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Abstract— In this paper, we propose in Dezert-Smarandache II. PIGNISTIC PROBABILITIES
Theory (DSmT) framework, a new probabilistic transformation,
called DSmP, in order to build a subjective probability measire The basic idea of the pignistic transformation [9], [10]

from any basic belief assignment defined on any model of the ¢4ngists in transferring the positive mass of belief of each

frame of discernment. Several examples are given to show how . . . .
the DSmMP transformation works and we compare it to main non specific element onto the singletons involved in that

existing transformations proposed in the literature so far We €lement split by the cardinality of the proposition when
show the advantages of DSmP over classical transformations working with normalized basic belief assignments (bba'sje

in term of Probabilistic Information Content (PIC). The dir ect (classical) pignistic probability in TBM framework is gine

extgnsion of this transformation for dealing with qualitative belief byl BetP(0) =0 andVX € 20 \ {0} by:

assignments is also presented.

Keywords: DSmT, Subjective probability, Probabilistic IXNY| m(Y)

Information Content, qualitative belief. BetP(X)= ) YT T=m()
Y €20, Y #0 m

(1)
|I. INTRODUCTION AND MOTIVATION

In the theories of belief functions, Dempster-Shafer Theowhere2® is the power set of the finite and discrete fra@e
(DST) [4], Transferable Belief Model (TBM) [11] or DSmT assuming Shafer's model, i.e. all elementsabfare assumed
[6], [7], the mapping from the belief to the probability dotruly exclusive. In Shafer's approachy()) = 0 and the
main is a controversial issue. The original purpose of su¢brmula ﬂ.) can be rewritten for any singletépe © as
mappings was to make (hard) decision, but contrariwise to
erroneous Widesprea_ld idea/claim, this is not the only emler BetP(6;) = Z Lm(Y) = m(6;) + Z Lm(Y) )
for using such mappings nowadays. Actually the probatuilist 1Y e Y]
transformations of belief mass assignments are very useful 0:;CY by
in modern multitarget multisensor tracking systems (or in . i ) )
any other systems) where one deals with soft decisions (i/¢S transformatlon@has been generalized in DSmT for any
where all possible solutions are kept for state estimatigh w'egular bbam(.) : G® — [0,1] (i.e. such thatn()) = 0 and
their likelihoods). For example, in a Multiple Hypothese;XeG@ m(X) = 1) and for any model of the frame (free
Tracker using both kinematical and attribute data, one sieed PSm model, hybrid DSm model and Shaf%r’s model as well)
compute all probabilities values for deriving the likelgs of 6] It is given by BetP(0) = 0 andV.X € G® \ {0} by
data association hypotheses and then mixing them altagethe C
to estimate states of targets. Therefore, it is very relet@n BetP(X) = Z —
use a mapping which provides a high probabilistic inforomati Yeage Cm(Y)
content (PIC) for expecting better performances. Thisquthf
justifies the theoretical work proposed in this paper. Asilas WhereG® corresponds to the hyper-power set including all the
cal transformation is the so-callgggnistic probability[10], integrity constraints of the model (if arfy)C»((Y') denotes the
denotedBet P, which offers a good compromise between thBSm cardinal of the setY’. The formula [B) reduces td](1)
maximum of credibility Bel and the maximum of plausibility whenG® reduces to classical power ¥ when one adopts
P1 for decision-support. Unfortunatelget P doesn't provide Shafer's model.
the highest PIC in general as pointed out by Sudano [12]-[14]

We propose hereafter a new generalized pignistic trangform We assume thata(.) is of course a non degenerate bba, irg(0) # 1.

tion, denotedDSm P, which is justified by the maximization , G = 2 if one adopts Shafer's model f6y and:® = D® (Dedekind's
L . . . . lattice) if one adopts the free DSm model 6r [6].

of the PIC criterion. An extension of this transformation inac (v is the number of parts of in the Venn diagram of the model

the qualitative domain is also presented. M of the frame® under consideration [6] (Chap. 7).

m(Y) ®3)



IIl. SUDANO’S PROBABILITIES

CuzzP is however not appealing for the following reasons:

Recently, Sudano has proposed interesting alternatives del) Although () does not include explicitly Dempster’s rule

noted PrPl, PrN Pl, PraPl, PrBel and PrHyb to BetP,

all defined in DST framework [15]. Sudano uses different

kinds of mappings either proportional to the plausibility,
the normalized plausibility, to all plausibilities, to theelief
or a hybrid mappingPrPl and PrBel are defineti for all

its geometrical justification [1], [2] is strongly condi-
tioned by the acceptance of Dempster’s rule as the fusion
operator for belief functions. This is a dogmatic point
of view we disagree with since it has been recognized
since many years by different experts of Al community,

X #0 €0 by: that other fusion rules can offer better performances,

especially for cases where high conflicting sources are
involved.

PrPI(X) =PUX)- Y. _m¥)

Y€29,XCY CSIPUY)] 2) Some parts of the masses of partial ignorance, Aay
m(Y) involved in the TNSM, are also transferred to singletons,
PrBel(X) = Bel(X)- Y CSIBe(Y)] ©) say #; € © which are not included inA (i.e. such
Ye20,XCY that {6;} N A = 0). Such transfer is not good and

does not make sense in our point of view. To be more
clear, let's take® = {4, B, C'} andm/(.) defined on its
power set with all masses strictly positive. In that case,
m(AU B) > 0 does count in TNSM and thus it is a bit
redistributed back t@' with the _ratiom
through TNSM > 0. There is no solid reason for
« a mapping proportional to theormalizedplausibility committing partiallym(A U B) to C since, onlyA and
1 1 B are involved in that partial ignorance. Similar remark
X)=%x Yoo omy)= ~ PUX) (6) holds for the partial redistribution ofi(A U C') > 0.
Y €2°,YNX#D 3) CuzzP is not defined whem(.) is a probabilistic mass
whereA is a normalization factor. because one get¥/0 indetermination. This remark is
« a mapping proportional tall plausibilities important only from the mathematical point of view.

PraPl(X) = Bel(X) +¢- Pl(X) (7)

with € £ (1 — Yy cp0 Bel(Y))/(Xyeqe PUY).
« a hybrid transformation

PrHyb(X) = PraPI(X)- Y %
ye2°

where the compound-to-sum of singletons (CS) operator of
any functio® f(.) is defined by [12]:

CS[f(Y)] = >
Y;€29,|Y;|=1,U;Y;=Y
PrNPI, PraPl and PrHyb are given by [12], [15]:

f(Yi)

PrNPI(

V. A NEW GENERALIZED PIGNISTIC TRANSFORMATION

Our new mapping, denotedSmP is straight, different
from Sudano’s and Cuzzolin’'s mappings which are more
refined but less interesting in our opinions than what we

(8) present here. The basic idealdfSm P consists in a new way
of proportionalizations of the mass of each partial ignocean
xey such asd; U Ay or A, U(AaNAs) or (A1 N Ag)U(AsNAy),
IV. CUZZOLIN'S INTERSECTIONPROBABILITY etc. and the mass of the total ignoranteU A, U ... U A,

In 2007, a new transformation has been proposed in [t the elements involved in the ignorances. This new transfo
by Cuzzolin in the framework of DST. From a geometrignation takes into account both the values of the masses and
interpretation of Dempster’s rule, dntersection Probability the cardinality of elements in the proportional redisttibo
measure was proposed from the proportional repartitiohef tprocess. We first present the general formula for this new
Total Non Specific Ma$s(TNSM) by each contribution of the transformation and the numerical examples and comparisons
non-specific masses involved in it. For notation converggnavith respect to other transformations are given in nextisest

we will denote itCuzzP in the sequelCuzzP(.) is defined
A. The DSmP formula

on any finite and discrete fram@ = {6;,...,0,}, n > 2,
satisfying Shafer's model, by Let's consider a discrete fram® with a given model
A6;) (free DSm model, hybrid DSm model or Shafer's model),
CuzzP(0;) = m(0;) + 2717&(9) xTNSM (9) the DSmP mapping is defined by DSmP.(§)) = 0 and
j=1 J VX € GO\ {0} by
thA@l £ pj 0;) — 0; and
with A(6:) = PU(6:) nm( ) S m(Z)+e-C(XNY)
TNSM=1->"m@#)= Y  mA) (10 oy
= Aeso A1 DSmP(X)= > S m(Z)+e-CY) )
o m € -
4For notation convenience and simplicity, we use a diffetaritequivalent vee ZCY
notation than the one in [15]. c(Z)=1
5For example,f(.) must be replaced byi(.) in (H) or by Bel(.) in (ﬂ). (12)

5i.e. the mass committed to partial and total ignorancestd.disjunctions

of elements of the frame. "The formulation of @1) for the case of singletofisof © is given in [8].



wheree > 0 is a tuning parameter an@® corresponds to then P(A) > m(A) for any probability transformatio®(.).

the hyper-power set including eventually all the integdbn- This legitimate property is not satisfied BN Pl, since for
straints (if any) of the modeM; C(X NY) andC(Y) denote example if we conside® = {A, B,C} andm(A) = 0.2,

the DSm cardinafsof the setsX NY andY respectivelye m(B) = m(C) = 0 and m(B U C) = 0.8, one obtains
allows to reach the maximum PIC value of the approximatiaRr N PI(A) = 0.1112 < m(A4) = 0.2. So it is abnormal

of m(.) into a subjective probability measure. The smallghat singletonA looses mass whem(.) is transformed into a

¢, the better/bigger PIC value. In some particular degeaeraubjective probability.

cases however, th®SmP._, values cannot be derived, but In summary, DSmP does an 'improvement’ of all Su-
the DSmP,.~o values can however always be derived bygano, Cuzzolin, and BetP formulas, in the sense th&in P
choosinge as a very small positive number, say= 1/1000 mathematically makes a more accurate redistribution of the
for example in order to be as close as we want to the maximugmorance masses to the singletons involved in ignorances.
of the PIC (see next sections for details and examples). WhBym P and BetP work in both theories: DST (= Shafer's

e = 1 and when the masses of all elemefiteavingC(Z) =1 model) and DSmT (= free or hybrid models) as well. In order
are zero, @1) reduces t(ﬁl (), i.BSmP._; = BetP. The to use Sudano’s and Cuzzolin's in DSmT models, we have to
passage from a free DSm model to a Shafer's model involvegine the frame (see Example 5).

the passage from a structure to another one, and the cardin@.ll

change as well in the formulﬂll). THE PROBABILISTIC INFORMATION CONTENT (PIC)

Following Sudano’s approach [12], [13], [15], we adopt the
B. Advantages of DSmP Probabilistic Information Content (PIC) criterion as a net

DSmP works for all models (free, hybrid and Shafer's). Indep|ct|ng the strength of a critical decision by a specific

: ) : probability distribution. It is an essential measure in any
order to apply classicaBet P, CuzzP or Sudano’s mappings, . - .
4 . ! threshold-driven automated decision system. The PIC is the
we need at first to refine the frame (on the cases when it js )
. : . , tal of the normalized Shannon entropy. A PIC value of one
possible!) in order to work with Shafer's model, and then . -
indicates the total knowledge to make a correct decisioe (on

apply their formulas. In the case where refinement makgs . o
sense, then one can apply the other subjective probabilitf/pomes's has a probability value of one and the rest of)zero
' PIC value of zero indicates that the knowledge to make

on the refined frameDSmP works on the refined frame o :

: . a_correct decision does not exist (all the hypotheses have an
as well and gives the same result as it does on the N%ual probabilit value), i.e. one has the maximal entrape
refined frame. Thu® SmP with € > 0 works on any models gua’p y L

. . ) .~ PIC is used in our analysis to sort the performances of the
and so is very general and appealing. It is a combination

PrBel and BetP. PrBel performs a redistribution of an Srerent pignistic transformations through several nuos

: : . . . examples. We first recall what Shannon entropy and PIC
ignorance mass to the singletons involved in that ignorance

proportionally with respect to the singleton masses. Whilgeasure are and their tight relationship.

BetP also does a redistribution of an ignorance mass to the Shannon entropy

singletons involved in that ignorance but proportionallfhw  ghannon entropy, usually expressed in bits (binary digits)
respect to the singleton cardinal3r Bel does not work when of 3 probability measuré®{.} over a discrete finite se =

the masses of all singletons involved in an ignorance are ngy, ' ¢ 1 is defined by [5]:

since it gives the indetermination 0/0; and in the case witen a "

least one singleton mass involved in an ignorance is zeab, th H(P) 2 _ PiO11] Plo 12
singleton does not receive any mass from the distributiemev (P) ; {6} loga (P10:}) (12)

if it was involved in an ignorance, which is not fair/good.,So . imal for th it bability distributi
DSmP solves thePr Bel problem by doing a redistribution of H(P) is maximal for the uniform probability distribution over

the ignorance mass with respect to both the singleton mas@eé'e' whenP{f;} =1/nfori=1,2,...,n. In that case,

_ _ no1 1y _
and the singletons’ cardinals in the same time. Now, if afi"® getSH.(B) = Hinax = =3 iy w108y (5) = 1.Og2(7?)'
masses of singletons involved in all ignorances are diffEreH(P) is minimal for a totallydetermln|st|9probabll|ty, I.€.
from zero, then we can take = 0, and DSmP coincides forda;yj{.}_sucfh th'atP{‘Gi*}H:Pl for somes er;{l,2, 'd"”}
with PrBel and both of them give the best result, i.e. th&" {0} = 0 for j # 4. H(P) measures the randomness
best PIC value.PrN Pl is not satisfactory since it yields

carried by any discrete probability{.}.
to an abnormal behavior. Indeed, in any model, when a bBa The PIC metric

'm(ll) IS tTFns;ormid Into a prot;abﬂny, normally (we rrf1eand|t The Probabilistic Information Content (PIC) of a probathili
is logically that) the masses of ignorances are transfetoe measureP{.} associated with a probabilistic source over a

the masses of elements of cardinal 1 (in Shafer's model thege. ote finite se® — (0 6.} is defined by [13]:
elements are singletons). Thus, the resulting probalafitgn o '
element whose cardinal is 1 should be greater than or equal _ 1 - . .

to the mass of that element. I. e.4f in G® andC(A) = 1, PIC(P) =1+ Hox 'Z;P{HZ}IOgQ(P{HZ}) (13)

8We have omitted the index of the mod#Ht for notation convenience. Swith common conventior log, 0 = 0.



The PIC is nothing but the dual of the normalized Shannda modify m(.) (the input mass) to obtain a new subjective
entropy and thus is actually unit leS3/C(P) takes its values probability measure since3el(.) associated withm(.) is
n [0,1]. PIC(P) is maximum, i.e.PICn., = 1 with any already a probability measure. So if we consider for example
deterministicprobability and it is minimum, i.ePIC,;,, = 0, the uniform Bayesian mass defined by, (A) = m,(B) =
with the uniform probability over the fram®. The simple 1/2, it is very easy to verify in this case, that almost all
relationships betweed/ (P) and PIC(P) are PIC(P) = transformations coincide with the (probabilistic) inpuass as
1— (H(P)/Hmax) and H(P) = Huyax - (1 — PIC(P)). expected, so that the idempotency property is satisfiedy Onl
Cuzzolin’s transformation fails to satisfy this propergcause
in CuzzP(.) formula (§) one gets/0 indeterminacy since all
Due to the space limitation constraint, all details of deriv A(.) = 0 in (f]). This remark is valid whatever the dimension
tions are voluntarily omitted here but they will appear if. [8 of the frame® is, and for any Bayesian mass (not only for
In this section, we work with the 2D fram@ = { A4, B}. uniform belief mass).

VII. EXAMPLES AND COMPARISONS ON A2D FRAME

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafers modé€l® = 2°

{0, A, B, AU B}. The non-Bayesian quantitative belief mass |et's assume Shafer's model and the non-Bayesian mass
is given in Tablel]l. TabIeDII presents the results of thgmore precisely the simple support mass) given in Te Il.
different mappings and their PIC sorted by increasing ordgte summarize in Tabl§ |V, the results obtained with all
One sees thabSmP._.o provides same result @rBel and  transformations. One sees tHafC'(DSmP._) is maximum
PIC(DSmP._) is greater than the PIC values obtained witdmong all PIC valuesPrBel(.) does not work correctly since
PrNPL, BetP, CuzzP, PrPl and PraPl. it can not have a division by zero. We use NaN acronym
T TOE here standing forNot a l\!umbe_]rl; ‘even overcoming 1,
() T03 01| 06 PrBel does not do a fair redistribution of the ignorance
m(A U B) = 0.6 becauseB does not receive anything from
the mass 0.6, although is involved in the ignorancel U B.

All m(AU B) = 0.6 was unfairly redistributed tol only.

D. Example 4 (Shafer's model and non-Bayesian mass)

TABLE |
QUANTITATIVE INPUTS FOR EXAMPLE 1

A B PIC()
PrNPI() 05625 | 0.4375]| 0.0113 A[BJ]AUB |
BetP(.) 0.6000 | 0.4000 || 0.0291 m() [04] 0] 06 ]
CuzzP(.) 0.6000 | 0.4000 || 0.0291 TABLE Il
PrPi(.) 0.6375 | 0.3625|| 0.0553
P?“aPl(.) 0.6375 | 0.3625 0.0553 QUANTITATIVE INPUTS FOR EXAMPLE4
PrHyb(.) 0.6825 | 0.3175|| 0.0984
DSmP.—o.001(-) | 0.7492| 0.2508 || 0.1875
PrBel(.) 0.7500 | 0.2500 || 0.1887 A B PIC()
DSmP-—o(.) 0.7500 | 0.2500 || 0.1887 PrBel() 1 NaN NaN
PrNPI(.) 0.6250 | 0.3750 || 0.0455
TABLE II BetP(.) 0.7000 | 0.3000 || 0.1187
RESULTS FOR EXAMPLEL. CuzzP(.) 0.7000 | 0.3000 || 0.1187
PrPI(.) 0.7750 | 0.2250 || 0.2308
PraPI(.) 0.7750 | 0.2250 || 0.2308
B. Example 2 (Shafer's model and the totally ignorant source PrHyb(.) 0.8650 | 0.1350 )| 0.4291
DSmP.—o.001(-) | 0.9985| 0.0015 || 0.9838
Let's assume Shafer’s model and the vacuous bba charac- DSmPe=o(.) 1 0 1
terizing the totally ignorant source, i.e2(AU B) = 1. It TABLE IV

can be verified that all mappings coincide with the uniform

probability measure over singletons@®f exceptPr Bel which

is mathematically not defined in that case. This result can beThe best result is andequate probabilitynot the biggest

easily proved for any size of the frant with |©] > 2. PIC in this case. This is becaud®(B) deserves to receive

some mass fromm(A U B), so the most correct result is

C. Example 3 (Shafer's model and a probabilistic source) ggone byDSmP._q 001 i Table@ (of course we can choose
Let's assume Shafer's model and let's see what happemy other very small positive value ferif we want). Always

when applying all the transformations on a probabilistivhen a singleton whose mass is zero, but it is involved in an

sourcé® which commits a belief mass only to singletonggnorance whose mass is not zero, them DSmP formula

of 29, i.e. a Bayesian mass [4]. It is intuitively expectedL)) should be different from zero.

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reasmdn !'we could also use the standard "N/A” standing for "does nqglyip
Zsince_thedirect derivation of PrBel(B) cannot be done from the
10This has obviously no practical interest since the souneady provides formula ﬁ) because of the undefined fofiyi0, we could however force
a probability measure, nevertheless this is very interggt see the theoretical it to PrBel(B) = 0 since PrBel(B) =1 — PrBel(A)=1-1=0, and
behavior of the transformations in such case. consequently we indirectly takEIC(PrBel) = 1.

RESULTS FOR EXAMPLEA4.



E. Example 5 (Free DSm model) A L ¢ PIC()

PrNPIl() 0.4722| 0.3889 | 0.1389 || 0.0936
Let's assume the free DSm model (i4N B # () and the guz]if)@ 8-28§g 8-232(7) 8-1833 8-12;

. : . etP(. . . . .
generalized mass given in Ta@a V.Inthe case of free-DSm (or | ;) ) 05204 | 03978 | 0.0728 | 01861

NP

hybrid DSm) models, the pignistic probability and the DSmP PrPl(. 0.5421 | 0.4005 | 0.0574 || 0.2149

can be derived directly fromn(.) without the refinement of the ggHy}g(-) 0 8-2222 8-38%3 8-8‘2182 8-3%2

’ ) it Ml e=0.001\{- . . . .
frame_@ Whe_reas Sudano s_and Cuzzolin’s probabilities cannot PrBel() 05668 | 04038 | 00294 || 02793
be derived directly from their formulaf] (4)}(9) for such nets DSmP.o(.) 0.5668 | 0.4038 | 0.0294 || 0.2793
However, they can be obtained indirectly after a refinemént o TABLE VIII

the frame® into ©™" which satisfies Shafer's model. More
precisely, instead of working directly on the 2D frar®e=
{A, B} with m(.) given in Table[y, we need to work on the
3D frame©'®" = {A’ 2 A\ {ANB},B’' 2 B\{ANB},C' £
AN B} satisfying Shafer’'s model with the equivalentbb&) B. Example 7 (Shafer's model and a non-Bayesian mass)
defined as in Tabl¢ VI. The results are then given in Table| gts assume Shafer's model and change a bit the non-
i) One sees thaPIC(DSmP._) is the maximum value. Bayesian input mass by taking(A) = 0.10, m(B) = 0,
PrBel does not work correctly because it cannot be directly, () = .20, m(A U B) = 0.30, m(A U C) = 0.10,
evaluated forA and B since the underlying>rBel(A") and (B ) = 0 andm(AU B UC) = 0.30. The results of the
PrBel(B’) are mathematically undefined in such case. If ongappings are given in Tabfe]IX. One sees tEa§mP. .,
works on therefined frameeff_ff and one applies th®SmP  provides the best PIC value than all other mappings since
mapping of the bban/(.) defined in Tablg I, one obtains p.pe; is mathematically undefined. If one takes artificially

naturally the same results fd».SmP as those given in table p.pci(B) = 0, one gets the same result as WiliEm P,
Ml Of course the results oBetP in Table are the same

using directly the formula[[3) as those using (1) ®f". The

RESULTS FOR EXAMPLES.

verification is left to the reader. A B ¢ PIC()
PrBel(.) 0.5333| NaN 0.4667 NaN

AFB T AT B 4208 PrNPI() 0.4000 | 0.3000 | 0.3000 || 0.0088

w04 [0z 01] 03 CuzzP(.) 0.3880 | 0.2470 | 0.3650 | 0.0163

BetP(.) 0.4000 | 0.2500 | 0.3500 || 0.0164

TABLE V PraPl(.) 0.3800 | 0.2100 | 0.4100 || 0.0342

QUANTITATIVE INPUTS FOR EXAMPLE 5 PrPI(.) 0.4486 | 0.2186 | 0.3328 || 0.0368

PrHyb(.) 0.4553 | 0.1698 | 0.3749 || 0.0650

DSmPe—o.001(.) | 0.5305 | 0.0039 | 0.4656 0.3500

CT T AucC” | Buc" | AAuB UC’
m(.) | 0.4 0.2 0.1 0.3 TABLE IX

RESULTS FOR EXAMPLETY.
TABLE VI

QUANTITATIVE INPUTS ON THE REFINED FRAMEOREF

C. Example 8 (Hybrid DSm model)

P 0%95 0%68 63?2633 131067’2-% We consider the hybrid DSm model in which all intersec-
T . . . . . : i e
Cuz2pP() 0.8400 | 0.8000 | 0.6400 || ©0.1801 tions of elements 0® are empty, butd N B. In this case(=
BetP(.) 0.8500 | 0.8000 | 0.6500 || 0.1931 reduces to 9 element$), ANB, A, B,C,AUB,AUC,BU
}Ijr?DIlD(l()-) 8-3(7)22 8-2;142“11 8-;%2; 8-5;38 C, AUBUC'}. The input masses of focal elements are given by
T . . . . . _ —_ — —
PrHyb(.) 0.9471 | 0.9165 | 0.8636 || 0.5544 m(AN B) = 0.20, m(A4) = 0.10, m(C) = 0.20, m(AUB) =
DSmPe—o.001(.) | 0.9990| 0.9988 | 0.9978 || 0.9842 0.30, m(AUC) =0.10, andm(AU BUC) = 0.10. In order
PrBel(.) NaN NaN 1 1 to apply Sudano’s and Cuzzolin’s mappings, we need to work
DSmPe=o(.) 1 1 1 1 on the refined fram®'' with Shafer’'s model as depicted on
TABLE VII Figure[] and masses given in the Taple X.
RESULTS FOR EXAMPLES.
VIIl. EXAMPLES ON A 3D FRAME D’ AU D ¢
m(.) 0.2 0.1 0.2
We work hereafter on the 3D frante = {A, B, C}. T OB 0D [ Ao T 08 000D
. . 0.3 0.1 0.1
A. Example 6 (Shafer's model and a non-Bayesian mass) m(.)
TABLE X

This example is drawn from [15]. Let's assume Shafer’s
model and the non-Bayesian belief mass givennbyA) = .
0.35, m(B) = 0.25, m(C) = 0.02, m(AU B) = 0.20, One sees_from the TabEXI_tthmPe_ﬂo provides the
m(AUC) = 0.07, m(BUC) = 0.05 andm(AUBUC) = 0.06. bes_t results |nf term ofAPIC metric. TheArefmed frame hai been
The results of the mappings are given in Tgble]VIIl. One se9§f'”leg asO™ = {A" = A\(ANB), B' = B\(ANB),C" =
that DSmP,._,, provides the same result @rBel which C,D' £ AN B} according to Figuré]1.
corresponds here to the best result in term of PIC metric.

QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLES



A7 B’ C7 D’ PIC(.) Transformations | PIC(.)
PrBel(.) NaN NaN 0.3000 | 0.7000 NaN PrBel(.) NaN
PrNPI(.) 0.2728 | 0.1818 | 0.1818 | 0.3636 0.0318 PrNPI(.) 0.0414
CuzzP(.) 0.2000 | 0.1333 | 0.2667 | 0.4000 || 0.0553 CuzzP(.) 0.0621
BetP(.) 0.2084 | 0.1250 | 0.2583 | 0.4083 0.0607 PraPl(.) 0.0693
PraPl(.) 0.1636 | 0.1091 | 0.3091 | 0.4182 0.0872 BetP(.) 0.1176
PrPI(.) 0.2035 | 0.0848 | 0.2404 | 0.4713 0.1124 PrPI(.) 0.1940
PrHyb(.) 0.1339 | 0.0583 | 0.2656 | 0.5422 0.1928 PrHyb(.) 0.2375
DSmP.—g.001(.) | 0.0025| 0.0017 | 0.2996 | 0.6962 0.5390 DSmPc—g.001(.) 0.8986
TABLE XI TABLE XIlI
RESULTS FOR EXAMPLES. RESULTS FOR EXAMPLE9.
A B

G® into a set of linguistic labeld, = {Lo,i,LnH} where
L = {L1,---,L,} is a finite set of linguistic labels and
wheren > 2 is an integer. For exampld,; can take the
linguistic value “poor”, Ly the linguistic value “good”, etc.
L is endowed with a total order relationshig, so that
Ly < Ly <--- < L,. To work on a true closed linguistic set
L under linguistic operatord, is extended with two extreme
Fig. 1. Refined 3D frame for example 8 valuesLy = Lyin and L, 11 = Lax, WhereL, corresponds
to the minimal qualitative value anfl,,,; corresponds to the
maximal qualitative value, in such a way thay < L; <
D. Example 9 (free DSm model) Ly < --- < L, < L,y1, Where< means inferior to, or less
We consider the free DSm model depicted on FigﬂJre 2 wiffn quality) than, or smaller than, etc.
the input masses given in TaII. To apply Sudano’s and
Cuzzolin’s mappings, one works on the refined fra@® = B. Operator on qualitative labels

{4, B',C",D',E', F',G'} where the elements 0@ are  From the extension of the isomorphism between the set of
exclusive (assuming such refinement has a physically senggyistic equidistant labels and a set of numbers in therirat
according to Figur¢]2. This refinement step is not necessafyy] one can built exact operators on linguistic labels which
when using DSmP since it works directly on DSm free mages possible the extension all the quantitative fusidesru
model. The PIC values obtained with the different mappinggqg probabilistic transformations into their qualitativeun-

are given in Tabld_XIJI. One sees th&lSmP..o provides temarts [3]. We briefly remind the main qualitative operato
here again the best results in term of PIC. (or g-operators for short) on linguistic labels:

A B « g¢-addition:

ﬂ Ly if i+ j<ntl,
7 L+, - (14)
% {L

C

nt1 = Lmax ifi+j>n+1.

The g-addition is an extension of the addition operator

o on equidistant labels which is given iy + L; = 55 +
J_ _ it

n+l ~— n+l = LH’J"
Fig. 2. Free DSm model for a 3D frame for example 9. « g¢-subtraction:
Li—y if i>j,
ANBNC | AnB [ A4 Li—LJ—{_L, i e (15)
m() 0.1 0.2 0.3 =i J-
AUB AUBUC
) 01 03 where —L = {—L;,—Ls,...,—Ly,—Ly41}. The ¢-

subtraction is justified since when> j, one has with
equidistant labeld; — L; = J_ =

« ¢-multiplication'®:

TABLE Xl i
n+tl n+l ~ ntl-
Li- Lj = LiG.j)/(n+1)]- (16)

QUANTITATIVE INPUTS FOR EXAMPLE 9

IX. EXTENSION OFDSMP FOR QUALITATIVE BELIEF
A. Qualitative belief assignmengin(.)

. . . . 13 inlicati Taquisti :
In order to compute dlrectly with words (|InQUIStIC Iabels) ' Theq-multlpllcatl_on_ of two linguistic Iab_els d_ef_lned here canéeended
directly to the multiplication ofn > 2 linguistic labels. For example

Sm"f‘randaChe a_nd Dezert have deﬁned_ in [7(]1Lm_1litative the product of three linguistic label will be defined &5 - L; - L =
basic belief assignmentm(.) as a mapping function from L;.;.x)/(n+1)(nt1) tC.



where [z] means the closest integer to (with [n + 3) & 4) Powers and roots of labels:
0.5] = n + 1, ¥n € N). This operator is justified by the

Nk
apprOX|mat|on of the pro?utgt/(of e)qwdlstant labels given (Li)" = L[W] (22)
(3 n+1
by L L = n+1 ’ n-Jﬁ-l = n+1 . ) ik
« Scalar multiplication of a linguistic label: Let be a for k € R because(L;)* = (-4)F = i~
real number. The multiplication of a linguistic label by aL[ i
. . . ntk—1
scalar is defined by: if %' € Q, which is the set of fractions (rational numbers),
L i Ly flai]>0 a7 we get the radical operation of labels. Therefore,
YT n+1 L_(,q otherwise VLi= Ly (23)
« Division of linguistic labels: because we replade= 1/p in the formula [2p).

a) g-division as an internal operator: Lgt~ 0, then D. Quasi-normalization ofym(.)

LGy #[(@/5)- (n+1)]<n+1, There is no way to define a normalizegn(.), but a
i/ Lj = Lt otherwise qualitative quasi-normalization [7] is nevertheless fides
(18) when considering equidistant linguistic labels becaussuth

The first equality in [(8) is well justified be- CaSe, gm(X;) = L;, is equivalent to a quantitative mass

cause with equidistant labels, one gels;/L; = m(X;) =i/(n+ 1) which is normalized if:
i/ (nt1) _ (i/5)-(n41D)
oD = AT~ L/ (- Yo om(x) =Y in/(n+1)=1,
b) Division as an external operatar. Letj # 0. We Xege k
define: but thi ) valent t
. ut this one is equivalent to:
LioL; =i/j. (19) 9
X) = L; = Lny1.
since for equidistant labeld; © L; = (i/(n + ch:@ am(X) Xk: g i
1))/(/(n+1)) =i/j.

Remark When working with labels, no matter how manym this case, we have qualitative normalizationsimilar to

operations we have, the best (most accurate) result isnaiotai the (classical) numerical normalization. But, if the lahé),

if we do only one approximation, and that one should be Juéf L2, .., Ln, L1 @re not equidistant, so the interval 1]
at the very end. cannot be split into equal parts according to the distrduti

of the labels, then it makes sense to considejualitative

C. More operations with labels quasi-normalizationi.e. an approximation of the (classical)
) ) numerical normalization for the qualitative masses in tas
On the intervall0, 1] we consider the label&;, 0 < i < way

n+ 1, n > 0 such thatL; = i/(n + 1). But we extend this ' Z gm(X) = Ly
closed interval to the right and to the left in order to be able "

to do all needed label operations in any fusion calculation.
ThereforeL,.» = 22, L,,5 = ™3, . and respectively In general, if we don’t know if the labels are equidistant or

X n+1' °
L, = —L, = n__+11 so we getl_,, L,Q, ... In general tnhot, vge say that at_quarl]lt?(tjwe mass is quasi-normalized when
L =i/(n+1) foranyi € Z = {...,—2,—1,0,1,2,...} € above summation holds.

whereZ is the set of all integers. Now we define four morg. Qualitative extension of DSmP

operators involving labels. The qualitative extension of (L1), denotedSmP(.) is
1) Addition of labels with real scalarslf r» € R (the set given by gDSmP.(0) = 0 andvX € GO\ {0} by

of real numbers) and € Z, then:
2: gn(Z)+e-C(XNY)

XeGe

Li+r=r+1L;= L[iJrr(nJrl)] (20) ZCXNY
c(z)=1
where [x] means the closest integer t0 This operator is qDSmP(X) = Z 7 oy qm(Y)
justified becausé; +r = 15 +r = % X Liitr(nt1)] YeG® ch; m(Z) e C(Y)
and it is needed in the qualitative extension of DSmP formula c(Z)=1
2) Subtraction between labels and real scalars: (24)
where all operations inmz4) are referred to labels, thaj-is
Li—r=Lji_r(ny1) (21)  operators on linguistic labels defined[in IX-B and not cleaki
; ir(ntl) operators on numbers. In the same manner, due to our con-
becauseL; — r = 45 —r = — 55— & Lji—rm+1)] @1 giryction of labels and qualitative operators, we can fans
similarly r — L; = Liz(n41)— because — L, = r — 45 = any quantitative fusion rule (or arithmetic expressiortpia

T(Tijl)_i & Lir(nt1)—i- gualitative fusion rule (or qualitative expression).



F. Derivation of PIC from gDSmP where in order to compute the qualitative logarithms, one

We propose here the derivation of PIC from qualitativetilized the isomorphisnL; = .
DSmP. Let's consider a finite space of discrete exclusivatsve
O = {61,02,...,0)} and a subjective qualitative alike prob-
ability measuregP(.) : © — L = {Lo,L1,..., Ly, Lyy1}-
Then one defines the entropy and PIC metrics fidg.) as

XI. CONCLUSIONS

Motivated by the necessity to use a better (more informa-
tional) probabilistic approximation of belief assignment.)
for applications involving soft decisions, we have develdp

M new probabilistic transformation, calledSm P, for approx-
H(gP) 2 = " qP{0;}1og,(qP{6:}) (25) imating m(.) into a subjective probability measur&.Sm P
i=1 provides the maximum of the Probabilistic Information Con-

v tent (PIC) of the source because it is based on proportienal r
) Z gP{6;} log,(qP{6;})) (26) dlstrlbu_non of p_art|al and total un_certalnty masses toredats

p of cardinal 1 with respect to their corresponding masses and
cardinalities.DSm P works directly for any model (Shafer’s,
hybrid, or free DSm model) of the frame of the problem
and the result can be obtained at any level of precision by

PIC(qP) =1+

Hmax

where Hy,.x = log,(M) and in order to compute the loga-
rithms, one utilized the isomorphisiy;, = i/(n + 1).

X. EXAMPLE FOR QUALITATIVE DSMP a tuning positive parameter> 0. DSmP._, coincides with
Let's consider the fram@® = {A, B,C} with Shafers Sudano’sPrBel transformation for the cases when all masses
model and the following set of linguistic label& = of singletons involved in ignorances are nonzerd:Bel

{Lo, L1, Ly, L3, Ly, L5}, With Ly = Lyin and Ly = Lpax. formula is restricted to work on Shafer's model only while
Let's consider the following qualitative belief assignrhenDSmP.~o is always defined and for any model. We have

gm(A) = Ly, gm(BU C) = Ly and gm(X) = L, for clearly proved through simple examples that the classical
all X € 29\ {A,BUC}. ¢gm(.) is quasi-normalized since BetP and Cuzzolin’s transformations do not perform well in

> yege qM(X) = Ls = Lipax. In this examplegm(BUC) = term of PIC criterion. It has been shown also hdéwm P

L, is redistributed byyDSmP.(.) to B andC only, sinceB  €an be extended to the qualitative domain to approximate
and C' were involved in the ignorance, proportionally withqualitative belief assignments provided by human sourges i
respect to their cardinals (since their masses faje= 0). hatural language.
Applying ¢DSmP.(.) formula ), one gets for this example:
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