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Abstract

A new algorithm is presented to retrieve the three-dimensional structure of clouds from
airborne measurements of microphysical parameters. Data from individual flight legs
are scanned for characteristic patterns, and the autocorrelation functions for several
directions are used to extrapolate the observations along the flight path to a full three-5

dimensional distribution of the cloud field. Thereby, the mean measured profiles of
microphysical parameters are imposed to the cloud field by mapping the measured
probability density functions onto the model layers. The algorithm was tested by simu-
lating flight legs through synthetic clouds (by means of Large Eddy Simulations (LES))
and applied to a stratocumulus cloud case measured during the first field experiment10

of the EC project INSPECTRO (INfluence of clouds on the SPECtral actinic flux in the
lower TROposphere) in East Anglia, UK. The number and position of the flight tracks
determine the quality of the retrieved cloud field. If they provide a representative sam-
ple of the entire field, the derived pattern closely resembles the statistical properties of
the real cloud field.15

1. Introduction

A challenge in three-dimensional (3-D) radiative transfer is the generation of realis-
tic clouds as input for sophisticated radiative transfer models (e.g. Borde and Isaka,
1996; Petty, 2002). Currently, it is not possible to derive the required distribution of
liquid water content and droplet sizes from observations of a single instrument. Pas-20

sive satellite remote sensing instruments may provide a detailed horizontal distribution
but fail to give reliable information about vertical profiles (e.g. Crewell et al., 1999).
In-situ observations, on the other hand, may give data for any location but are usually
restricted to only a few point measurements, e.g. along an aircraft flight track. Physical
cloud-models (e.g. LES) can provide the full 3-D information of all needed microphys-25

ical properties but they do not necessarily represent real or even realistic cloud fields
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(Stevens and Lenschow, 2001).
Clouds vary significantly in the three spatial dimensions and in time. Common air-

borne instruments sample volumes in the magnitude of a few liters during a single leg
while cumulus clouds, for example, often cover a volume of around 109 m3. The major
part of the clouds are thus not considered for its characterization which is a significant5

limitation because of the cloud’s large variability (Evans et al., 2003). Therefore, aircraft
measurements alone seem to be generally not sufficient to characterize the properties
of inhomogeneous cloud layers.

On the other hand the spatial distribution of cloud droplets exhibit rather a patchy
structure than following Poisson statistics (i.e. droplet concentrations in two adjacent10

volumes won’t show an independent behavior), so that there should be a spatial cor-
relation of droplet concentrations (Kostinski and Jameson, 2000). This structure is
organized by entrainment and turbulence at several length scales. For micro-scale tur-
bulence this is shown by Shaw et al. (1998). The turbulent spectrum is determined by
the state of the atmosphere. For homogeneous conditions within a limited area and15

time period, a similar behavior of the corresponding cloud field is expected. Thus, in
some cases such as for stratiform overcast or broken cloud fields, aircraft line measure-
ments along a limited number of flight legs are representative for the whole layer under
stable conditions. For example, Los and Duynkerke (2000) and Räisänen et al. (2003)
generated two-dimensional cloud fields from in-cloud aircraft measurements. How-20

ever, they required some assumptions about cloud top and base structure, and about
the profile of microphysical parameters.

This study introduces a new algorithm which generates 3-D cloud fields using aircraft
measurements of liquid water content and effective radius without additional assump-
tions. In Sect. 2, the extrapolation of the 3-D structure from one-dimensional aircraft25

measurements, and thus the filling of the gaps is described. Subsequently, the al-
gorithm is applied to a synthetic cloud field (Sect. 3) and to a measured cloud case
(Sect. 4), and a preliminary discussion of its applicability is given.
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2. Algorithm

An automated algorithm (CLoud liquid wAter content and effective radius retrieval By
an AUTomated use of AIRcraft measurements (CLABAUTAIR)) has been developed
with the intention to generate a 3-D cloud field which reproduces the statistical prop-
erties of the microphysical aircraft measurements without introducing any additional5

assumptions about the cloud structure. The measurements of liquid water content
(LWC) and effective radius (Reff) are scanned, and the probability density functions
“PDFs” as well as the autocorrelation functions are determined for every layer, defined
by the user. The patterns which are found in the autocorrelation functions are then
used to extrapolate the aircraft data to a complete 3-D field.10

This method is illustrated in Fig. 1a–d. Starting with measurements in a single hor-
izontal layer the main directions sampled by the aircraft are identified. This means,
the data-points are sampled by relative angular (e.g. directions from one point to each
other point) bins layer by layer, to spot long straight lines of measurements (Fig. 1a).
This is necessary to avoid aliasing due to the connection of different flight legs and15

thus to correlate only data collected within a time interval during which the cloud can
be considered constant. Next, the autocorrelation functions along these directions are
calculated (Fig. 1b).

Then the measured LWC and Reff are replaced by their anomalies (i.e. deviations
from the layers mean). To extrapolate the observations, individual empty boxes are20

randomly selected within the 3-D space. The requested parameters ξ (anomaly of
LWC or Reff) for each of these boxes are calculated by a weighted average over the
I filled boxes along the J main directions (Fig. 1c). The weighting is performed by the
autocorrelation coefficient r valid for the distance δ=|x−xi ,j | between the center of the
current (already filled) box at (xi ,j ) and the i th box under calculation for the j th direction25
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at (x) (marked with a question mark in Fig. 1c):

ξ(x) =

J∑
j=1

I(j )∑
i=1

rj (|x − xi ,j |)ξ(xi ,j )

J∑
j=1

I(j )∑
i=1

|rj (|x − xi ,j |)|
(1)

If the weighting sum

J∑
j=1

I(j )∑
i=1

|rj (|x − xi ,j |)| (2)

fails to reach a certain threshold, calculation of ξ(x) will be postponed. Initially1 this5

threshold is set to 3 to take into account only calculations with a minimum attendance
of contributing boxes. Due to the use of anomalies instead of absolute values this
approach is also meaningful in case of negative autocorrelation coefficients. Adjacent
boxes from the next layer above and below the chosen one (if already calculated) are
taken into account with a fixed weight2 of 0.95. This step is repeated until all boxes are10

filled. Finally, the “PDF” of the measurements (including the cloud-free parts to permit
cloud fractions smaller than 1) are mapped onto the thus derived spatial distributions.
This is done for all cloudy layers separately. Figure 1d shows the final cloud field.

The possible spatial resolution depends on the number, the direction, and the length
of the flight legs, the sampling rate, and on the autocorrelation function. For the cases15

used in this study, horizontal resolutions between 50 m and 250 m and vertical resolu-
tions between 50 m and 100 m were used.

1if this threshold results in accepting less than 1% of the calculations it will be reduced
temporarily.

2Actually this weight depends on the vertical resolution but for magnitudes used in this study,
the stated weight is reasonable.
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3. Test of the method

The algorithm was tested with a synthetic cloud field. A large eddy simulation (LES) of
a stratocumulus field provided by the Intercomparison of 3-D Radiation Codes (I3RC, at
http://i3rc.gsfc.nasa.gov) was chosen for this test. The LES cloud field has a horizontal
resolution of 55 m and a vertical resolution of 25 m. With 64 times 64 boxes the domain5

size is 3.5×3.5 km2. The clouds are located between 400 m and 800 m altitude. Within
this cloud field samples were taken by virtual flights. The flight starts at the center of
the area at the ground with a random direction and an ascent angel of 10◦. A new
direction is selected by random if the border is reached. If cloud top is exceeded, the
descend starts in the same manner but at a flatter angle (0.5◦). Samples are taken10

every 10 m with a random error of ±5% added to the data. Typically about 2% of the
total model boxes are described by virtual measurements so that about 98% had to be
calculated by our algorithm.

For the retrieved cloud field, the horizontal resolution was set to 43 m and the vertical
to 39 m to avoid the unrealistic case of model boxes that fit perfectly to the source15

cloud. Three examples of different flight patterns and the resulting retrievals are given
in Fig. 2. We found that the gain in information by following the same flight-track at
different altitudes is marginal (left column) because of the large vertical correlation of
microphysical properties. Therefore we recommend random-like flight patterns (middle
and right column) to get more independent information and to sample a larger area.20

Figure 3 shows the frequency of optical thicknesses for the original cloud field as well as
for the retrieval-mean of 200 random flights. The original cloud-fraction is 0.926 while
the retrieval-mean gives 0.959 with a standard deviation of 0.018. For the cloud volume
the retrieval provides a mean of 1.860 km3 and a standard deviation of 0.123 km3 while
the original volume is 1.874 km3. So we found CLABAUTAIR to reproduce the cloud25

fields features in a reasonable accuracy.
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4. Application to field measurements

4.1. Aircraft data

The first application of the algorithm to in-situ microphysical data was performed for a
cloud situation which was measured during the first field experiment of the EC project
INSPECTRO (INfluence of clouds on the SPECtral actinic flux in the lower TROpo-5

sphere) on 14 September 2002, on the coast of East Anglia, United Kingdom. On this
day, a stable stratus layer which was moving into land at a speed of about 10 m/s was
observed between 500 and 1100 m altitude. The microphysical measurements used
for this study were performed with a two-propeller research aircraft, a Partenavia P68B,
which was equipped with meteorological, microphysical, and radiation instrumentation.10

The microphysical cloud properties were measured with a Fast Forward Scattering
Spectrometer Probe (Fast-FSSP, Brenguier et al., 1998) and a Particle Volume Monitor
(PVM-100, Gerber et al., 1994). The Fast-FSSP measures the cloud drop size distri-
bution by detecting the forward scattering signal of each individual droplet passing a
laser beam. From the drop size distribution, bulk parameters such as the LWC, the15

drop concentration, and Reff can be derived (Schmidt, 2004). In contrast, the PVM-
100A measures the LWC directly by detecting the scattering signal of an ensemble
of droplets. For this study, the LWC measurements by the PVM-100A were used be-
cause of the high accuracy and temporal resolution of the data. The effective droplet
radius Reff was derived from the FSSP measurements because of its higher accuracy20

for size distributions.
In order to examine the three-dimensional cloud structure, several ascents and de-

scents through the cloud layer were flown by the aircraft. In addition, one triangular
flight pattern within the layer was performed. Figure 4 shows the two-dimensional
“PDFs” of the LWC and Reff for three different altitudes. They were determined by25

combining the measurements of the PVM-100A and the Fast-FSSP, and binning them
into several height layers. The color scale in the plots corresponds to the probability of a
particular LWC and Reff at the respective level. These two-dimensional “PDFs” reflect
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the microphysical properties accumulated throughout the cloud layer. The layer cloud
fraction as a macrophysical property is also deduced from the microphysical measure-
ments. The horizontal structure is contained in the autocorrelation functions which are
calculated for the three legs of the triangle.

4.2. Retrieved cloud fields5

For the INSPECTRO cloud case which is described in Sect. 4.1, the output of the algo-
rithm was quantitatively compared with the measurements by analyzing the measured
and retrieved profiles of the LWC and the power spectra along horizontal lines.

In Fig. 5, measured and reconstructed profiles of the LWC are displayed. The circles
show the PVM-100A measurements. At 800 m, the horizontal flight pattern was per-10

formed. The range of LWC values measured at this altitude reflects the high variability
which prevails even in a stratus layer. The solid blue line shows the mean reconstructed
LWC profile. The error bars indicate the standard deviation which was found through-
out the grid. It reproduces well the range of LWC values which were measured during
the horizontal leg. The dashed and dash-dotted blue lines correspond to the maximum15

and minimum LWC values, respectively, which are generated at the levels. The cloud
top and base heights vary approximately within 200 m.

The horizontal structure of the measured and reconstructed cloud is compared in
Fig. 6 by means of power spectra P (k) where k denotes the wavenumber. The dotted
line with open circles shows the power spectrum which was calculated from PVM-100A20

measurements along one of the legs of the triangular pattern within the cloud layer

(about 20 km length). The measurements are in agreement with the k−5/3 scaling law
(thin solid line) which is typically found for real clouds (Davis et al., 1996). The power
spectra from the reproduced cloud were obtained by calculating power spectra over
horizontal lines throughout the grid and by subsequent averaging. The direction of the25

lines was chosen along and across the flight leg whose power spectrum is displayed.
The red line shows the averaged power spectrum of lines parallel to the leg direction.
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In general the k−5/3 scaling is well reproduced. However, the variability is slightly over-
estimated by the generator for large wavenumbers. The blue line shows the averaged
power spectrum from lines across the leg direction. In this case, the variability shows a
better agreement with the measurements. The power spectra for the PVM-100A data
measured along other legs of the in-cloud pattern are similar to the power spectrum5

which is displayed in Fig. 6. Thus, the differences between power spectra along differ-
ent directions of the reproduced cloud field cannot be explained by the measurements.
However, the power spectra of the reproduced cloud field agree with the observations
within the range of measurement uncertainty.

5. Conclusions10

A new algorithm for the retrieval of 3-D cloud fields based on aircraft measurements
has been developed.

Testing our algorithm with a complete LES cloud field, we found a promising agree-
ment between the original and retrieved cloud features. The retrieval mean cloud-
fraction provides an error of about 3.6% and the retrieval mean cloud-volume an error15

of about 0.8%. For the sampling of cloud fields we recommend to follow random-like
instead of flight patterns that imply similar paths at different altitudes.

From an application to real measurements we learned that within the measurement
uncertainty, the characteristics of the simulated clouds agree with the observed coun-
terparts.20

It must be stated that the presented algorithm is limited to a moderate wind-speed
and stable conditions, i.e. no significant change in the cloud pattern should occur during
the measurements (no rapid convective growth). Rather than reproducing the original
cloud situation, CLABAUTAIR supplies a cloud field whose statistical properties match
the aircraft measurements. This could also be valid for the spiky behavior (the intermit-25

tency, e.g. Davis et al., 1994) of natural clouds, if found within the measurements, i.e.
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if the database is really representative. Nevertheless, additional work will be done on
validation and improvement of the presented algorithm.
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Fig. 1. The four main steps of CLABAUTAIR. This figure illustrates an approach to retrieve 3-D
clouds from aircraft measurements.
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Fig. 2. Three examples of different flight patterns within a LES cloud field (upper row). Red
arrows mark ascending and blue arrows descending legs. Considered are only flight legs
meeting the cloudy altitudes (400 m–800 m). The retrieved cloud structures are given in the
lower row.
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Fig. 3. Frequency of optical thicknesses for the original cloud field (green), the retrieval from
triangular flight (red), and the mean of 200 retrievals (blue). The shaded area marks the 68%
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Fig. 4. Two-dimensional “PDF” of the measured liquid water content and the effective drop
radius at three altitudes.
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