
HAL Id: hal-00304320
https://hal.science/hal-00304320v1

Submitted on 24 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixing Compression and CA Encryption
Bruno Martin

To cite this version:
Bruno Martin. Mixing Compression and CA Encryption. SAR-SSI, Jun 2007, Annecy, France. pp.255-
266. �hal-00304320�

https://hal.science/hal-00304320v1
https://hal.archives-ouvertes.fr

Mixing Compression and CA Encryption

Bruno Martin

I3S, Université de Nice Sophia-Antipolis, CNRS,

2000 route des Lucioles, B.P. 121,

F-06903 Sophia Antipolis.

Bruno.Martin@unice.fr

We consider the enciphering of a data stream while it is being compressed by a dictionary algorithm. This scheme has

to be compared to the classical encryption after compression methods used in classical security protocols. Actually,

most cryptanalysis techniques exploit patterns found in the plaintext to crack the cipher and compression techniques

reduce these attacks. Our scheme is based on a LZ compression algorithm in which a Vernam cipher has been included.

We first present an experiment with a pseudo-random sequence generated by a simple linear feedback shift register

before considering pseudo-random sequences generated by cellular automata. We make some remarks on the security

by trying to measure the randomness of our method with some statistical tests. Such a scheme could be employed to

increase the speed of some security protocols and to decrease the computing power for mobile devices.

Keywords: pseudo-random sequences, compression, one-time pad, cellular automata.

1 Introduction

Information security is currently one of the main challenges in the area of computer networks. In the

emergent communication paradigm where wireless and wired networks are interoperating, security issues

become crucial. Traditional technologies are every day more inadequate and existing standards should be

improved for use in resource restricted environments. We aim to develop a secure algorithm for confiden-

tiality, but cheaper in terms of bandwidth, speed and computing power.

In many security protocols, a compression algorithm is run prior encrypting the data to increase the

security and the bandwidth. These algorithms are run on the original stream. They all stem from research

by Lempel and Ziv who have designed two compression algorithms: LZ77 and LZ78. After compression,

if the tradeoff between security and speed is taken into account, the compressed data is enciphered with the

use of a stream cipher like for instance RC4 (let us recall that RC4 is 15 times quicker than a 3DES and is

used in protocols like WEP and SSL [Res01]). We assume the reader familiar with classical compression

algorithms and with secret key cryptography for which good introductions are [Mar04, Sal98, Sta06].

In the present paper, we propose to scramble (encipher) a data stream while it is being compressed by a

lossless dictionary algorithm. The basic idea which motivates this proposition is that a compressed stream is

almost pseudo-random and a good candidate to be combined with a simple Vernam cipher. This comes from

the notion of incompressibility introduced by Kolmogorov complexity. Kolmogorov [Kol65] has proposed

a complexity which speaks about objects rather than the usual classes of languages addressed by classical

complexity. Informally, Kolmogorov complexity corresponds to the size of the smallest program p (denoted

by ♯p) which can print out on its standard output the object x. If ♯p < ♯x, we say that x is compressible,

otherwise incompressible. It provides a modern notion of randomness dealing with the quantity of infor-

mation in individual objects. It says that object x is random if it cannot be represented by a shorter program

p whose output is x or, in other words, if x is incompressible [Sal98, LV93]. From this point of view, the

output of a compression algorithm is close to a pseudo-random sequence, although highly reversible.

We then consider two mechanisms for generating the pseudo-random sequences which are used as keys

for the Vernam cipher. We have made a first experiment with a linear feedback shift register. This test has

been implemented and we have measured the quality of the output. We have obtained output sequences

Bruno Martin

which are apparently random although further testing with a χ2 test was a little bit too weak. Thus, in order

to improve the pseudo-randomness quality and to try to obtain a high rate generator, we consider in a second

time pseudo-random sequences generated by cellular automata.

The paper is organized as follows: Section 2 recalls the definition of pseudo-random sequences. Section 3

presents our method with the test implementation. We use a compression algorithm from the Lempel-Ziv

family and a pseudo-random sequence generated by a simple linear feedback shift register. Some statistical

tests have been made and are presented in Section 3.4. In Section 4, we propose to increase the quality of

the pseudo-random sequence. Instead of using a simple linear feedback shift register, we propose to replace

it by a pseudo-random generator based on a cellular automaton, as proposed by Wolfram in [Wol85].

2 Generating (pseudo-)randomness

This section recalls the classical definitions of pseudo-randomness. We first give an intuitive statement

which gives the difference between real randomness and pseudo-randomness. We then introduce more

formal definition of pseudo-randomness coming from complexity theory.

In the book A New Kind of Science, Wolfram describes three mechanisms responsible for random behav-

ior in systems:

• Randomness coming from the environment (e.g., brownian motion, also hardware random number

generators);

• Randomness coming from the initial conditions. This aspect is studied by chaos theory, and is ob-

served in systems whose behavior is very sensitive to small variations in initial conditions (such as

pachinko machines, lottery, dices ...);

• Randomness intrinsically generated by the system. Also called pseudo-randomness; it is the kind of

randomness used in pseudo-random sequences generators. Many algorithms (based on arithmetics

or cellular automata) generate pseudo-random sequences. The behavior of the system is fully deter-

mined by knowing the seed and the algorithm used. They are quicker methods than getting ”true”

randomness from the environment, inaccessible for computers.

The applications of randomness have led to many different methods for generating random data. These

methods may vary as to how unpredictable or statistically random they are, and how quickly they can

generate random sequences. Before the advent of computational pseudo-random sequences, generating

large amount of sufficiently random numbers (important in statistics and physical experimentation) required

a lot of work. Results would sometimes be collected and distributed as random number tables or even CD

iso-images.

More formally, a pseudo-random sequence can be defined as:

Definition 1 A sequence is pseudo-random if it cannot be distinguished from a truly random sequence by

any efficient (polynomial time) procedure or circuit.

Theorem 1 ([BM84]) A sequence is pseudo-random if and only if it is next-bit unpredictable.

Theorem 1 claims that for pseudo-random sequences, even if we know all the previous terms of a sequence,

we don’t have any information on the next bit. Theorem 1 was proved equivalent to:

Theorem 2 ([Yao82]) A pseudo-random sequence generator G passes Yao’s test if, for any family of cir-

cuits F with a polynomial number of gates for computing a statistical test, G passes F.

3 A first experiment

In this section we discuss our method which combines a Lempel Ziv compression algorithm together with

a Vernam cipher which uses as key a pseudo-random sequence generated by a linear feedback shift register.

We start with the description of two relevant ideas.

Mixing Compression and CA Encryption

3.1 Related work

Actually, there are two methods sharing the same idea but in a slightly different way. The first one is called

concryption and has been patented by Security Dynamics under US Patent #5479512. It is a method for

the integrated compression and encryption (concryption) of clear data. For concryption, the clear data and

an encryption key are obtained, at least one compression step is carried out and at least one encryption

step is performed utilizing the encryption key. The encryption step is preferably performed on the final or

intermediate results of a compression step, with compression being a multistep operation.

The second method is called comcryption and is due to Crandall [Cra98] when he was Apple’s Chief

Cryptographer. Roughly speaking, his idea is to index a great number of entropy compression algorithms

by a secret key. He then gets a holistic (one-pass) compress/encrypt algorithm. This method is currently

used for enciphering the passwords in the keychain application starting with Mac OS 9 and still used

in Mac OS X from Apple Inc. It is recorded under US Patent #6154542, “Method and apparatus for

simultaneously encrypting and compressing data”.

3.2 The proposed scheme

We use the mode of operation of LZ 78 which uses a growing dictionary [Sal98]. It starts with 29 = 512

entries (with the first 256 entries already filled up, eventually after an initial permutation). While this

dictionary is in use, 9 bit pointers are written onto the output stream and directly encrypted by a Vernam

cipher. When the original dictionary is filled up, its size is doubled to 1024 entries and 10 bit pointers are

then used (and encrypted as well) until the pointer size reaches a maximum value set by the user. When the

large dictionary is filled up, the program continues without changes to the dictionary but with monitoring

the compression ratio. If this ratio falls down a predefined threshold, the dictionary is deleted and a new

512 entries dictionary is started.

The difference with concryption is that we use a single pass compression algorithm while concryption

requires the compression to be a multistep operation. Our method is not based on an entropy compression

algorithm used in the comcryption method, although an entropy compression algorithm could be added to

shorten the mostly used pointers which are returned by the algorithm.

Compared with the classical compression prior encryption used by the classical security protocols, ours

does not need to wait until the compression process stops (which is a costly operation) to start the encryp-

tion. To take an example, in the SSL protocol, the compression is devoted to a higher level protocol which

slows down the process.

Next section presents the algorithm of our scheme.

3.3 Implementation

Index = 256; Length = 9; Word = null; Limit = 12;

Initialise 256 inputs in the dictionary (eventually after a permutation)

//(a+b stands for concatenation)

REPEAT

Read a symbol from the stream (read S)

IF Word+S is already in the dictionary THEN

Word = Word+S; Emit = false

ELSE

Output the (index of Word) XOR (PRS) // Vernam cipher

Index of (Word+S) = Index; Index++

IF Length = Limit THEN

Re-initialise the dictionary (Index=256, Length=9)

ENDIF

IF Index = 2*Length THEN Length++ ENDIF

Word = S; Emit = true

ENDIF

UNTIL no data found

IF Emit = false THEN Output the (index of Word) XOR (PRS) // Vernam cipher

ENDIF

Bruno Martin

The implementation was just made as a proof-of-concept in C++ and using the LEDA library† which

provides a sizable collection of data types and algorithms in a form which allows them to be used by non-

experts. We have denoted by PRS a pseudo-random (Boolean) sequence.

3.4 Analysis

Fig. 1: Probabilities of the output of the scheme,

Though a plot of the output (see Figure 1) is rather encouraging, we were deceived while testing outputs

with a χ2 test for which the results were a little bit too weak. This may be explained by the rather bad

choice of a “toy” linear feedback shift register for generating the PRS (just a polynomial of degree 7). We

expect the result to be improved with the use of better pseudo-random generators like those we present in

Section 4.

With the latter, further testing should be made according to the FIPS 140-2 standard [Tec97] which

requires a pseudo-random generator to pass a number of statistical tests or the Marsaglia tests, a set of 23

very strong tests of randomness implemented in the Diehard program‡.

4 Changing the pseudo-random sequence

In this section, we will focus on the pseudo-random sequences generated by cellular automata. We first

recall the definition of binary cellular automata and their advantages for pseudo-random generation. We

then explore the set of all the cellular automata rules to find out the most suitable for our purpose. As we

will see in Section 4.2, pseudo-random sequences generated by binary cellular automata are not so good.

So, we propose two different tracks to improve the quality of the sequences.

First of all, why do we consider cellular automata? One of their great interest is their intrinsic parallelism

which permits to handle high rate pseudo-random generation. Cellular automata are also suitable for a

programmable hardware implementation. Their target hardware model is the Field Programmable Gate

Arrays (popularly known as FPGAs). FPGAs are now a popular implementation style for digital logic

† Avaible from http://www.mpi-sb.mpg.de/LEDA.
‡ Avaible from http://diehard.darwinports.com.

Mixing Compression and CA Encryption

systems and subsystems. These devices consist of an array of uncommitted logic gates whose function

and interconnection is determined by downloading information to the device. When the programming

configuration is held in static RAM, the logic function implemented by those FPGAs can be dynamically

reconfigured in fractions of a second by rewriting the SRAM configuration memory contents [PB98]. Thus,

the use of FPGAs can speed up the computation done by the cellular automata. Putting both remarks all

together allows high-rate pseudo-random generation.

Secondly, the relationships between cellular automata and secret key cryptography is not new: in the

context of symmetric key systems, cellular automata were first studied by [Wol85]. Unfortunately, as we

will see in Section 4.2, elementary cellular automata are not suitable for cryptographic purpose. Different

approaches were proposed later by Habutsu et al. [HNSM91], Nandi et al. [NKC94] and Gutowitz [Gut93].

With a slight modification of the model of cellular automata, one can get more promising results; it is the

approach of Sipper et al. [ST96] and, more recently, of Seredynski et al. [SBZ04].

4.1 Cellular automata

In this section, we briefly recall the definition of cellular automata. We focus on the so called elementary

cellular automata rules (also called Wolfram rules).

A cellular automaton (CA for short) is generally a bi-infinite array of identical cells which evolve syn-

chronously and in parallel according to a local transition function. The cells communicate with their nearest

neighbors. Here, we consider a ring of N cells which are indexed by ZN . All the cells are identical finite

state machines with a finite number of states and a transition function which gives the new state of a cell

according to its current state and the current states of its nearest neighbors.

Definition 2 A cellular automaton is a finite array of identical cells indexed by ZN . Each cell is a finite

state machine C = (Q, f) where Q is a finite set of states and f a mapping f : Q×Q×Q → Q.

The mapping f , called local transition function, has the following meaning: the state of cell i at time t +1

(denoted by xt+1
i) depends upon the state of cells i− 1, i and i + 1 at time t (the neighborhood of cell i of

radius 1). Figure 2 illustrates one transition of a cellular automaton on a ring with 8 cells. We have the

following equality which rules the dynamics of the cellular automaton:

xt+1
i = f (xt

i−1,x
t
i ,x

t
i+1)

0 0

0 0 0

0 001

1 1 11 1

1 1t=0

t=1

neighborhood

0 1 7

Fig. 2: Transition of cell 3 with rule 30 depicted.

For a fixed t, the sequence of all the values xt
i for i ∈ ZN , is the configuration at time t. It is a mapping

c : ZN → Q which assigns a state of Q to each cell of the cellular automaton. The sequence of configurations

as pictured by Figure 3 is called a time-space diagram. Figure 3 depicts the evolution of a ring with N = 8

cells. On the top of Figure 3, we have depicted rule 30 with each transition illustrated by three adjacent

squares representing the different preimages of f and on the bottom, their image by f . A 0 is painted

white while a 1 is painted grey. On the bottom of Figure 3, we see the time-space diagram of the cellular

automaton from the initial configuration at time t = 0 to time t = 7.

We will restrict ourselves to the case where Q = F2 and f is a Boolean predicate with 3 variables, also

called an elementary rule. These cellular automata have been widely considered by Wolfram in [Wol86b]:

Bruno Martin

he considers the 256 different binary cellular automata and associates a natural number to each rule as

follows:
(xt

i−1xt
ix

t
i+1) 111 110 101 100 011 010 001 000

xt+1
i 0 0 0 1 1 1 1 0

The top line gives all possible preimages for f while the bottom line gives the images by f of the three

binary values. Thus, f is fully specified by the 8-bit number written on the bottom line (00011110 in our

example) which can be translated in basis 10 and then called the rule of the cellular automaton (as rule

number 30 here). Equivalently, this rule can be considered as a Boolean function with (at most) 3 variables.

Taking rule 30 again, its corresponding Boolean function is:

xt+1
i = xt

i−1 ⊕ (xt
i ∨ xt

i+1)

with ⊕ denoting the Boolean XOR function and ∨ the classical Boolean OR function. Its equivalent for-

mulation in arithmetic modulo 2 is:

xt+1
i =

(

xt
i−1 + xt

i + xt
i+1 + xt

ix
t
i+1

)

mod 2

t=0

0	 0	 0	 1	 1	 1	 1	 0

Fig. 3: Evolution of CA30 on a ring with N = 8 cells.

4.1.1 Equivalent rules

Since we will be dealing with pseudo-random generators, some rules are equivalent from this point of view

by three transformations. To define the transformations, just recall that a transition is f (x) = y with x ∈ F
3
2

and y ∈ F2.

In the sequel, we denote by w̃ the mirror image of word w = w1 . . .wn, w̃ = wn . . .w1 and by w the word

obtained from w by exchanging the 0’s by 1’s (and conversely) w = w1 . . .wn.

The first transformation is called the conjunctive transformation which takes as an input rule r written in

binary and returns r̃. For instance, the conjunctive transformation turns rule 30 into rule 135.

The second transformation, called reflexive just changes the order of the x’s by: yi = f (x̃i) for i ∈ [[0,7]].
As an example, with reflexive transformation, rule 30 is changed into rule 86.

Last transformation combines both and is called conjunctive-reflexive: yi = f (x̃i) for i ∈ [[0,7]] and it

changes rule 30 into rule 149.

All these transformations keep the spectral values of the cellular automata dynamics and are thus statis-

tically equivalent.

Next section describes how Wolfram proposed to generate pseudo-random sequences with cellular au-

tomata.

Mixing Compression and CA Encryption

4.1.2 Pseudo-random generation with CA

More specifically in [Wol85, Wol86a], Wolfram uses a one-dimensional cellular automaton for pseudo-

random bit generation by selecting the values taken by a single cell when iterating the computation of

rule 30 from an initial finite configuration where the cells are arranged on a ring of N cells (see Figure 4).

Mathematically, Wolfram claims the sequence {xt
i}t≥0 is pseudo-random for a given i. Wolfram studied

this particular rule extensively, demonstrating its suitability as a high performance randomizer which can be

efficiently implemented in parallel; indeed, this is one of the pseudo-random generators which was shipped

with the connection machine CM2. Wolfram used classical randomness testing procedure from [Knu69].

In each case, the basic method consists in comparing an observed distribution with that calculated for a

purely probabilistic sequence. He has been considering the block frequency distribution test for deciding

whether all of the 2n possible n-blocks should occur equally; the gap length distribution to compare with

a binomial distribution. Wolfram also considered the distinct blocks distribution, the block accumulation

distribution, the permutation frequency distribution, the monotone sequence length distribution and the

maxima distribution. The pseudo-random sequence generated by rule 30 passed all of these tests.

t=0

cell 4

Fig. 4: Values taken by cell 4: 11011100.

Next section introduces the Walsh transform which is useful for studying the quality of the pseudo-

random sequence generated.

4.1.3 Walsh transform

Walsh transform allows to compute the correlation between the inputs and the outputs of the iterations of

a cellular automaton. One of the great interest of the Walsh transform is that its computation is even faster

than computing a FFT (see [ER82] for instance).

Let us denote by f (x) the value of function f at x = (x0,x1,x2, . . . ,xn−1) ∈ F
n
2 or, equivalently, f (x), the

value of f at x = ∑
n−1
i=0 xi.2

i, the decimal value corresponding to x. Analogously, let ω = (ω0, . . . ,ωn−1)∈ F
n
2

and ω its corresponding decimal value. The Walsh transform of f is defined by:

S f (ω) =
2n−1

∑
x=0

f (x)× (−1)x·ω

with x ·ω = ∑
n−1
i=0 xi.ωi denoting the Cartesian product of the two binary vectors.

From the spectral values of the Walsh transform, one can recover the function f with the inverse Walsh

transform:

f (x) = 2−n
2n−1

∑
ω=0

S f (ω)× (−1)x·ω

The Walsh transform has some interesting statistical properties. For instance, the value of the transform

at point 0 equals the mean value of the function: S f (0) = E[f (x)] = 2n−1 (with E denoting the expected

value). This property permits to test whether f is balanced (the number of 0’s equals the number of 1’s in

the image domain of f).

In addition, Walsh transform is the main tool to study the correlation-immunity of a function.

Bruno Martin

t 1 2 3 4 5 conj refl c.r.

rule cfg val cfg val cfg val cfg val cfg val

30 4 2 16 4 64 16 256 40 1024 80 135 86 149

60 0 0 0 0 0 0 0 0 0 0 195 102 153

86 1 2 1 4 1 16 1 40 1 80 149 30 135

90 0 0 0 0 0 0 0 0 0 0 165 90 165

102 0 0 0 0 0 0 0 0 0 0 153 60 195

105 0 0 0 0 0 0 0 0 0 0 105 105 105

135 4 2 16 4 64 16 256 40 1024 80 30 149 86

149 1 2 1 4 1 16 1 40 1 80 86 135 30

150 0 0 0 0 0 0 0 0 0 0 150 150 150

153 0 0 0 0 0 0 0 0 0 0 102 195 60

165 0 0 0 0 0 0 0 0 0 0 90 165 90

195 0 0 0 0 0 0 0 0 0 0 60 153 102

Tab. 1: “Good” rules after selection and their equivalent rules.

Definition 3 A function f : F
n
2 →F2 is k-th order correlation-immune if, given n independant binary random

variables X0,X1, · · · ,Xn−1 such that Pr[Xi = 0] = Pr[Xi = 1] = 1
2

for i ∈ [[0,n−1]], then the random variable

Z = f (X0,X1, · · · ,Xn−1) is independent from any random vector (Xi1 ,Xi2 , · · · ,Xik), 0 ≤ i1 < · · · < ik < n.

Xiao and Massey [XM88] have characterized (k-th order) correlation-immunity with the Walsh transform.

We recall this result in Theorem 3 in which the Hamming weight just counts the number of non-zero values

in a vector.

Theorem 3 ([XM88]) A function f : F
n
2 → F2 is k-th order correlation-immune if and only if S f (ω) = 0 for

all ω = (ω0,ω2, · · · ,ωn−1) 6= 0 whose Hamming weight is at most k.

For readers interested in a proof of Theorem 3, one can refer to [Zém00].

Actually, the idea of using Walsh transform to test pseudo-random generators comes from [Yue77]. In

this paper, Yuen observed that a truly random sequence has an asymptotically flat Walsh power spectrum.

This observation was used to devise a new test for randomness of the output of pseudo-random generators.

It was an improvement of the tests described in Knuth [Knu69] who do not deal with cryptographic pseudo-

random generation.

We have implemented this test for studying the set of all the 256 elementary cellular automata.

4.2 No correlation-immune elementary CA rule

We have used in [Mar06] a Walsh transform to study all the 256 elementary CA rules in order to find the

best (non-linear) rules for generating pseudo-random sequences.

After removing all non-balanced rules by computing their Walsh transfom, we select rules f for which

S f (0) = 4; there are only 70 remaining balanced rules. Among those 70 rules fi, we compute the maximum

absolute value of the Walsh transform of the t th-iterate of fi at all the points ω of Hamming weight 1 and

we select the rules with a minimum spectral value. That is, we select rules fi such that:

min
fi

max
ω=2ℓ

|S
f
(t)
i

(ω)|

where t denotes the iteration number and ω is the binary expansion of 2ℓ for ℓ ∈ [[0,2t + 1]], all the t bit

vectors of Hamming weight one. Equivalently, we just test if, among the 70 balanced rules, there are some

which are first order correlation-immune. After this, there are only the 12 remaining rules listed in Table 1

still containing linear rules which we recall in Table 2 in which the binary value encoding Wolfram’s rule

is written with the most significant bit on the rightmost part.

Mixing Compression and CA Encryption

Boolean function binary decimal

xi ⊕ xi+1 00111100 60

xi−1 ⊕ xi 01100110 102

xi−1 ⊕ xi+1 01011010 90

xi−1 ⊕ xi ⊕ xi+1 01101001 150

xi−1 ⊕ xi 10011001 153

xi ⊕ xi+1 11000011 195

xi−1 ⊕ xi+1 10100101 165

xi−1 ⊕ xi ⊕ xi+1 10010110 105

Tab. 2: Linear rules and their corresponding Boolean functions.

Finally, if we remove the 8 linear rules, the best remaining rules are 30, 135, 86 and 149 which are all

together equivalent by conjunctive, reflexive and conjunctive-reflexive transformations. None of them is

first order correlation-immune nor correlation-immune as well. Thus, we state that:

Theorem 4 There is no non-linear correlation-immune elementary cellular automaton.

And, according to Theorem 2, we can state that:

Corollary 1 There is no elementary cellular automaton which can serve as pseudo-random sequence gen-

erator.

That is the reason why pseudo-random sequences generated in this way can be reversed by a correla-

tion attack like the one proposed in [MS91], although pseudo-random sequences generated by rule 30 (or,

equivalently by rules 86, 135 and 149) passed classical statistical tests like those proposed in [Knu69]. The

attack proposed by Meier and Staffelbach in [MS91] is simple. It suffices to write the way to obtain the

sequence generated by rule 30:

xt+1
i = xt

i−1 ⊕ (xt
i ∨ xt

i+1) (1)

and to use the partial linearity to rewrite equation 1 as:

xt
i−1 = xt+1

i ⊕ (xt
i ∨ xt

i+1) (2)

From equation (1), the cell values corresponding to the pseudo-random sequence are built from a triangle

in the time-space diagram. And, from equation (2), one can guess the values of the leftmost part of the

triangle (or equivalent partial configurations) and then find randomly an initial configuration for generating

the pseudo-random sequence, exploiting the correlation.

Despite these weaknesses, we propose to improve the sequences generated by cellular automata to com-

bine it with the LZ 78 compression process.

4.3 Improving the randomness

So, does Theorem 4 annihilate any hope to design a good pseudo-random generator by the means of cellular

automata? Not necessarily. In this section, we will propose two different approaches. One is designed to

counter Meier and Staffelbach attack and the second one changes the way pseudo-random sequences are

generated.

4.3.1 Countering the attack

An idea to prevent the attack on the pseudo-random sequence proposed by Meier and Staffelbach is simply

to change the way we extract the pseudo-random sequence from the sequence of configurations generated

by the cellular automaton. Instead of taking the sequence {xt
i}t≥0 as proposed by Wolfram, we select a

time-constructible function f and we consider the sequence {xt
f (i)}t≥0 for a suitable f .

Bruno Martin

t=0

Fig. 5: Values taken by the cells according to f (represented with a thick line): 00101101.

Such functions, in the field of cellular automata are called signals and have been widely studied by

Mazoyer and Terrier, see [MT99] for example. Just to fix the ideas, we have proposed in Figure 5 to take

the cells values with a function f which moves to the right, one cell at a time. It is one of the simplest signal

which can be defined on cellular automata.

Next section proposes a completely different approach. The idea is to use a set of rules for the cellular

automaton dynamics instead of a single rule as in the original uniform model.

4.3.2 The cellular programming approach

Tomassini and Sipper [ST96] proposed to use non-uniform cellular automata for generating better pseudo-

random sequences. In this model, each cell may contain a different rule (the cellular automaton becomes

then non-uniform) and the rules are obtained by an evolutionary approach (by a genetic algorithm). They

have designed a cellular programming algorithm for cellular automata to perform computations, and have

applied it to the evolution of pseudo-random sequence generators. Their genetic algorithm uses Koza’s

entropy Eh. Eh measures the entropy for the set of kh probabilities of the kh possible subsequences of

length h. It is defined by:

Eh = −
kh

∑
j=1

ph j
log2 ph j

where k denotes the number of possible values per sequence position (in our case, the cellular automata

states), h a subsequence length and ph j
is a measured probability of occurrence of a sequence h j in a

pseudo-random sequence. The entropy achieves its maximal value Eh = h when the probabilities of the kh

possible sequences of length h are all equal to 1/ℓh, where ℓh denotes a number of possible states of each

sequence.

Tomassini and Sipper have selected four rules of radius 1 for use in non-uniform cellular automata. The

best rules selected by the genetic algorithm were rules 90, 105, 150 and 165 (which are all linear, a drawback

for certain attacks).

A series of tests (including χ2 test, serial correlation coefficient, entropy and Monte Carlo, but no

correlation-immunity analysis) were made with good results, showing that co-evolving generators are at

least as good as the best available CA randomizer. The drawback here is that the authors also use elemen-

tary rules which we proved to be not correlation-immune. This was further investigated in [SBZ04].

Following the same kind of approach, Seredynski et al. in [SBZ04] have generalized the selection process

to radius 2 rules. They use then both radius 1 and radius 2 rules in non-uniform cellular automata. The

rules selected by their genetic algorithm were 30, 86, 101 and 869020563, 1047380370, 1436194405,

1436965290, 1705400746, 1815843780, 2084275140 and 2592765285.

Their new set of rules was tested by a number of statistical tests required by the FIPS 140-2 stan-

dard [Tec97] and the Marsaglia tests implemented in the Diehard program but no correlation-immunity

analysis was made. And, for both approaches, it is recalled in [Zém00] that it can be dangerous to combine

“bad rules”.

Mixing Compression and CA Encryption

5 Discussion

Although not truly pseudo-random (but this is also not a pseudo-random generator), the output of our

compression and encryption scheme is encouraging if we look at the typical output depicted by Figure 1.

Further study should be made with the help of a better pseudo-random generator based on cellular automata

with classical tests and a fine tuning of all the parameters. In order to avoid correlated cellular automata,

the best thing may be to combine the cellular programming approach and to consider the sequence of cells

selected by a time-constructible function. The implementation has been started but is not yet completed.

The use of compression and encryption mixed together should increase the bandwidth, decrease the

latency as well as it also might decrease the energy consumption required for the same purpose when using

encryption after compression for mobile devices or RFID.

Last but not least, there is currently a great challenge in the use of a good pseudo-random generators;

not only for use as a key for a Vernam-type cipher but also for computing a cryptographic hash function.

Actually, from the collision attacks on MD5 and other hash function (see [Kli05] and [WY05]), one could

use the improvements proposed by [DGV91] and later by [MZI98] of the hash function based on cellu-

lar automata which was originally suggested by Damgård in [Dam89]. And, in order to design a secure

cryptographic hash function, we need to have a robust pseudo-random generator.

References

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random

bits. SIAM J. Comput, 13:850–864, 1984.

[Cra98] R.E. Crandall. Comcryption. In RSA Data Security Conference, 1998.

[Dam89] I. B. Damgård. A design principle for hash functions. In Crypto’89, number 435 in Lecture

Notes in Computer Science, pages 416–427. Springer Verlag, 1989.

[DGV91] J. Daemen, R. Govaerts, and J. Vandewalle. A framework for the design of one-way hash func-

tions including cryptanalysis of Damgård’s one-way function based on a cellular automaton.

In ASIACRYPT’91, Lecture Notes in Computer Science. Springer Verlag, 1991.

[ER82] D.E. Elliott and K.R. Rao. Fast transforms, algorithms, analysis, applications. Academic

press, 1982.

[Gut93] H. A. Gutowitz. Cryptography with dynamical systems. In E. Goles and N. Boccara, editors,

Cellular Automata and Cooperative Phenomena. Kluwer Academic Press, 1993.

[HNSM91] T. Habutsu, Y. Nishio, I. Sasase, and S. Mori. A secret key cryptosystem by iterating a chaotic

map. In EUROCRYPT, pages 127–140, 1991.

[Kli05] V. Klima. Finding MD5 collisions - a toy for a notebook, 2005.

[Knu69] D.E. Knuth. Seminumerical Algorithms. Addison Wesley, 1969.

[Kol65] A.N. Kolmogorov. Three approaches to the quantitative definition of information. Problemy

Pederachi Informatsii, 1:3–11, 1965.

[LV93] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications. Texts

and monographs in computer science. Springer Verlag, 1993.

[Mar04] B. Martin. Codage, cryptologie et applications. Presses Polytechniques et Universitaires Ro-

mandes, 2004.

[Mar06] B. Martin. A Walsh exploration of Wolfram CA rules. In International Workshop on Cellular

Automata, pages 25–30, Hiroshima University, Japan, sep 2006.

Bruno Martin

[MS91] W. Meier and O. Staffelbach. Analysis of pseudo random sequences generated by cellular

automata. In EUROCRYPT ’91, Lecture Notes in Computer Science. Springer Verlag, 1991.

[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. Theoretical Computer

Science, 217(1):53–80, 1999.

[MZI98] M. Mihaljevic, Y. Zheng, and H. Imai. A cellular automaton based fast one-way hash function

suitable for hardware implementation. In Public Key Cryptography, volume 1431 of Lecture

Notes in Computer Science, pages 217–234. Springer Verlag, 1998.

[NKC94] S. Nandi, B. K. Kar, and P. P. Chaudhuri. Theory and applications of cellular automata in

cryptography. IEEE Trans. Computers, 43(12):1346–1357, 1994.

[PB98] R. B. Porter and N. W. Bergmann. Evolving FPGA based cellular automata. In B. McKay,

X. Yao, C. S. Newton, J-H. Kim, and T. Furuhashi, editors, SEAL, volume 1585 of Lecture

Notes in Computer Science, pages 114–121. Springer, 1998.

[Res01] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, Reading

MA, 2001.

[Sal98] D. Salomon. Data compression, the complete reference. Springer Verlag, 1998.

[SBZ04] F. Seredynski, P. Bouvry, and A. Y. Zomaya. Cellular automata computations and secret key

cryptography. Parallel Comput., 30(5-6):753–766, 2004.

[ST96] M. Sipper and M. Tomassini. Co-evolving parallel random number generators. In Parallel

Problem Solving from Nature – PPSN IV, pages 950–959, Berlin, 1996. Springer Verlag.

[Sta06] W. Stallings. Cryptography and Network Security. Prentice-Hall, 4th. edition, 2006.

[Tec97] National Institute Of Standards Technology. FIPS publication 140-2, Security requirements

for cryptographic modules. US Gov. Printing Office, Washington, 1997.

[Wol85] S. Wolfram. Cryptography with cellular automata. In CRYPTO 85, Lecture Notes in Computer

Science. Springer Verlag, 1985.

[Wol86a] S. Wolfram. Random sequence generation by cellular automata. Advances in applied mathe-

matics, 7:123–169, 1986.

[Wol86b] S. Wolfram. Theory and applications of cellular automata. World Scientific, Singapore, 1986.

[WY05] X. Wang and H. Yu. How to break MD5 and other hash functions. In EUROCRYPT, pages

19–35, 2005.

[XM88] G-Z. Xiao and J. L. Massey. A spectral characterization of correlation-immune combining

functions. IEEE Trans. on Information Theory, 34(3):569–, 1988.

[Yao82] A.C. Yao. Computational information theory. In Proceedings of the IEEE, 1982.

[Yue77] C-K. Yuen. Testing random number generators by Walsh transform. IEEE Trans. Computers,

26(4):329–333, 1977.

[Zém00] G. Zémor. Cours de cryptographie. Cassini, 2000.

	Introduction
	Generating (pseudo-)randomness
	A first experiment
	Related work
	The proposed scheme
	Implementation
	Analysis

	Changing the pseudo-random sequence
	Cellular automata
	Equivalent rules
	Pseudo-random generation with CA
	Walsh transform

	No correlation-immune elementary CA rule
	Improving the randomness
	Countering the attack
	The cellular programming approach

	Discussion

