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Abstract

In many investigations of tropospheric chemistry information about the two dimensional

distribution of trace gases on a small scale (e.g. tens to hundreds of meters) is highly

desirable. An airborne instrument based on imaging Differential Optical Absorption

Spectroscopy has been built to map the 2-D distribution of a series of relevant trace5

gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

Here we report on the first tests of the novel aircraft instrument over the industri-

alised South African Highveld, where large variations in NO2 column densities in the

immediate vicinity of several sources e.g. power plants or steel works, were measured.

The observed patterns in the trace gas distribution are interpreted with respect to flux10

estimates, and it is seen that the fine resolution of the measurements allows separate

sources in close proximity to one another to be distinguished.

1 Introduction

Several methods exist to retrieve two dimensional trace gas distributions in the atmo-

sphere on various scales. Satellite observations lead to two dimensional distribution15

patterns on a global scale; however, the resolution is still rather coarse (several tens

of km). On smaller scales (several km) tomographic inversion methods have been ap-

plied. The resolution of this method strongly depends on the number of light paths.

Therefore a fine resolution can only be achieved by installing a large number of instru-

ments (Hartl et al., 2006). With the new airborne imaging Differential Optical Absorption20

Spectrometer (iDOAS), trace gas distributions can be observed directly at a resolution

of less than 100 m. The main species to be observed with iDOAS are NO2, HCHO,

C2H2O2, H2O, O4, SO2, and BrO. Based on the observed patterns, sources and sinks

can be quantified and chemical processes including conversion rates and atmospheric

lifetimes may be analysed.25

The BrO formation in volcanic plumes has been studied using ground-based iDOAS
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measurements (Bobrowski et al., 2007). On larger scales satellite data have been used

to quantify the strength of ship emissions based on the SCIAMACHY NO2 distribution

patterns in the Indian Ocean (Beirle et al., 2004).

Due to the high spatial resolution of the airborne iDOAS instrument, independent

sources located within small distances of one another may be resolved and quantified5

separately. The results can be used for satellite and chemical transport model valida-

tion. The variability within a satellite pixel is one of the major issues to be addressed

with the imaging DOAS instrument.

Results of tests of the iDOAS over the South African interior plateau, called the High-

veld, are reported in this paper. The Highveld is the most highly industrialised region10

in southern Africa (Fig. 1), and satellite-detected NO2 column densities over the High-

veld are the highest in the Southern Hemisphere and equivalent to those in the highly

industrialised regions of east Asia, the Middle East, Europe and North America (Beirle

et al., 2006). Large power plants, synfuels refinery, metallurgical smelters, industries,

mines and urban conglomerations on the Highveld are large area and point sources of15

pollution. Stable atmospheric conditions in the region favour plumes to remain intact at

large distances downwind of the sources. The Highveld is an ideal location to test the

operation of a high resolution instrument like the airborne iDOAS

2 The measurement technique

The imaging DOAS technique was previously used in ground based applications (Lo-20

hberger et al., 2004; Bobrowski et al., 2007) to map the trace gas distribution resulting

from stack or volcano emissions. For that purpose the instrument was directed towards

the interesting object (Fig. 2). One section or column of the scene is imaged on the

entrance slit of the spectrograph. The reflected and scattered sunlight is spectrally

dispersed and recorded by a charge-coupled device (CCD). Each individual line of the25

CCD chip corresponds to a spectrum and using the DOAS technique (Sect. 2.3) results

in one trace gas slant column density.
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The DOAS analysis yields a slant column density (SCD) which is the integrated

concentration along the light path (Sect. 2.3). In such a way, one section (column)

of the respective trace gas distribution is observed. To obtain the two dimensional

distribution of the slant column densities the instrument scans the scene perpendicular

to the entrance slit (Fig. 2). In this study the results are mainly expressed as slant5

column densities. They can be colour coded to illustrate the trace gas patterns.

2.1 Instrumental setup

The imaging DOAS instrument consists of an imaging spectrograph and a two dimen-

sional detector i.e. a CCD camera. An optical system in front of the spectrograph

focuses the incoming radiance onto the entrance slit. A large field of view (5−60
◦

) is10

mapped on the spectrograph. The height h of the entrance slit and the focal length f of

the entrance optics determine the field of view γ:

tan(γ/2) =
h

2 · f
(1)

The light entering the spectrograph is spectrally analysed and detected by the CCD.

The DOAS analysis of the recorded spectra yields one column of trace gas information.15

The instrument is installed on the aircraft with the entrance slit perpendicular to the

flight direction. As the entrance optics generates a swath perpendicular to the flight

direction, this technique is called push broom imaging. The principle is illustrated in

Fig. 3.

The aeroplane moves forward as a column of trace gas information is being recorded;20

the resolution parallel to the flight direction is determined by the speed of the aircraft

and the exposure time. After data from the CCD has been read out the next set of spec-

tra is recorded. In the mean time the trace gas contribution below the plane may have

changed. In such a way, information about the two dimensional trace gas distributions

below the aeroplane can be gained.25
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The resolution perpendicular to the flight direction is determined by the magnifica-

tion of the optical system and the numbers of lines on the CCD chip i.e. 255 for our

instrument. However due to the imperfect imaging qualities of the system (Sect. 2.2) 8

lines have to be co-added, thus reducing the resolution to 32 lines perpendicular to the

flight direction. Moreover the signal to noise ratio is improved, and the detection limit5

reduced, when several CCD lines are co-added.

The instrumentation used for this study consists of an ACTON 300i imaging spectro-

graph, which is a Czerny-Turner type with 300 mm focal length, an Andor DU-420BU

CCD with 255 x 1024 pixel, and a mirror based entrance optics.

Details of the optical system are illustrated in Fig. 4. The first mirror is convex with a10

focal length of 51.5 mm and the second one is concave and has 25.6 mm focal length.

The combination of both placed 70 mm apart results in the focal length of 13.7 mm. As

the entrance slit is 6.9 mm high, according to Eq. (1) the total field of view is 28
◦

and the

total field of view equals half the flight altitude above ground. As the sensitivity of the

DOAS measurement strongly depends on the length of the light path through the trace15

gas distribution, one might think that it would be more sensitive towards the edges of

the images. However if the geometrical light path at the edges is compared to the nadir

(centre), it is enhanced by 1/cos(14
◦

)=1.03 i.e. only 3%.

In contrast to the ideal setup illustrated in Fig. 4, the optical window in the aeroplane

was a little bit too small, reducing the field of view to 24
◦

. Each swath was divided into20

27 ground pixels instead of 32. Assuming a standard flight altitude of 4500 m above

ground level (a.g.l), the total swath was 1910 m wide and the lateral resolution was

71 m.

2.2 Characterisation of the instrument

To characterise the imaging quality of the instruments several tests with different light25

sources were performed. Most artificial light sources had to be installed rather close

to the instrument, hence the optical system tests was slightly different to the real mea-

surements. One of the most convincing tests was to setup the instrument inside the
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hangar and direct it towards the doors. Each of the four doors was 4.5 m wide and the

distance to the instrument was 19 m. If the doors were opened by 30 cm, it resulted in

three vertically extended light sources of 30 cm width separated by 4.5 m at a distance

of 19 m from the instrument (Fig. 5). The instrument’s total field of view is 9.5 m wide

at the doors position.5

A light source of 30 cm width at a distance of 19 m is expected to result in a spectrum

of 255 pixels/9.5 m·0.3 m≈8 pixels on the CCD. The observed image is shown in Fig. 6.

The central spectrum has a full width of half maximum (FWHM) of 8 pixels. If the light

source was made smaller (by closing the doors slightly) only a small decrease was

observed, whereas if the doors were opened a clear increase in the width of the spectra10

was visible. Therefore the minimum resolution of the complete system is approximately

8 pixels or 0.8
◦

.

The minimum resolution along the flight direction is also determined by the optical

system. If the motion of the plane is ignored or integration time is infinitely small, the

instantaneous resolution would be 11 m at a flight altitude of 4500 m a.g.l. This has to15

be added to the distance the plane travels during the actual integration time. In total

the typical resolution ranges between 90 m and 200 m. A small gap (29 m) between the

individual scans was caused by the CCD readout procedure, which lasted 0.4 s. The

width of the gap also depends on the flight altitude; if the plane is flying low the gap is

bigger, as the minimum resolution gets finer (Fig. 10).20

The iDOAS instrument was installed on the Rockwell Aerocommander 690A oper-

ated by the South African Weather Service (ZS-JRA). The standard flight altitude was

6 km AMSL or 4.5 km a.g.l.; the speed ranged from 95 m/s to 135 m/s. The typical in-

tegration time was about 1 seconds or less, hence the spatial resolution in the flight

direction is about 100 m.25

The exact instrument’s field of view relative to the aeroplane is very hard to de-

termine, therefore the viewing direction is a bit uncertain, even if the exact roll and

pitch angles were available. The total signal of the recorded light intensity divided

by the integration time gives us a black and white image of the local surrounding
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which can be compared to more precise satellite images e.g. Google Earth images

http://earth.google.com.

2.3 DOAS Technique

To retrieve column densities from the observed spectra, the well known DOAS tech-

nique (Platt, 1994) is applied. The method is based on Lambert-Beer’s law.5

The absorption cross section (σ) is a characteristic function of the wavelength λ
for the individual trace gases. The integrated concentration along the light path is

called slant column density and is the result of the DOAS analysis. A normal in-flight

spectrum in a remote and clean area is usually taken as the reference here. Thereby

the Fraunhofer structures are removed from the fit and the stratospheric background10

concentration is subtracted. However if the remote region is not as clear as expected,

parts of the tropospheric signal are subtracted as well. Hence the results presented in

Sect. 3 constitute lower limits of true tropospheric SCDs, they are usually referred to

as differential slant column densities.

The wavelength range between 467 and 517 nm was chosen for the analysis and,15

besides NO2, (Vandaele et al., 1997) the cross sections of water vapour (Rothman et

al., 1998), O4 (Hermans et al., 1999) and O3 (Burrows et al., 1999) were included. The

filling in of the Fraunhofer lines due to inelastic Raman scattering (Ring effect) (Grainer

and Ring, 1962) was considered by using an appropriate cross section (Gomer et

al., 1996). The instrumental function varies across the CCD chip in both dimensions.20

Therefore individual reference and ring spectra are applied in the fit for the spectra

recorded in the respective regions of the CCD-chip. Moreover an individual calibration

was used for each line. For the central CCD line a NO2 fit is shown in Fig. 7. The

spectrum was recorded on 5 October 2006 close to the synthetic oil refinery in Secunda

(Fig. 8 and 9).25

The retrieved data is equivalent to the integrated concentration along the light path

- the SCD. The tropospheric vertical column density (tVCD) is often a more accurate

quantity for further analysis. It gives the integrated concentration across the altitude

11885

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11879/2008/acpd-8-11879-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11879/2008/acpd-8-11879-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://earth.google.com


ACPD

8, 11879–11907, 2008

Airborne imaging

DOAS

K.-P. Heue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

up to the mixing layer height and is therefore independent of the light path. The ratio

between slant and vertical column is called the air mass factor (AMF). It has to be

simulated in a radiative transfer model. The complete light path between the instrument

and the sun has to be considered for the model calculation. In this case the Monte

Carlo-based radiative transfer model TRACY (Wagner et al., 2007; Deutschmann and5

Wanger, 2007) was used. The geometry of the setup including solar zenith angle was

considered and the terrain altitude (1600 m) was included. The altitude is not quite

correct for the entire Highveld, but within a range of 200 m no altitude dependency

was observed in the simulation. Especially in dense plumes, aerosols can reduce the

visibility; however, this effect was completely ignored here, as no significant change in10

the O4 observation was detected. Due to emissions of water vapour clouds sometimes

can be observed above power plants. This was not the case in the dry season on the

Highveld. As the AMF calculation showed no strong variation between the different

parts of the image, a constant AMF of 2.2 is used independent of the viewing direction.

Most of the presented data are slant column densities. The flux estimate in Sect. 3.315

is the only result where an AMF was applied.

3 Results

3.1 First measurement

Three test flights over large pollution sources (coal-fired power plants, steel works and

refineries) on the Highveld were flown on 4, 5 and 6 October 2006. The NO2 column20

densities showed strong gradients in the immediate vicinity of various sources. An

overview of the flight track from the first and the second flight (4 and 5 October 2006)

is shown in Fig. 8. The flight track and the observed NO2 column densities of the third

flight are compared to SCIAMACHY data in Fig. 14. Enhanced NO2 column densities

are observed downwind of the plants. Here only the nadir direction (CCD-line 16) and25

no gradients in the column densities perpendicular to the flight direction are shown.
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During the 2nd flight the plume from Kendal power station was observed to merge

with the plumes from Matla and Kriel power stations to form one large plume which

broadened with distance downwind. The plume of the synfuels refinery in Secunda

was crossed three times at different distances downwind of the plant. The plume from

the refinery is also observed to broaden and become more diffuse with distance from5

the source.

3.2 Two dimensional NO2 distributions

Detailed 2-D images of the NO2 SCD close to selected sources are shown in Figs. 9,

10 and 11.

In Fig. 9 the mixing of NO2 plumes originating from different sources in Secunda is10

visible. Both plumes extend in different directions, which allows a qualitative altitude

determination.

While the large plume seems to be close to the ground, according to the Eckmann

spiral of wind direction the smaller one expands more perpendicular to the flight altitude

and can therefore be expected to be at higher levels.15

The spatial resolution at ground level theoretically increases when the flight altitude

is lower. However, most of the point sources observed here do not emit the respective

trace gases at ground level but at 250 m altitude. As the exit temperature of the emitted

gases is usually quite high (on the order of 130
◦

C for coal-fired power stations), effective

stack height is several hundred metres above actual stack height, and there is a risk of20

missing the plume or observing only parts of it when flying at lower altitudes.

On 4 October 2007 the aircraft flew over Lethabo power plant in the Vereeniging

area south of Johannesburg at 600 m a.g.l. (stack height 275 m; Fig. 10). The local

enhancement in NO2 column densities is observed in only a few pixels. Just north

of the plant high intensity of reflected light (probably caused by the cooling tower or25

the saturated plume above it) led to a blooming effect on the CCD, therefore no valid

observation was made here. Although the plume was observed directly beneath the

aeroplane and partly downwind, no widening of the plume perpendicular to the wind
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direction is observed. The plume broadens by less than one pixel (≈ 100m) at 150m

downwind of the stack, or it widens above the flight level and the effect cannot be

observed by the downward looking imaging DOAS. Nevertheless the high resolution of

10 m perpendicular to the flight direction is still astonishingly good.

A typical plume expansion is observed close to the Majuba power plant (Fig. 11 top).5

The image is overlaid in Fig. 11 (bottom) to a local satellite image (Google Earth). A

strong enhancement in the NO2 column is observed close to the stack. This is probably

caused by the long absorption path when looking on a rising plume from above. Further

downwind the plume widens and the local column densities decrease as the plume

turns from vertical to horizontal. The local enhancement at the downwind edge of the10

image is not yet fully understood but seems to be a real change in the slant column

density. It may be caused by the oxidation of NO to NO2 in the plume driven by the

mixing in of O3. Nitrogen oxides are mostly emitted as NO rather than NO2, typically

95% is NO. By reaction with O3 it converts to NO2 until the well known Leighton ratio

establishes.15

If the plume expands in vertical waves, this might again result in a locally extended

absorption path through the plume. As the increase in the column density is higher

than 3% the observation is not caused by the systematic difference in the sensitivity

(Sect. 2.1).

The position of the stack in Fig. 11 is determined based on the method described in20

Sect. 2.2.

3.3 Flux estimate

For the following flux estimate an AMF of 2.2 was applied to the SCD illustrated in

Fig. 11. To correct for a slightly enhanced background, the averaged column densities

downwind of the power plant (first 8 lines of the image) were subtracted.25

For selected distances downwind of Majuba the cross section of the vertical column

densities are illustrated in Fig. 12. The maximum of the column density is observed

close to the stacks as mentioned above. The maximum flux (Fig. 13) however, is
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further downwind when the plume is wider.

After these preparations the flux was estimated by integrating the vertical column

densities VCD along the local flight track (x-direction in Eq. 2) considering the local

wind speed vwind and wind direction α
flightdirection

wind
relative to flight direction:

Φ =

∫
VCD(x) · x · vwind · sin(α

flightdirection

wind
) · dx (2)5

The wind speed was not measured on board the plane but hourly averaged ground

based observations are available in Majuba. The wind on this day 5 October 2006

was rather calm and blew with approximately 2.2 m/s from north western directions

(≈ 296
◦

) between 10:00 and 12:00 UTC. The observed NO2 pattern (Fig. 11) however,

indicates the wind direction was more from the north ≈ 330
◦

. The temporal variation in10

a 5 min interval can not be resolved by hourly averaged data, therefore during the mea-

surements a northern wind direction does not contradict the measured wind direction

in Majuba. Due to the high uncertainties in both methods the average wind direction

(313
◦

) is considered in the flux estimates.

Downwind of the source a linear increase in the total NO2 flux is observed (Fig. 13).15

This of course does not necessarily indicate that additional sources are observed

downwind, but it mainly results from the above mentioned NO oxidation and a parallel

O3 destruction.

Upwind of the source the flux is not zero. This might be caused by turbulent mixing

near the buildings. It might also be caused by an insufficient background correction,20

although the flux further away from the plume is far less. Instrumental effects should

also not be neglected here. The exact direction in which the instrument is pointed

cannot be determined; therefore the position of the enhanced NO2 columns relative to

the real source might be shifted. As the resolution of the IDOAS instrument is quite

good the observed increase cannot be explained by a sampling effect.25
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3.4 Comparison with SCIAMACHY

A first comparison of the iDOAS measurements with SCIAMACHY tropospheric slant

columns is shown for the flight on 7 October 2006 in Fig. 14. The finer resolution

iDOAS data can be averaged perpendicular to the flight direction for comparison with

the satellite instrument.5

South of Johannesburg in the industrial region around Vereeniging high column den-

sities were observed. The enhanced local concentrations also lead to an increase in

the SCIAMACHY NO2 data. The large field of view of SCIAMACHY however, is domi-

nated by the low column densities outside the industrial areas. Hence we can estimate

the NO2 variability inside one SCIAMACHY pixel to be rather high, as the enhancement10

seems to be caused by high column densities in a small area, whereas the surrounding

areas seems to be much cleaner.

For the detailed interpretation the temporal mismatch has to be considered. The

aeroplane arrived at Sasolburg at 09:55 and returned at 11:25 UTC. ENVISAT (SCIA-

MACHY) crossed the same area 2 h previously at 07:46 UT. Within these 2 morning15

hours the atmospheric conditions might have changed significantly.

4 Conclusions

We presented the first direct observations of two dimensional NO2 distributions over

the industrialised Highveld in South Africa. Based on the observed NO2 patterns two

different sources in close proximity to one another can be distinguished, and qualitative20

altitude determination can be made.

NO2 flux estimates are possible on the basis of vertical columns and the wind data.

Athough the maximum column density partly decreases with distant to the stack, an

overall increase in the NO2 flux is observed. Both the widening of the plume and the

NO to NO2 conversion attribute to this effect. A radiative transfer model was used for25

the calculation of air mass factors; however, some geometrical effects like a localised
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plume have not yet been considered. These data could also be compared to data

provided by the plant operators.

Slant column densities were compared to satellite data (SCIAMACHY). Although the

different spatial resolution of satellite instruments results in large discrepancies be-

tween finer resolution iDOAS measurements and coarser resolution satellite measure-5

ments (Heue et al., 2005), detailed knowledge about the local distribution inside the

satellite pixels is of great interest. For a more quantitative comparison special flights

have to be performed, during which the flight is coordinated with satellite overpass

time.

To improve the pointing accuracy of the iDOAS, a digital camera will be installed next10

to the spectrometer. This will give additional information on the area over which the

flight is conducted.

The actual wavelength range of the instrument is optimised for NO2, but several in-

teresting trace gases e.g. SO2 and HCHO show strong absorption bands in the UV

(300–400 nm). Future measurement flights will use a slightly different instrument opti-15

mised for the observation of these trace gases as well.

Additional measurement flights in the Highveld (South Africa) were performed in

August 2007 and March 2008, in order to validate the satellite retrievals on a regional

scale and investigate individual sources on a local scale. The analysis of this data is

still in progress.20
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Fig. 1. Map of the Heighveld including the position of the main industries. Averaged tropo-

spheric NO2 column from SCIAMACHY measurements 2003–2006 (Beirle et al., 2006).
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Fig. 2. Principle of the imaging DOAS technique (Lohberger et al., 2004).
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Fig. 3. Sketch of the airborne iDOAS technique.
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Fig. 4. Details of the mirror based entrance optics looking from the back of the aircraft. The

total swath width equals half the flight altitude and is divided into 32 pixels. Due to obstruction

from the belly only 27 pixels receive a significant signal.
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Fig. 5. Ground setup used to characterise the optical properties of the airborne iDOAS. Each

hangar door was 4.5 m wide and the small openings in between were 30 cm, hence the total

distance between the light sources was 9.9 m (edge to edge).
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Fig. 6. CCD image of the three hangar doors. Only parts of the outermost slits are observed.

This is expected as the distance between the doors and the instrument is less than double the

distance between light sources. The total chip is 255 lines wide and the illuminated area in the

centre covers 8 lines.
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Fig. 7. Example fit of the DOAS Analysis for NO2. The analyzed spectrum was observed on 5

October 2006 downwind of Secunda synfuel refinery (spectrum 1355 line 16).
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Fig. 8. Overview of the tracks of the flight on 4 and 5 October 2006 close to pollution sources.

The tracks are colour coded to indicate the NO2 slant column density in nadir.
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Fig. 9. NO2 SCD close to the synthetic fuel refinery in Secunda, showing the mixing of two

plumes (Heue et al., 2007). Both plumes probably originate from the refinery but from different

sources, however they can clearly be resolved. The gaps (Fig. 10) between the individual

columns are not shown as they are rather small due to the flight altitude
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Fig. 10. Enhanced NO2 SCDs over the stack of Lethabo power station 4 October 2006. The

CCD was partly oversaturated leading to a blooming effect; hence no data are shown just north

of the plant. No spectra are observed during the read out process indicated by the hashed

areas. This also holds for the rest of the observation but is only shown close to the power plant.

Compared to Fig. 9 and Fig. 11 the flight altitude is significantly lower, therefore the pixels are

smaller here. An overlay to a Google Earth map is shown in the lower panel.

11903

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11879/2008/acpd-8-11879-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11879/2008/acpd-8-11879-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11879–11907, 2008

Airborne imaging

DOAS

K.-P. Heue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

-800

-600

-400

-200

0

200

400

600

8005

10

15

20

25

4380 4385 4390 4395 4400 4405 4410 4415 4420

 Column #

lin
e
 #

0 2 4 6 8 10 12 14 16 18 20 22 24
NO

2
 SCD [10

16
 molec/cm

2
]

flight direction

w
in

d
 d

ire
c
tio

n

D
is

ta
n

c
e

 [
m

]

Distance [m]

Fig. 11. NO2 SCD (top) around the Majuba power plant (5 October 2006) overlay over a local

map (bottom). Same flight level as Fig. 9, hence the pixels are wide again and the gaps are

not shown. The arrows in the top figure indicate the position of the respective cross sections

shown in Fig. 12. The circle shows the approximate position of the plant.
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Fig. 12. Cross sections through the plume along the flight direction. The respective line are

indicated in Fig. 11.
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Fig. 13. NO2 flux downwind of the Majuba power plant. Upwind of the stack the NO2 columns

are slightly enhanced. Perhaps the positions of the stacks are not known precisely enough or

the low wind speeds allows some turbulent mixing close to the buildings.
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Fig. 14. Comparison between SCIAMACHY tropospheric SCD (Beirle et al., 2006) and the

averaged iDOAS column density data from 6 October 2006. Strongly enhanced column densi-

ties were observed by the Imaging DOAS instrument in the industrial area around Vereeniging.

Due to the large sampling area of SCIAMACHY the local enhancement affect the satellite ob-

servations only slightly.
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