analysis using the characteristic functional here. However, we would like to
mention a topic on the central limit theorem as a conjecture.

Let us consider Eκ,β,µ[e
−〈f,ξ〉] for small f ∈ C0(R

d) in the sense of the sup-norm ‖·‖∞.
By Theorem 1.2(ii) we obtain:

Eκ,β,µ
[
e−〈f,ξ〉

]
=

exp

{
−κ

d/2

πd/2
µ− µλ,c(β)

λ

[∫

Rd

dx f(x) +
1

2
〈f, (1 +G(β))(1 −G(β))−1f〉 + · · ·

]}
.

This leads us to conclusion that the following claim might be true:
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Conjecture 5.1 Let ξκ be the random point measure on Rd with distribution given by
νκ,β,µ for κ > 0, and L be the Lebesgue measure on Rd. Then for κ → ∞ the random
field

πd/4

κd/4

( λ

µ− µλ,c(β)

)1/2(
ξκ −

κd/2

πd/2
µ− µλ,c(β)

λ
L

)

converges in distribution to the Gaussian random field on Rd with covariance

(1 +G(β))(1 −G(β))−1 .

We finish by some remarks about the method of the RPF approach to the BEC in
the WHT limit used in the present paper:
(i) It could be applied to a general “non-quadratic” mean-field interaction UΦ :=
κdΦ(n/κd), where Φ : x ∈ R 7→ R is a piece-wise differentiable continuous function
bounded from below [TZ], as well as to the van der Waals particle interaction, which is
more local than the mean-field [deS-Z]. We guess that for this kind of interaction the
particle distribution will spread as κα with some large α even for condensed particles.
(ii) The method has to be compared with the scaled external field perturbation of BEC
considered in [deS-Z], [Pu]. We suppose that this could clarify the concept of the choice
of “effective” volume, since it is important for description of the local particle density
measured in the WHT limit BEC experiments as well as its definition of the mean-field
interaction [DGPS], [LSSY], [PeSm].
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A Miscellaneous formulae

x

1 − e−x
6 1 + x 6 2 ∨ (2x) for x > 0. (A.1)

0 6

(
2x

1 − e−2x

)d/2

− 1 6 Ax for x ∈ [0, 1], (A.2)

0 6

(
1

1 − e−2x

)d/2

− 1 6 Be−2x for x > 1, (A.3)

where A and B are constants depending only on d.

1 − e−x 6 x for x > 0. (A.4)

e−x − e−y 6
1

e

(
y

x
− 1

)
for 0 < x 6 y. (A.5)

tanh x 6 x ∧ 1 for x > 0. (A.6)

| cothx− 1| 6
2e

e− 1
e−x for x > 1. (A.7)

1 6
sinh x

x
6 1 + x2 for x ∈ [0, 1]. (A.8)

1

sinh x
6

2

1 − 1/e2
e−x for x > 1. (A.9)

| − log(1 − x) − x| 6
x2

2(1 − x)
for x < 1. (A.10)
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