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Abstract

A series of photooxidation experiments were conducted in an atmospheric simulation

chamber in order to investigate the secondary organic aerosol (SOA) formed from the

anthropogenic model gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific

aerosol measurements, comprehensive gas phase measurements, primarily by chem-5

ical ionisation reaction time-of-flight mass spectrometry (CIR-TOF-MS), were carried

out to provide detailed insight into the composition and behaviour of the organic com-

ponents of the gas phase matrix during SOA formation. An array of gas phase organic

compounds was measured during the oxidation process, including several previously

unmeasured primary bicyclic compounds possessing various functional groups. Anal-10

ysis of results obtained during this study implies that these peroxide bicyclic species

along with a series of furanones and organic acids contribute to SOA growth. The ef-

fect of varying the VOC/NOx ratio on SOA formation was explored, as was the effect of

acid seeding. It was found that low NOx conditions favour more rapid aerosol formation

and a higher aerosol yield, a finding that points towards a role for organic peroxides in15

the nucleation process and SOA growth.

1 Introduction

Secondary organic aerosol (SOA) is formed in the atmosphere from the oxidation

products of certain biogenic and anthropogenic volatile organic compounds (VOCs)

(Finlayson-Pitts and Pitts Jr., 2000). One important class of such compounds known20

to be precursors to SOA are aromatic hydrocarbons (Stern et al., 1987; Odum et al.,

1997). Possessing complex and extensive atmospheric reaction pathways, aromatic

VOCs (AVOCs) have the ability to yield a wide array of secondary oxygenated and

nitrated volatile, semi-volatile and non-volatile organic products which contain a multi-

tude of different functional groups (e.g. Atkinson, 2000; Hamilton et al., 2003; Johnson25

et al., 2005; Sax et al., 2005; Bloss et al., 2005b).
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Released principally from automobile exhaust emissions, industrial scale combus-

tion and the evaporation of fuels and solvents (Friedrich and Obermeier, 1999), AVOCs

make up as much as 40% of the total mass of anthropogenic hydrocarbon emissions

in the city environment (Smith et al., 1999). On the global scale total aromatic emis-

sions are of the order 15.8 Tg y
−1

(Tsigaridis and Kanakidou, 2003), which account for5

∼15% of the annual anthropogenic non-methane hydrocarbon (NMHC) budget (Bloss

et al., 2005a). As well as constituting precursors to SOA production, AVOCs generally

have high photochemical ozone creation potentials and hence contribute significantly

towards tropospheric ozone pollution (Calvert et al., 2002; Derwent et al., 2003; Der-

went et al., 2007a; Derwent et al., 2007b).10

It has been established that SOA mass constitutes a major fraction of the total atmo-

spheric loading of organic aerosol and indeed the more general class of atmospheric

particulate matter, on both the local (Baltensperger et al., 2005) and the global (Kanaki-

dou et al., 2005) scale. Under certain scenarios atmospheric SOA can comprise as

much as 90% of organic aerosol mass (Kalberer et al., 2004) and 50% of the total15

mass of atmospheric aerosol (Kleindienst et al., 1999).

The existence of SOA in the atmosphere (and particulate matter in general) has an

array of well documented consequences (e.g. Czoschke et al., 2003; Kanakidou et

al., 2005; IPCC, 2007 and references therein). In brief, such negative effects range

from visibility impairment on the local scale to climate change, with SOA being capa-20

ble of perturbing the Earth’s radiative budget via both direct and indirect mechanisms.

Additionally, fine airborne particles have been shown to exert numerous detrimental ef-

fects on human health, particularly in vulnerable members of the population (Grosjean,

1992).

As highlighted in recent reviews (e.g. Seinfeld and Pankow, 2003; Kanakidou et al.,25

2005; Holmes, 2007), despite its crucial role in the Earth-atmosphere system, there

currently remains a certain lack of understanding regarding the physical and chemical

properties of SOA, its chemical composition and crucially the atmospheric processes

by which it is formed.
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Over the last decade much research and many state-of-the-art techniques have been

applied to the critical problem of determining SOA chemical composition, with off-line

GC-MS analysis of filter samples often providing the foundation. However, such studies

have supplied limited molecular level classification, with generally no more than 30% of

the total SOA mass being identified (e.g. Forstner et al., 1997; Kleindienst et al., 1999;5

Cocker III et al., 2001; Hamilton et al., 2003; Edney et al., 2005; Surratt et al., 2006).

A series of recent discoveries have allowed significant advancement in our under-

standing of SOA composition and the role of low molecular mass species in aerosol

growth. It has been proposed that between 20 and 50% of SOA mass could be com-

prised of large multi-functional macromolecular compounds known as “humic-like sub-10

stances” (HULIS) (Havers et al., 1998), which would go undetected using standard

GC-MS techniques. Research has suggested that such compounds are secondary

in nature, being formed by heterogeneous polymerisation/oligomerisation reactions in

the aerosol. For example, Jang and Kamens (Jang and Kamens, 2001) witnessed an

increase in SOA yield when various gas phase aldehydic species were injected into15

a synthetic air matrix impregnated with acidic seed particles. The authors attribute

the increase in SOA mass to heterogeneous hydration and polymerisation reactions of

low molecular mass aldehydes following their transfer from the gas phase. Their find-

ings also indicated that hemiacetal/acetal formation is also an important contributing

pathway to increased SOA yields when alcohols were also present.20

Numerous investigations have since confirmed the existence of polymeric/oligomeric

compounds in various SOA systems of both anthropogenic (Gross et al., 2006) and bio-

genic (Surratt et al., 2006) origin, both in simulation chamber studies (Baltensperger et

al., 2005) and in the “real” atmosphere (Kalberer et al., 2006), with molecular masses

as large as 1600 Da (Gao et al., 2004). One such study by Kalberer et al. demonstrated25

that as much as 50% of the SOA mass formed during the photooxidation of 1,3,5-

trimethylbenzene was composed of polymers (Kalberer et al., 2004). The authors pro-

posed that the polymers, which were detected with masses as high as 1000 Da, were

formed primarily through acetal polymerisation involving the known trimethylbenzene
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photooxidation product methyl glyoxal in the presence of water.

With a large portion of current research into SOA formation geared towards inves-

tigation of the aerosol phase, there exists a distinct lack of detailed understanding of

the concomitant gas phase organic components of the system. Limited work has also

been conducted in elucidating the actual mechanisms of SOA formation. Recently,5

research has shown that the SOA forming capacity of aromatic systems is strongly re-

lated to [NOx], with greater SOA yields obtained under low NOx conditions (Izumi et al.,

1988; Stroud et al., 2004; Song et al., 2005; Ng et al., 2007). Conclusions from such

work have inferred an important role for gas phase organic peroxides in initiating the

formation of SOA (Johnson et al., 2004), but no direct evidence is available to support10

this.

In the present study we begin to address these issues by presenting findings from

a series of comprehensive photooxidation experiments in an atmospheric simulation

chamber. The main aim of the study was to monitor, in detail and with good temporal

resolution, the complex array of organic gas phase oxidation products derived from a15

known SOA precursor and to identify potential species contributing to incipient aerosol

formation and growth. In this instance the common, but less well studied anthropogenic

AVOC, 1,3,5-trimethylbenzene (TMB), was chosen as a model anthropogenic SOA pre-

cursor. The effect of variation of the initial VOC/NOx ratio on SOA formation was also

explored, as was the role of potential acid-catalysed heterogeneous chemistry. As20

well as presenting information that provides new insight into the mechanisms of SOA

forming intermediates and potential SOA forming species, this work presents the first

measurements of a set of previously undetected high mass oxygen-bridged bicyclic

compounds, which are formed during aromatic oxidation.

In a companion article
1

(here after referred to as Rickard et al., 2008) the gas phase25

measurements presented here are compared with the output of a box model employing

1
Rickard, A. R., Wyche, K. P., Metzger, A., Monks, P. S., Ellis A. M., and Pilling, M. J.: Model-

measurement comparisons of the evolution of the gas-phase precursors to secondary organic

aerosol formed in the photooxidation of 1,3,5-trimethylbenzene, in preparation, 2008.
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data extracted from the Master Chemical Mechanism (MCMv3.1; http://mcm.leeds.ac.

uk/MCM). The findings of this complementary study support the results obtained here

and in combination they provide further insight into the identity of potential SOA forming

species.

2 Experimental5

2.1 The Paul Scherrer Institut aerosol chamber

Experiments were carried out at the aerosol chamber facility at the Paul Scherrer Insti-

tut. The chamber comprises a single-lined collapsible bag constructed from DuPont

Teflon fluorocarbon film, with a wall thickness of 125µm and a volume of 27 m
3

(3×3×3 m
3
). The chamber surface area to volume ratio (2 m

−1
) is relatively small when10

compared to most environment chambers, allowing wall effects to be minimized. The

chamber bag is held by a large metal frame inside a temperature-controlled wooden

housing, which was maintained at 20
◦
C (±1

◦
C) during all experiments. Four 4 kW

xenon arc lamps, deployed at various points inside the housing, are employed to sim-

ulate the solar spectrum (Paulsen et al., 2005).15

The chamber sample gas comprised purified ambient air, which was produced by

a clean air generator (AADCO Instruments Inc., USA). Chamber humidification was

facilitated by bubbling the bulk matrix gas through a heated glass vessel containing

high purity deionized water (15 MΩ) prior to the injection of other compounds. The

chamber humidity was typically near 50% during each experiment.20

Delivery of the VOC SOA precursor to the chamber took place via syringe injection

of the liquid compound into a heated injector port, which facilitated compound volatili-

sation before entry into the bag. A period of 30 min was allowed for mixing to create a

homogeneous sample matrix before any measurements were made.

In order to remove any potential organic impurities from the chamber and hence to25

eliminate unwanted artefacts from the data (in the form of SOA formed from species
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other than the TMB), the chamber bag was scrubbed with ozone (2–7 ppmV) for 5 h,

before being flushed thoroughly with purified ambient air for approximately 30 hours

prior to each experiment.

On-line measurements of chamber nitric oxide (NO) and NOx concentrations were

made throughout each experiment using a Monitor Labs 9841A NOx analyser (for NOx5

concentrations: 50–2000 ppbV) and a Thermo Environmental Instruments 42C trace

level NOx photolytic converter (for NOx concentrations: 0–200 ppbV). Ozone measure-

ments were also conducted in real-time using an ozone analyser (Environics model

S300). The aerosol phase was monitored using two TSI (3025 and 3022A) condensa-

tion particle counters (CPC, size range: particle diameter (Dp) ≥3 nm) and a Sampling10

Mobility Particle Sizer (SMPS, size range: 15≤Dp≤690 nm), providing information on

the total number density of particles in the chamber along with particle geometric mean

diameter and aerosol volume concentration (see Dommen et al., 2006 for further in-

strument details).

2.2 Experiment design15

In order to explore the effect of NOx on the TMB-SOA system, experiments were con-

ducted with various initial VOC/NOx ratios. For the first part of the study, chamber

experiments were conducted with high concentrations of VOC (>500 ppbV) and NOx

(>250 ppbV). For these high NOx experiments nitric oxide and nitrogen dioxide (NO2)

gases (Air Liquide, Ch., grade N6.0) were added to the chamber via an inlet injection20

system prior to introduction of the VOC. Experiments with initial VOC/NOx ratios of ap-

proximately 2:1, 2:1 (with NO only) and 1:2 were carried out during the high NOx part

of the study.

As well as conducting “high” concentration chamber experiments with input of all

gases before initiation of the photochemistry, two “low” concentration experiments were25

conducted in order to simulate more realistic atmospheric conditions. In these exper-

iments a constant low level source of nitrous acid (HONO) was used to supply NO to

the system in place of NO and NO2 gases. HONO was produced by reaction of a
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sodium nitrite solution with sulfuric acid in a flow system. A nitrogen carrier gas was

passed through the mixture continuously in order to purge nitrous acid vapour out and

into the chamber bag (Taira and Yukio, 1990). This process provided a constant HONO

mixing ratio of roughly 10 ppbV throughout the experiment. Consequently, the low con-

centration experiments had high initial VOC/NOx ratios of ∼16:1. In order to provide5

a brief exploration into the effect of an inorganic seed, for Experiment 7, 400 pptV sul-

phur dioxide (SO2) gas was added to the chamber. Table 1 lists the specific starting

conditions used for each experiment.

2.3 VOC/OVOC measurement with chemical ionisation reaction time-of-flight mass

spectrometry10

The gas phase organic compounds within the chamber were monitored using a newly

developed chemical ionisation reaction time-of-flight mass spectrometer (CIR-TOF-

MS). TOF-MS comes into its own when dealing with such complex mixtures since

the entire spectrum is captured in any one instant. Furthermore, the technique is

not constrained by upper mass limits and its standard resolution is usually far higher15

than more conventional quadrupole mass spectrometers. Therefore, important advan-

tages of CIR-TOF-MS in this instance include the ability to detect a comprehensive

set of organic compounds, including oxygenated VOCs (OVOCs) and species of quite

high molecular masses and the ability to assist compound identification on the basis of

accurate mass measurements. Details regarding the instrument and its performance20

have been given previously (Blake et al., 2003; Wyche et al., 2007), and hence only a

brief and experiment-specific review is provided here.

The CIR-TOF-MS comprises a radioactive ion source/drift cell assembly, coupled to

an orthogonal time-of-flight mass spectrometer equipped with a wide bore reflectron

array. In the current study proton transfer was used as the means of ionization and25

the proton donor was the hydronium ion (H3O
+

) (Lindinger et al., 1993). In order

to generate the primary reagent ions, water vapour was delivered to the ion source

by bubbling a high purity nitrogen carrier gas (Air Liquid, Ch, grade 7.0) through a
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glass vessel containing ultra-pure deionized water (15 MΩ) at a rate of 30–52 sccm.

Sample air from the PSI aerosol chamber was delivered to the CIR-TOF-MS at a rate

of 200–275 sccm via an insulated 2 m long Teflon line and a PTFE critical orifice. Both

the sample line and critical orifice were heated to 40
◦
C (±1

◦
C) in order to limit wall

losses. For brief intervals during certain experiments a particle filter was placed in5

the sample line to verify that all measured signals were due to gas phase species.

The combined reagent and sample gas flows led to drift cell operating pressures in

the range 6–9 mbar. A positive potential difference was applied across the drift cell to

guide the ions into the mass spectrometer. The drift cell electric field (and therefore

internal energy) was varied for certain experiments in order to enhance sensitivity to10

certain VOCs. The potential difference between the final two electrodes of the cell

was varied to facilitate collision-induced dissociation of the ionised sample and hence

to allow controlled removal of unwanted water cluster ions, i.e. MH
+

.(H2O)n (where M

represents the target VOC). The experiment specific drift cell E/N ratios (where E is

the electric field and N is the gas number density) are provided in Table 1.15

As stated earlier, an important feature of time-of-flight mass spectrometry is the abil-

ity to achieve a much higher mass resolution than alternative techniques, noticeably

quadrupole mass spectrometry. The mass resolution attained in the current study was

in the region of 0.01 Da and this has proved useful in confirming the assignment of

several high mass peaks.20

The sum of hydro and organic peroxy radicals (i.e.
∑

(HO2+ΣiRiO2)) present in the

chamber was also measured during low NOx experiments using a dual channel Peroxy

Radical Chemical Amplifier (PERCA). The PERCA deployed during this work was sim-

ilar to that described in Green et al., 2006, but with inlet systems as per Monks et al.,

1998.25

2.4 Calibration issues

A wide array of compounds was detected using the CIR-TOF-MS and it was therefore

impractical to carry out independent calibrations for all measured species. Conse-
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quently, where no calibration standard was available for a given compound the calibra-

tion factor determined for a structurally similar surrogate was utilised. If no appropriate

surrogate could be found, measurements are reported in terms of instrument signal

(i.e. normalised ion counts per second (ncps) see Sect. 3.7). VOC yields quoted in the

following discussion therefore act only as a guide for those compounds where surro-5

gates have been employed. Table A1 in the supporting information provides compre-

hensive details of all VOC calibrations employed in the current study. Considering all

instrument and calibration associated uncertainties (Wyche et al., 2007), the overall

CIR-TOF-MS measurement errors lay within the range 2.9–27.6% (see Table A1).

Owing to experimental time constraints, a PERCA chain length calibration was not10

carried out following all experiments. Consequently, a typical chain length of 109 (ob-

tained from previous experiments; Parker, 2007) was assumed to provide reasonable

estimates of the peroxy radical concentrations. The amplification chain length of the

PERCA varies between ∼80 and 150. When combined with instrument uncertainties

this gives an estimated peroxy radical uncertainty of 42% (Fleming et al., 2006a; Flem-15

ing et al., 2006b).

3 Results and discussion

The chamber conditions in this work can be broadly divided into two groups, high

NOx and low NOx. In the high NOx experiments the initial NOx concentration was

>250 ppbV, whereas low NOx conditions corresponded to NOx at ≤5 ppbV. The re-20

sults from the high and low NOx experiments are reported separately in the following

sections. Comparisons of gas and aerosol phase measurements carried out under

different VOC/NOx regimes are utilised during the present study to help elucidate the

underlying SOA formation mechanisms.
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3.1 Chamber inorganic species and the SOA precursor under high NOx conditions

The majority of experiments (Experiments 1–4 and 6; see Table 1) were carried out

under high NOx conditions. During these experiments the initial VOC/NOx ratio was

varied between 0.54 and 2.25.

Figure 1a–d displays the temporal evolution of the major inorganic gas phase com-5

ponents of the chamber system and the 1,3,5-trimethylbenzene precursor in several

different experiments. In all instances the experiment start time is taken from the point

at which chamber lights were switched on and hence the photochemistry initiated. On

average the duration of each experiment was of the order of 9–10 h.

Figure 1a summarises the findings for Experiment 6. Experiment 6 constitutes a typ-10

ical example of a high NOx Experiment with VOC/NOx∼2:1; hence it is used as focus

for discussion. The Experiment essentially begins with the production of ground state

atomic oxygen, which originates from the photolysis of NO2. This results in the sub-

sequent production of ozone, photolysis of which in the presence of water, yields OH.

OH can also be generated in such systems from HONO photolysis, which is generally15

produced in all chamber systems following wall reactions involving NO2 (e.g. Metzger

et al., 2008a
2
). Following its generation, OH reacts with TMB to subsequently gen-

erate a complex array of oxidation products, including organic peroxy radicals (RO2),

hydroperoxy radicals (HO2) and oxygenated and nitrated VOCs (Calvert et al., 2002).

The oxidation profiles for TMB during all high NOx experiments exhibited similar be-20

haviour, with a short initial concentration plateau corresponding to the time required

to initiate the OH chemistry, followed by a peak in oxidation rate ∼160 min after lights

on. After this period, the TMB concentration profile was characterised by a roughly

constant decay. For each high NOx experiment a plot of ln[TMB] vs. time is approx-

2
Metzger, A., Dommen, J., Gaeggeler, K., Duplissy, J., Prevot, A. S. H., Kleffmann, J.,

Elshorbany, Y., Wisthaler, A., and Baltensperger, U.: Evaluation of 1,3,5-trimethylbenzene de-

gredation in the detailed tropospheric chemistry mechanism MCMv3.1 using environmental

chamber data, in preparation, 2008a.
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imately linear, with no distinct change in rate with accumulation of ozone. Conse-

quently with NO3 oxidation of TMB negligible under the experimental chamber condi-

tions used, the major chemical loss of TMB results solely from its reaction with OH.

An estimation of [OH] can therefore be inferred from the TMB decay recorded by CIR-

TOF-MS. For experiments with an initial VOC/NOx ratio of ∼2:1, peak OH concentra-5

tions were ∼0.04 pptV and experiment average concentrations were ∼0.03 pptV (using

kOH+1,3,5TMB=(5.67±1.13)×10
−11

cm
3

molecules
−1

s
−1

at T=298 K Calvert et al., 2002).

With the production of both HO2 and RO2 radicals, NO became oxidised to NO2,

leading to the concentration peak seen in Fig. 1a–c. Due to the presence of the VOC

(and hence RO2), the NO/NO2 partitioning was such that there was a positive deviation10

from the photostationary state resulting in net initial ozone production (Monks, 2005).

As noted in other chamber studies (e.g. Bloss et al., 2005a; Dommen et al., 2006), the

peak in [NO2] and the initial accumulation of O3 roughly coincide with the observed

maximum rate of loss of the VOC and the peak in [OH]. Eventually, NO2 is removed

from the gas phase through the production of nitric acid (HNO3) via reactions on the15

chamber walls and incorporation into organic nitrates and the aerosol phase (Monks,

2005). As NO2 chemistry constitutes the sole route to O3 formation within the chamber,

the removal of NOx from the system was followed by a fall in the concentration of O3. At

the conclusion of Experiment 6, ∼70% of the VOC precursor had been consumed and

the concentrations of NO and NO2 had fallen to negligible levels (Fig. 1a). For Experi-20

ment 2 (VOC/NOx∼2:1) shown in Fig. 1b, initial NOx was introduced solely in the form

of NO and starting concentrations were set to two times those of other high NOx ex-

periments with VOC/NOx∼2:1. To initiate the oxidation process in this instance, HONO

and NO2had first to be liberated from the illuminated chamber walls following known

heterogeneous chemical mechanisms (Stroud et al., 2004; Metzger et al., 2008a
2
).25

Experiment 3 involved a reversal of the VOC/NOx ratio to a value of roughly 1:2, but

still with high starting concentrations. As can be seen in Fig. 1c the NOx, O3 and TMB

components of the system exhibited similar profiles to those observed during the other

high NOx experiments, but with a number of key exceptions. When the VOC/NOx ratio
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was decreased to ∼0.5, the rate of decay of TMB appeared enhanced, suggesting

higher levels of oxidant. In this instance inferred OH radical levels were on average

∼0.06 pptV, i.e. twice as high as levels observed in the other high NOx experiments.

This is likely to result from balancing of the OH/HO2 ratio in the hydroxyl radical cycle,

where a relatively higher proportion of NO (with respect to that of the VOC) will force a5

shift towards OH in the chamber HOx balance. The impact of an elevated OH density is

reflected in the amount of VOC consumed by the conclusion of the experiment, i.e. after

600 min less than 10% of the initial TMB remained. In addition to this, a lower RO2/NOx

ratio will slow the cycling of NO to NO2 and hence delay subsequent O3 production.

This effect is observed in the data, where a significant delay was indeed observed in the10

times at which NO2 and O3 reached their respective peaks, and at which NO reached

negligible concentrations when compared to experiments with VOC/NOx ∼2:1.

3.2 Chamber inorganic species and the SOA precursor under low NOx conditions

The second component of the chamber study comprised two low NOx experiments,

Experiments 5 and 7, during which [NOx] was kept below ∼5 ppbV. In the case of15

Experiment 7, SO2 gas was added to the chamber in order to generate sulphuric acid

(H2SO4) seed particles.

As discussed in Sect. 2.2, during the low NOx experiments the chamber was sup-

plied with a continuous source of NO (from HONO) at a rate greater than the sum of its

removal pathways. Consequently, the chamber remained in a state of net ozone pro-20

duction throughout the experiment and therefore no distinct peak and fall is observed

in the ozone concentration profile.

In addition to supplying the chamber with NO, HONO photolysis constituted an addi-

tional source of OH. The photolysis rate of nitrous acid (j(HONO)) for the PSI chamber

has been measured as 2.7×10
−4

s
−1

, which yields an OH production rate (P(OH)) of25

2.7 pptV s
−1

for a constant HONO value of 10 ppbV. As P(OH) from the photolysis of

HONO was several times larger than P(OH) from ozone at any instant during the low

NOx experiments, the level of OH in the chamber was roughly constant. Evidence
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for this can be seen in Fig. 1d, where the rate of decay of TMB during Experiment 7

remained roughly constant during the majority of the experiment. Using the rate of

oxidation of TMB (as described in Sect. 3.1), the average OH concentrations in the

chamber for the two low NOx experiments 5 and 7 were estimated to be ∼0.05 and

0.06 pptV. Tables 1, 2 and 3 lists key measured parameters describing the evolution of5

the inorganic species for each experiment.

3.3 Chamber aerosol formation under high NOx conditions

Figure 2a–d summarise the key aerosol phase parameters for the four variants of the

TMB photooxidation study, i.e. the total aerosol number density, total aerosol volume

and mean geometric particle diameter.10

For Experiments 1–6 no seeding was employed in the simulation chamber and hence

new aerosol formation occurred via homogeneous nucleation involving certain key

semi-and non-volatile oxidation products of the precursor VOC (Seinfeld and Pankow,

2003; Holmes, 2007). The nucleation event observed during Experiment 6 (high NOx

experiment, VOC/NOx∼2:1) is clearly evident in Fig. 2a, and is seen as a dramatic15

increase in the total number density of particles in the chamber at ∼185 min. In this

study we define nucleation to have occurred once the differential of the particle number

density (with respect to time) exceeds a value of one for 3 consecutive measurements

(i.e. when the particle count tends away from the baseline). Nucleation times are given

for the CPC and the SMPS instruments in Table 1. However as the CPC measures par-20

ticles closer in size to the nucleating cluster (i.e. ∼1.5 nm), those values are employed

during the following analysis and discussion.

In Experiment 6 new SOA formation continued for some 100 min, by which time

a maximum number density of ∼490 particles cm
−3

was reached (in the size range

15–690 nm). During this time, via condensation and then coagulation mechanisms,25

the particles grew in size to a maximum mean diameter of ∼480 nm at ∼490 min.

The total volume of chamber SOA followed a similar trend to that of particle diameter.

Ultimately the number density of SOA particles and the total suspended chamber mass
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decreased owing to coagulation and deposition to the chamber walls. Table 2 highlights

the reproducibility of aerosol phase parameters between repeat studies of the three

high NOx experiments carried out at VOC/NOx∼2:1 (Experiments 1, 4 and 6).

Following the analysis performed in Baltensperger et al., 2005, total SOA mass has

been determined from the measured SOA volume by assuming a density of 1.4 g cm
−3

.5

In the case of Experiment 6, a maximum SOA mass of 31µg m
−3

was reached. As no

wall loss corrections have been applied to the aerosol phase data, this value constitutes

a lower limit and should be treated with care. Consequently, a “relative” SOA yield (Y)

was calculated according to Eq. 1 (after Odum et al., 1996):

Y = (M0/∆VOC) × 100 (1)10

In the above expression M0 corresponds to the peak mass of SOA produced and

∆VOC is the amount of the precursor VOC consumed at the peak SOA mass (both

expressed in units of µg m
−3

). Yields for the three repeat experiments with a VOC/NOx

ratio ∼2:1 (i.e. Experiments 1, 4 and 6) were 1.9, 2.3 and 1.8%, respectively.

The temporal behaviour of the measured aerosol parameters for Experiment 215

(VOC/NOx∼2:1, NO only) was similar to those of Experiments 1, 4 and 6. However, as

the initial concentration of both TMB and NO was set to twice that of the other high NOx

(VOC/NOx∼2:1) experiments, an approximate two-fold increase in the maximum num-

ber density of particles was observed (∼1200 particles cm
−3

). Also, particles grew to

possess larger maximum mean diameters (∼660 nm) and the ultimate experiment SOA20

yield was roughly four times greater than that of the other high NOx experiments (1, 4

and 6), at 7.5%. The findings described here for an enhanced level of starting material

are consistent with those previously reported (e.g. Paulsen et al., 2005; Song et al.,

2005; Gross et al., 2006).

When the starting VOC/NOx ratio was reversed to ∼1:2 for Experiment 3, SOA for-25

mation was significantly delayed, with nucleation occurring around 215 min later than

in Experiment 6. By the conclusion of Experiment 3 (∼600 min) the chamber aerosol

appeared to still be in a state of growth and no distinct peak in either size or mass had
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been reached. Consequently, the SOA yield was determined from the aerosol mass

produced at the conclusion of the experiment. With a VOC/NOx ratio of ∼1:2, a SOA

yield of 0.3% was achieved, i.e. roughly an order of magnitude lower than for the larger

VOC/NOx ratios. With more than 90% of the precursor VOC consumed by termination

of the experiment and with primary and secondary oxidation products having reached5

their concentration peaks, it may be assumed that further aerosol growth after this point

would be minimal.

From the above discussion and from inspection of Table 2 it is clear that for each

experiment conducted under high NOx conditions a significant delay or “incubation”

period was witnessed before the nucleation event. For Experiments 1, 2, 4 and 610

(VOC/NOx∼2:1) this period lasted for approximately 110, 145, 190 and 185 min, re-

spectively, and for Experiment 3 (VOC/NOx∼1:2) was over twice as long at 400 min.

Evidence for this incubation period has been reported for several other aromatic ox-

idation systems, including benzene, toluene, o-xylene and m-xylene in a number of

different simulation chambers (Izumi et al., 1988; Johnson et al., 2004; Johnson et al.,15

2005; Song et al., 2005; Ng et al., 2007).

It has been proposed that the existence and duration of the incubation period is

directly related to the presence of NO in the gas phase (Johnson et al., 2004; Johnson

et al., 2005). Results obtained by Johnson et al. (2005) from a gas phase oxidation

model coupled to an absorptive aerosol transfer scheme showed that the less volatile20

hydroperoxides, formed from the self-reactions of hydro and organic peroxy radical

species (R3 and R4), were significant contributors to SOA mass. Consequently, new

particle formation and growth could be closely linked to the ambient levels of NO, which

may preferentially react with HO2 and RO2 via reactions R1 and R2 in the scheme

below, limiting the capacity of the system to form peroxides:25

NO + HO2 → NO2 + OH (R1)

NO + RO2 → NO2 + RO (R2)

RO2 + RO2 → ROOR + O2 (R3)
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RO2 + HO2 → ROOH + O2 (R4)

Johnson and co-workers (Johnson et al., 2005) proposed that once in the aerosol

phase, the peroxides can take part in heterogeneous chemistry with certain aldehydic

species to form peroxyhemiacetals. This thesis supports results from previous studies

of various workers demonstrating the importance of heterogeneous chemistry in the5

aerosol, and in particular acetal and hemiacetal reactions involving carbonyl oxidation

products (Jang and Kamens, 2001; Jang et al., 2003).

Through an examination of the kinetics involved with reactions R1–R4, it is possible

to infer the influence of the NO concentration on gas phase hydroperoxide formation

during the experiments presented here. Equation 2 below accounts for reactions R1–10

R4 to determine the fraction of RO2 (Φ) that forms hydroperoxides:

Φ = {k4[RO2][HO2]}/{k4[RO2][HO2] + k3[RO2]2 + k2[RO2][NO]} (2)

Figure 3a shows the variation of Φ with NO concentration taken from Experiment 6,

for a series of HO2 and RO2 concentrations generated from the chamber box model

employed in a companion paper (Rickard et al., 2008). Figure 3a clearly demonstrates15

that for the self-reaction route involving both hydro and organic peroxy radical species

to become significant, either high radical levels are required (i.e. tens of pptV) or the

concentration of NO must approach zero. For Φ (i.e. hence peroxide formation) to

reach as much as 5% in this model, the concentration of NO must fall below 2 ppbV

(with ∼34 and 51 pptV HO2 and RO2, respectively) and for 10%, ∼1 ppbV (with ∼4120

and 61 pptV HO2 and RO2, respectively). Comparable results have been obtained

here using a chamber box model to generate radical profiles (not shown), employing

a mode similar to that used by Ng et al. during chamber studies involving benzene,

toluene and m-xylene (Ng et al., 2007).

During Experiments 1, 2, 4 and 6 (VOC/NOx∼2:1), the time required for the NO25

concentration in the chamber to reach 2 ppbV (i.e. to approach zero) ranged from ∼150

to 170 min (see Table 2). Contrasting these times with those of the nucleation event
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in each case, we see that SOA formation occurs only as [NO] drops towards zero,

adding support to the thesis that peroxide chemistry is involved in SOA formation.

However, during experiments 4 and 6 there is a further time delay (of ∼30 and 20 min,

respectively) before particle formation occurs, implications of which are discussed in

Sect. 3.5. The concentrations of NO at nucleation for the high NOx Experiments 1,5

2, 4 and 6 were 16.2, 6.2, 1.2, and 1.4 ppbV, respectively. Particle growth during

Experiment 1 was slower than other repeat experiments, an observation in line with

slightly higher [NO] at the point of SOA formation.

The hypothesis suggesting that the NO concentration in the chamber must reach a

minimal value before nucleation can occur is supported by results obtained from vary-10

ing the VOC/NOx ratio. When the VOC/NOx ratio was changed from 2:1 to a nominal

value of 1:2 (Experiment 3), a considerably longer time was required for the system

chemistry to reduce [NO] to negligible levels (see Table 2). Correspondingly, a delay

was observed in the timing of the nucleation event. In addition to this, nucleation did

not occur until roughly a further 75 min after [NO] had reached minimal levels.15

3.4 Chamber aerosol formation and peroxy radicals under low NOx conditions

Figure 2 and Table 2 demonstrate the clear difference between the nucleation times of

the high and low NOx experiments. During the low NOx experiments a distinctly shorter

incubation period was observed before the onset of aerosol formation, i.e. ∼50 and

20 min for Experiments 5 and 7, respectively, compared to an average of ∼155 min20

for the typical high NOx experiments (see Fig. 2d). During the low NOx (constant

HONO) experiments the concentration of NO up to the point of nucleation was no

greater than ∼1 ppbV and an additional radical source was present to supply OH and

(therefore HO2) to the matrix. Consequently, it is highly likely that radical-radical self-

reaction routes (R3 and R4) dominated the fate of the RO2 species from the start of25

the experiment. It should be noted that the length of the incubation period of each low

NOx experiment (i.e. 5 and 7), is comparable to the length of the time delay between

NO falling to negligible concentrations and nucleation during high NOx Experiments 4
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and 6.

The SOA yields obtained during low NOx Experiments 5 and 7 were 7.9 and 6.2%

respectively, i.e. roughly 3.5 and 24.3 times larger than those achieved under high NOx

conditions of VOC/NOx∼2:1 and 1:2, respectively. It should be noted that in the lat-

ter instance (Experiment 3, VOC/NOx∼1:2), the experiment was conducted with the5

same initial TMB concentration as the low NOx experiments, and thus it is unlikely that

enhanced yields under low NOx conditions are an artefact of initial precursor concen-

tration (Ng et al., 2007). Ng et al. (2007) saw roughly 2.8 and 5.7 fold increases in SOA

yields in the toluene and m-xylene systems, respectively, when moving from high to

low NOx conditions, comparable to observations made here.10

As discussed earlier, recent reports attribute the production of a greater aerosol

yield in low NOx systems to chamber conditions favouring formation of the low volatility

peroxides from reactions R3 and R4 (Stern et al., 1987; Jenkin et al., 2003; Johnson

et al., 2004; Song et al., 2005; Ng et al., 2007). However, as discussed below the

conditions of low NOx Experiments 5 and 7 also allow an early production of a variety15

of other organic oxidation products which may further contribute to the enhancement

of SOA yield.

Elevated NOx concentrations, such as those employed during the high NOx exper-

iments of this study, lead to interference problems in the inlet chain length chemistry

when measuring peroxy radical species using the PERCA technique (Green et al.,20

2006; Parker, 2007). Consequently, peroxy radical data are presented only for experi-

ments conducted under low NOx conditions. Figure 4 displays the temporal evolution of

the sum of both hydro and organic peroxy radicals during Experiment 5, during which

a rapid rise in peroxy radical concentration was observed from lights on to a concen-

tration plateau of ∼175 pptV by ∼400 min. The onset of plateau behaviour in radical25

concentration was coincident with removal of the precursor VOC from the system, i.e. at

plateau ∼80% of the TMB had been consumed.

The temporal behaviour of the peroxy radicals during the low NOx experiments can

be attributed to the constant input of OH and NO throughout the experiment and the

11703

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

subsequent evolution of chamber ozone. As the precursor VOC constitutes the sole

source of RO2, its consumption as the experiment evolves accounts for the observed

decrease in rate of peroxy radical production.

Using the partitioning theory outlined in Sect. 3.3 (Eq. 2) along with total peroxy

radical and NO measurements, it is possible to demonstrate how peroxide production5

may proceed within the chamber under low NOx conditions. Figure 3b shows the vari-

ation of Φ with [RO2] and [NO] using measured data (assuming a typical urban air

[HO2]/[RO2] ratio of 2:3). With the NO concentrations no greater than 1 ppbV, forma-

tion of peroxides within the chamber becomes efficient as soon as the photochemistry

is initiated and peroxy radicals are formed (see Figs. 1d and 4). Under low NOx con-10

ditions Eq. 2 predicts that partitioning of RO2 to peroxides is as efficient as ∼5% after

only the first 10 min of experiment, a result that contrasts strongly with findings from

the high NOx cases. Furthermore, Eq. 2 predicts that partitioning of RO2 to perox-

ides reached roughly 15% by the time of the nucleation event of Experiment 5. These

experimental findings further strengthen theories proposing the crucial role played by15

organic peroxides during the SOA formation process.

3.5 Effect of inorganic seed

A comparison of the two low NOx experiments (5 and 7) in Table 2 shows that particle

formation occurred ∼30 min earlier when SO2 gas was included in the matrix. This

result could be due to slightly higher OH levels measured during Experiment 7, but20

is most likely a consequence of H2SO4 nucleation, which subsequently supplies a

condensation surface for the condensable organic oxidation products (Holmes, 2007).

In addition to this, seeding the chamber generated a larger number of particles than

in other experiments. The peak particle number density during Experiment 7 reached

roughly 2200 cm
−3

, compared to only 410 cm
−3

during Experiment 5. Due to the larger25

number of particles produced, the mean geometric aerosol diameter of the seeded

SOA was slightly smaller than that produced by homogeneous nucleation, i.e. ∼400

compared to ∼460 nm.
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Various chamber studies have shown that SOA yields generated from a VOC pre-

cursor can become enhanced in the presence of an acidic seed (Jang and Kamens,

2001; Czoschke et al., 2003; Jang et al., 2003; Limbeck et al., 2003; Gao et al., 2004;

Surratt et al., 2007; Verheggen et al., 2007). Further inspection of Table 2 shows that

despite the production of a greater number of particles, the aerosol yield obtained in the5

presence of H2SO4 was no greater than the yield obtained during the companion low

NOx homogeneous nucleation experiment. However, the SO2 concentration employed

during Experiment 7 was somewhat low (0.4 ppbV compared to >100 ppbV used by

other workers, e.g. Edney et al., 2005; Kleindienst et al., 2006; Metzger et al., 2008b
3
);

hence it is possible that the resultant [H2SO4] was too low to facilitate the acid seed ef-10

fect. Therefore, with this in mind and with a lack of repeat seed experiments, the result

of no yield enhancement for TMB-SOA in the presence of H2SO4 is not conclusive, but

is in line with findings presented by Ng et al. for two other aromatic systems: toluene

and m-xylene (Ng et al., 2007). A more exhaustive study investigating the effect of acid

seeding on TMB-SOA has been produced recently by Metzger et al. (Metzger et al.,15

2008b
3
).

3.6 Time-dependent SOA growth curves

In order to help elucidate the mechanisms underlying SOA formation in the TMB sys-

tem, a series of time-dependent SOA growth curves have been generated, following

methods employed by Song, Ng and co-workers (Song et al., 2005; Ng et al., 2007).20

The time-dependent growth curves essentially comprise a plot of SOA mass formed

versus the amount of VOC reacted. Figure 5a presents the growth curve for Experi-

ment 6, a typical example of the high NOx system (VOC/NOx∼2:1). Initial inspection

reveals the significant incubation period noted previously as the chamber concentra-

3
Metzger, A., Verheggen, B., Duplissy, J., Gaeggeler, K., Dommen, J., Prevot, A. S. H., and

Baltensperger, U.: Influence of sulfur dioxide on nucleation, growth rates and yield of secondary

organic aerosol, in preparation, 2008b.
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tion of NO→0. The incubation period is followed by a linear increase in SOA mass

with expenditure of the TMB. The growth curve eventually reaches a plateau followed

by decay due to particle deposition. Growth curves for all high NOx experiments with

VOC/NOx∼2:1 (not shown) exhibit similar behaviour, with all profiles displaying similar

slopes and with all nucleation events occurring within a narrow band of reacted TMB.5

The time-dependent growth curves for the low NOx experiments are also linear follow-

ing nucleation, but (as noted earlier) are preceded by a much shorter incubation period

than those of the high NOx systems. As an example, Fig. 5b displays the growth curve

for Experiment 7.

As noted in Sects. 3.3 and 3.4 a time delay was observed between [NO]→0 and10

the nucleation event in high NOx Experiments 3, 4 and 6, which was comparable in

duration to the incubation period clearly evident in the growth curves of the low NOx

experiments (e.g. Fig. 5b). As shown above, the formation of peroxides in the low NOx

system is likely to be extremely efficient even very early into the experiment. Conse-

quently, if organic peroxides are pivotal in TMB-SOA formation, the time delay observed15

after [NO] has reached minimal levels corresponds to the time required for the nucle-

ating species to reach a critical gas phase concentration. It is also possible that the

presence of a time delay in certain high NOx experiments and the incubation zone in

the absence of NOx, are a consequence of the SOA forming species consisting of later

stage oxidation products which form further down the oxidation chain, i.e. from further20

reaction of primary products (including certain peroxides, see discussion in Sect. 3.9).

Growth curves displaying similar behaviour to those derived from the current study

were presented by Song et al. for the m-xylene system (Song et al., 2005).

3.7 The gas phase organic compounds

3.7.1 The 1,3,5-trimethylbenzne atmospheric oxidation mechanism25

Before reporting the observations derived from the CIR-TOF-MS measurements, we

first outline the likely atmospheric oxidation processes of TMB that might lead to SOA
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formation. Atmospheric oxidation of TMB may essentially be separated into two distinct

pathways. One pathway is reaction via OH addition to the aromatic ring (pathway (Pi))

while the other involves hydrogen abstraction from a methyl group (pathway (Pii)). In

general, the more substituted the aromatic ring, the more important the ring fragmen-

tation route (Johnson et al., 2005; Bloss et al., 2005b). A simplified mechanism for5

the photochemical degradation of TMB, highlighting the most important atmospheric

oxidation routes, is displayed in Fig. 6. This scheme has been constructed through

an amalgamation of previous descriptions of the benzene and toluene oxidation sys-

tems (Yu et al., 1997; Atkinson, 2000; Bohn, 2001; Calvert et al., 2002; Johnson et

al., 2004; Johnson et al., 2005), the MCMv3.1 TMB subset (extracted from the MCM10

website (http://mcm.leeds.ac.uk/MCM), Bloss et al., 2005a; Bloss et al., 2005b) and

measurements made by CIR-TOF-MS during this study:

(Pi) OH Addition to the aromatic ring

The principal atmospheric oxidation route for TMB involves the addition of OH to the

aromatic ring (branching ratio of 0.97 in the MCMv3.1), initially forming an OH-aromatic15

adduct (a trimethyl hydroxycyclohexadienyl radical; compound B in Fig. 6). In the

presence of atmospheric levels of O2 this radical is in equilibrium with its equivalent

OH-aromatic-O2 adduct (a trimethyl hydroxycyclohexadienyl peroxy radical) (C). The

OH-aromatic-O2 adduct (C) can either subsequently decompose to yield HO2 and the

ring retaining product 2,4,6-trimethylphenol (D), or most likely will undergo internal re-20

arrangement to generate an O2-bridged trimethyl peroxide bicyclic radical (E) (branch-

ing ratio of 0.96 in MCMv3.1). The O2-bridged trimethyl peroxide bicyclic radical (E)

can subsequently degrade through various stages of isomerisation, decomposition and

scission to form the epoxy-oxy species (H) (branching ratio of 0.15 in MCMv3.1). The

epoxy-oxy compound can decompose to give a variety of lower molar mass oxygenates25

(e.g. compounds I and J). In the atmosphere the bicyclic peroxide radical (E) will most

likely undergo reaction with O2 to form the peroxy radical equivalent (K) (branching

ratio of 0.85 in MCMv3.1). The yields of initial products formed after addition of OH to
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the aromatic ring of TMB in MCMv3.1 are 0.79, 0.14, and 0.04 for the trimethyl per-

oxide bicyclic peroxy radical (K), the epoxy-oxy species (H) and 2,4,6-trimethylphenol

(D), respectively. Depending on the amount of NOx present, the peroxide bicyclic per-

oxy radical (K) will degrade via a number of intermediary steps to produce a range

of O2-bridged oxygenated and nitrated compounds (compounds L–P). Some of the5

larger oxygenated and nitrated ring retaining products, including the multi-functional

O2-bridged species shown in Fig. 6, are likely to be sufficiently non-volatile to partition

into the organic aerosol phase (Johnson et al., 2004; Johnson et al., 2005). Once

inside the particle phase, these types of multi-functional compounds can take part in

certain association reactions (Johnson et al., 2005). Further oxidation and ring open-10

ing processes (mainly through the oxy radical (N)) will yield an array of lower molecular

mass carbonyl (including methyl glyoxal), unsaturated γ-dicarbonyl, acid and furanone

species, some of which are shown in Fig. 6 (e.g. compounds Q–S). These low molecu-

lar mass ring fragmentation products have a tendency to be multi-functional and can be

unsaturated, and therefore are generally more reactive than the parent TMB and can15

be oxidised further through reactions with OH and O3 and NO3. A selection of likely,

further reaction products are shown in Fig. 6. Some of these products, e.g. 3-methyl

maleic anhydride (citraconic anhydride) (AC) and 3,5-dimethyl-5(2H)-2-furanone (S),

can be highly polar and less volatile, and hence may be able to transfer into the or-

ganic aerosol phase (Kleindienst et al., 1999; Johnson et al., 2005).20

(Pii) Hydrogen abstraction from a pendant methyl group

OH initiated hydrogen abstraction from a pendant methyl group constitutes the alterna-

tive oxidation route for TMB in the atmosphere, and represents the major ring retain-

ing pathway (other than the formation of 2,4,6-trimethyl phenol as described above).

Eventually, following hydrogen abstraction, reaction with O2, and subsequent radical25

reactions (e.g. with NO, RO2, HO2 and OH), 3,5 dimethyl benzaldehyde (W) is formed

with a yield of ∼0.03 according to MCMv3.1 (Bloss et al., 2005b).
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3.8 Measurement of the gas phase organic compounds

Figure 7a–d displays the CIR-TOF-MS mass spectra recorded after 400 min of irradi-

ation during Experiments 6, 3, 2 and 7, with VOC/NOx ratios of around 2:1, 1:2, 2:1

(NO only) and 17:1, respectively. All of the mass spectra have been normalised to 10
6

primary reagent ion counts (i.e. the sum of the H3O
+

and H3O
+

.H2O signals) and have5

been background subtracted. Consequently, all signals stated here are quoted in units

of normalised counts per second i.e. ncps (de Gouw et al., 2003).

During a typical high NOx chamber experiment (and depending on the drift cell con-

ditions employed) around 60 peaks were recorded in the mass spectra between m/z 0

and 300, with around 30 peaks possessing a mass greater than that of the precursor10

VOC (m/z 121). In contrast, roughly 50 significant features were recorded during the

low NOx experiments, with around 20 of those possessing a mass greater than that

of the precursor. It should be noted, however, that this difference could be attributed

to the use of a lower precursor concentration during the low NOx studies where de-

tection limits of the instrument become an issue (see Wyche et al., 2007 for further15

information regarding detection limits). The number of spectral features quoted here

includes features present due to fragment ions as well as parent ions, and hence does

not necessarily represent the total diversity of organic species in the chamber. For

brief periods during certain experiments, the electric field applied across the collision

cell in the CIR-TOF-MS drift tube was increased to produce more energetic collisions,20

and thus to identify and help exclude any possible molecular ion water cluster products

(i.e. MH
+

.(H2O)n).

The major spectral features common to all experiments are listed in Table 4 along

with, where possible, a tentative compound assignment. Table 4 also gives a cham-

ber “appearance time” for each compound, defined as the time at which the signal25

for a given spectral feature exceeds the mean background signal plus three times its

standard deviation. All compound assignments have been made using a combination

of information, namely accurate mass measurements, appearance time, subsequent
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temporal profile, and data available from the MCMv3.1 box model simulations (see

Rickard et al., 2008).

3.8.1 Behaviour of the gas phase organics under high NOx conditions

As a focus for discussion, the evolution of the entire measured VOC system of Exper-

iment 6 is presented in Fig. 8. General features of note include the appearance of5

most species within the first 50–100 min of the experiment, including many high mass

oxidation products. The high NOx photooxidation system of TMB is also characterised

by a peak in concentration of the heavier species around the mid-point of the exper-

iment (∼200–300 min). The lower molecular mass features demonstrate a continual

rise in intensity up to the end of the experiment.10

Looking more closely at the features recorded by CIR-TOF-MS (Table 4), it is possi-

ble to follow the system evolution as outlined in Fig. 6. Two of the earliest compounds to

appear in the oxidation chain are the ring retaining compounds, 2,4,6-trimethylphenol

(D) and 3,5-dimethylbenzaldehyde (W). Both of which were measured in the chamber

as protonated parent ions, i.e. m/z 137 and 135, respectively. 2,4,6-trimethylphenol15

and 3,5-dimethylbenzaldehyde were measured with peak concentrations of 0.6 and

7 ppbV, respectively.

As noted in Sect. 3.7.1, the majority of mass transit in the TMB oxidation system

occurs via addition of OH to the aromatic ring followed by production of the trimethyl

peroxide bicyclic radical (E) and its peroxy radical counterpart (K). Various subsequent20

pathways shown in Fig. 6 can lead to an array of O2-bridged aromatic compounds (L–

P). We report here the first firm evidence for the existence of these O2-bridged species

along with documentation of their real-time evolution, as measured by CIR-TOF-MS.

As summarised in Table 4, peaks consistent with the O2-bridged nitrate (L), diol (O) and

ketone (P) were recorded at m/z 232, 169 and 185, respectively. Two fragment ions25

of the nitrate were also measured (at m/z 214 and 109), as was a signal tentatively

assigned to be the aromatic ring fragment of the O2-bridged species (m/z 125). No ion

corresponding to the protonated O2-bridged peroxide (M) was measured. Comparison
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of the measured temporal profiles of the O2-bridged species with simulations using a

chamber box model incorporating detailed TMB degradation chemistry taken from the

MCMv3.1 is discussed in the companion modelling paper (Rickard et al., 2008).

Due to relatively high levels of NO early in the experiment, the O2-bridged nitrate

(L) is the first of the triumvirate to appear in the chamber, at ∼10–50 min. The O2-5

bridged nitrate is formed in relatively high yield when compared to the other aromatic

systems (Bloss et al., 2005b). As the chamber matrix evolves and levels of HO2 and

RO2 increase, the O2-bridged diol and ketone (and presumably the peroxide (M): see

Rickard et al., 2008) are produced, appearing roughly together at ∼40–60 min.

The concentration-time profiles of the measured O2-bridged bicyclic species are10

shown in Fig. 9a. The primary bicyclic nitrate exists in a state of production whilst

NO is present in the chamber, up to a peak near 250 min, followed by decay as the

precursor TMB is consumed and as chamber NOx falls towards zero. The O2-bridged

diol and ketone follow a similar profile to the nitrate early in the experiment but continue

on a steady rise as HO2 and RO2 become more prevalent within the chamber.15

According to the mechanism outlined in Fig. 6, the O2-bridged ketone (P) and alkoxy

radical (N) act as conduits for further mass transit through the oxidation system. Both

compounds are liable to undergo ring cleavage to yield an array of lower molecular

mass oxygenated and nitrated compounds, the first and most abundant of which are

methyl glyoxal (Q) and 3,5-dimethyl-5(2H)-2-furanone (S), measured as protonated20

parent ions at m/z 73 and 113, respectively. A variety of oxygenated species, all of

nominal mass 112, appear in the TMB oxidation chain and were measured collec-

tively at m/z 113 (i.e. protonated) by CIR-TOF-MS. Along with 3,5-dimethyl-5(2H)-2-

furanone, laboratory studies have identified these to be the furanones, 3,5-dimethyl-

3(2H)-2-furanone (AF) and 3-methyl-furan-2,5-dione (methyl maleic anhydride) (AC),25

and the -dicarbonyl 2-methyl-4-oxo-2-pentenal (R) (Smith et al., 1999). Also observed

here in the chamber matrix was a fourth furanone, 3-methy-5-methylidene-5(2H)-2-

furanone, measured at m/z 111 (AE) (Smith et al., 1999).

Both methyl glyoxal and the m/z 113 compounds are amongst the first oxidation
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products to appear in the chamber (after ∼3–30 min), being formed via a series of

highly reactive radical intermediates during the early, NOx dominated stages of the

high NOx experiment. As shown in Fig. 9b, the concentrations of methyl glyoxal, 3-

methy-5-methylidene-5(2H)-2-furanone and the m/z 113 species rise rapidly to peaks

of ∼110, 30 and 65 ppbV, at roughly 320, 450 and 170 min, respectively. Eventually the5

chemistry generating these oxidation products reaches steady state, as indicted by the

observed concentration plateaus.

Throughout the experiment methyl glyoxal, methyl-5-methylidiene-5(2H)-2- furanone

and the m/z 113 species were amongst the most dominant features of the mass spec-

trum, being produced first via the alkoxy radical and the bicyclic nitrate, and subse-10

quently through the HO2 and RO2 controlled pathways. At peak concentrations the

(mass percent) VOC yields (YVOC) for these compounds were estimated to be ∼20, 8

and 40%, respectively, accounting for a significant fraction of mass within the system.

As the oxidation process progressed a multitude of organic species with a variety of

functional groups were formed within the chamber, many of which were detected by15

CIR-TOF-MS (see Table 4). Figure 9c gives the concentration-time profiles for three

such compounds formed following ring cleavage, the multifunctional tertiary products

2-methyl-4-oxo-pent-2-enoic acid and 3-acetyl-2-methyl-oxirane-2-carbaldehyde (mea-

sured together at m/z 129) and hydroxy acetone (m/z 75). Collision energy studies

have shown that 2-methyl-4-oxo-pent-2-enoic acid also undergoes a small amount of20

dehydration following PTR to yield a fragment of m/z 111. Also given in Fig. 9c is

the signal measured at m/z 43, a generic marker for carbonyls using the PTR-MS

technique (Blake et al., 2006). All such later stage oxidation products displayed similar

behaviour, a steady rise to plateau roughly coinciding with peak aerosol mass. Strong

signals corresponding to nitrated VOCs (even m/z number and low mass excess) were25

also measured further down the oxidation chain. These included peroxy acetyl ni-

trate (PAN) (m/z 46, Hansel and Wisthaler, 2000) and two unidentified compounds of

m/z 96 and 136. Signals corresponding to pyruvic acid (m/z 89) and formaldehyde

(m/z 31), two potential monomer units for the TMB oligomer (Kalberer et al., 2004),
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were also measured in all experiments.

Further inspection of Table 4 shows that a number of other simple organic acids

were observed in the gas phase, including hydroxy acetic acid (m/z 77), acetic acid

(m/z 61) and formic acid (m/z 47). As shown in Fig. 9d and Table 4, the various

late stage acids appeared in the chamber ∼20–200 min after lights on. Concentra-5

tions of hydroxy acetic acid rose steadily to a peak of around 30 ppbV at 400 min

(YVOC=6%) followed by a steady decline. Both formic and acetic acid levels continued

to rise throughout Experiment 6 as the system became more oxidised, with concentra-

tions eventually reaching 100–120 ppbV (YVOC∼11 and 16%, respectively). It should

be noted that during “blank” experiments (no precursor VOC), both formic and acetic10

acid were observed in the gas phase following liberation from the illuminated chamber

walls. After ∼7 h of blank experiment ∼10 ppbV of both formic and acetic acid was

measured; hence concentrations quoted here constitute an upper limit and should be

considered with care. However, Fisseha and colleagues (Fisseha et al., 2004) recently

recorded similar gas phase concentrations of formic acid during TMB photooxidation15

(∼80 ppbV after 9 h), along with significant levels within the aerosol (∼15µg m
−3

at

peak aerosol concentration). They presented lower acetic acid concentrations than

were measured here (∼30 ppbV), with differences most likely explained by potential

contribution to mass channel 61 from other species in the CIR-TOF-MS measurements

(primarily fragment ions derived from other organic acids).20

3.8.2 Variation of the VOC/NOx ratio under high NOx conditions

When NOx was initially introduced only in the form of NO (Experiment 2), the distribu-

tion and variety of ions within the mass spectrum and their concentration-time profiles

were generally very similar to those of other experiments with initial VOC/NOx∼2:1. The

main exception to this was a delay in the appearance times of most compounds, cor-25

responding to the time required to liberate HONO from reactions on the chamber walls

and hence for the radical chemistry to initiate. Also, the oxidation products reached

higher peak concentrations due to the enhanced level of starting material, but ultimately
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achieved similar yields to the other experiments of VOC/NOx∼2:1 (see Table A2).

The behaviour of the VOC component of the chamber differed more significantly

when the VOC/NOx ratio was reversed to a value of ∼1:2. The most obvious point of

note was that despite generally exhibiting similar temporal behaviour to other high NOx

experiments, the oxidation products of the reverse system took significantly longer to5

appear and achieve peak concentrations.

3.8.3 Variation of the VOC/NOx ratio, low NOx conditions

Following observations of the aerosol phase, the composition and behaviour of the

gas phase organics of the low NOx systems (Experiments 5 and 7, VOC/NOx∼16:1)

show significant differences to those of the high NOx experiments. Along with exhibit-10

ing significantly earlier nucleation events, due to the presence of the HONO radical

source Experiments 5 and 7 were also characterised by the appearance of most ox-

idation products much sooner than in all other experiments (see Table 4). Figure 10

shows that, once present in the chamber, the TMB oxidation products exhibited signifi-

cantly different temporal behaviour under low NOx conditions when compared to other15

experiments. The majority of primary oxidation products were observed to rise more

gradually from “lights on” to a concentration plateau, rather than a distinct peak. Con-

sequently, the point of maximum concentration often occurred later than in other exper-

iments, e.g. methyl glyoxal (m/z 73) and the m/z 113 compounds reached maxima

around 70–80 min later than in Experiment 6, achieving ∼50 and 20 ppbV, respectively.20

Correspondingly the later stage oxidation products also presented different temporal

profiles. As seen in Fig. 10c and d, the tertiary products presented more linear growth

profiles early in the experiment, being produced more rapidly due to the presence of

an OH source. The “start-up” lag seen in other experiments, corresponding to the time

required to establish the OH cycle, is absent. During low NOx experiments, the tertiary25

products were often characterised by linear profiles due to a roughly constant level of

oxidant.

Most VOC yields (determined for the calibrated compounds) during the low NOx

11714

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

experiments were similar in magnitude to those of the high NOx experiments of

VOC/NOx∼2:1, with some significant exceptions. Hydroxy acetic acid, acetic acid and

formic acid yields obtained during low NOx experiments were on average significantly

larger than those of high NOx experiments, i.e. 14, 33 and 49% compared to 4, 15 and

13%, respectively. Yields for methyl glyoxal and the m/z 113 compounds were slightly5

lower under low NOx conditions, namely ∼20 and 30%, respectively.

3.8.4 Elucidating the gas phase oxidation mechanisms

In order to evaluate the chemical mechanism underlying the TMB photooxidation sys-

tem, at the conclusion of certain experiments chamber lights were switched off and the

total chamber ozone was titrated from the system with the addition of excess NO to10

the matrix. During Experiments 6 and 7 the chamber lights were switched off at 460

and 550 min, respectively, with the addition of NO some 60 and 30 min later. The ef-

fect of this “dark phase” on the inorganic components of the matrix and the VOCs for

Experiments 6 and 7 can be seen in Figs. 1a and d, 9 and 10.

During the dark phase the photochemically driven pathways become ‘switched off’15

as photolysis and OH production from both ozone and HONO cease. Also, as the

chamber ozone is titrated away, chemistry occurring via ozonolysis reactions becomes

negligible. Consequently, the system chemistry is switched from a regime where reac-

tions of RO2 are controlled by OH and HO2 to one in which the majority of RO2 species

are removed from the system following reaction with the injected NO. This results in20

a “burst” in production of NO2 and to a minor extent nitrogenated and carbonyl com-

pounds. Manipulating the chemistry in this manner and observing the resultant effect

on the VOC evolution provides key insight into the chemistry involved.

The concentration-time profile of the peroxide bicyclic ketone, seen in Fig. 9a, began

to fall significantly when chamber lights were switched off, suggesting that its produc-25

tion must result from reactions involving RO2, HO2 and OH as detailed in Fig. 6. As the

photolytic formation of radicals was “switched off” under dark phase conditions, pro-

duction of the bicyclic ketone was no longer possible and the chamber concentration

11715

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

began to decay due to the instability of this species. Conversely during the dark phase,

the fall in concentration of the bicyclic nitrate was arrested before levelling off to plateau

as its major loss process (i.e. photolysis) was switched off.

Following the addition of NO to the chamber a significant increase in the signal mea-

sured at m/z 113 was observed. This response is essentially a consequence of the5

parent O2-bridged species decomposing through ring opening pathways to yield vari-

ous (isobaric) oxygenated products. For example following the photooxidation mecha-

nism outlined in Fig. 6, it is likely that the peroxide bicyclic ketone decays via several

intermediate steps to 3,5-dimethyl-5(2H)-2-furanone, verifying this compound’s signif-

icant contribution to the signal measured at m/z 113. Such findings highlight the im-10

portance of reaction routes involving the bicyclic ketone and nitrate species during the

early stages of the experiment in the production of other potentially crucial SOA forming

oxidation products (see Sect. 3.9).

3.9 Principal component analysis

As noted by Baltensperger et al. (Baltensperger et al., 2005) the VOCs observed in15

the oxidation of TMB can be separated into several distinct categories according to

their temporal profiles. In order to better identify trends within the time series data,

a Principal Component Analysis (PCA, Martens and Næs) was carried out for each

experiment. PCA is an exploratory data analysis technique that will summarise cor-

related time behaviour of certain masses into a set of principal components. Each20

principal component consists of a pair of vectors: the scores vector (depicting time

related behaviour) and the loadings vector (representing how strongly this behaviour

is represented on each of the masses). The PCA algorithm will first find the strongest

collective time trend in the data and its associated mass spectrum, followed by the

second strongest and so on. Consequently, it may therefore be possible to represent25

the whole experiment with only a few principal components. Ultimately the PCA can be

used to identify which compounds are related in the oxidation system.

Generally, during each of the PC analyses the vast majority of the temporal variability
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was captured by the first three principal components (PC1 accounted for ∼75–95% of

the variance, PC2 ∼4–22% and PC3 only ∼0.6–1.5%). As an example of the high NOx

data, the scores and loading plots obtained from a PCA conducted for Experiment 6

are given in Fig. 11a. The scores plots generated for PC1 for each high NOx experi-

ment exhibited roughly the same pattern, i.e. a sigmoidal rise to peak and plateau. The5

most significant masses comprising the corresponding loadings vector were m/z 43

(carbonyl marker), 46 (PAN marker), 61 (acetic acid), 73 (methyl glyoxal), 77 (hy-

droxyl acetic acid), 87 (unidentified), 111 (3-methyl-5-methylidiene-5(2H)-2-furanone)

and 185 (the O2-bridged ketone). All of these masses (except m/z 185) constitute

secondary or tertiary oxidation products of the TMB system (although methyl glyoxal10

also constitutes a primary product). The PAN and acetic acid signals were the greatest

contributors towards the first principal component in all high NOx experiments.

The scores generated for PC2 were characterised by a rapid rise to peak followed by

a similarly steep decay to steady state. The most significant corresponding loadings

were m/z 45 (methyl glyoxal fragment), 73 (methyl glyoxal), 85 (m/z 113 fragment),15

113 (isobaric furanone and δ–dicarbonyl ring opening products), 125 (bicyclic frag-

ment), 135 (3,5-dimethyl benzaldehyde), 214 and 232 (bicyclic nitrate). These com-

pounds constitute the primary oxidation products of the TMB oxidation system. The

m/z 73 and 113 signals were the greatest contributors towards the second principal

component in all high NOx experiments. PC3 accounts for very little of the variance20

within all experiments, only ∼1% and is composed mainly of three significant loadings

corresponding to masses 47, 61 and 113.

The PCA for low NOx Experiment 7 is shown in Fig. 11b. Comparison of the scores

plots with those of Experiment 6 (Fig. 11a) demonstrates the dramatic differences in

the temporal behavior of the oxidation products, with no evidence of an incubation pe-25

riod in the VOC chemistry, i.e. the primary, secondary and tertiary products of oxidation

appear in the system early on in experiment. PC1 for the low NOx system is primarily

composed of the same compounds as in the high NOx system with, however, a different

distribution of abundances. Under low NOx conditions m/z 45, 46, 73, and 111 all show
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significantly lower contributions to the secondary products, although m/z 61 remains

the greatest contributor, suggesting a more dominant role for acetic acid in the absence

of NOx. In contrast to this, PC2 is composed of a slightly different set of masses with

distinctly different abundances. Masses 45, 73, 97 (unidentified), 125, 135 and partic-

ularly 111 all give stronger contributions than in the high NOx experiments. Contrary to5

the high NOx system, the second principal component also contains contributions from

masses 101 (unidentified), 129 (organic acid), 139 (organic peroxide), 169 (O2-bridged

diol) and 185. These findings suggest that although ultimately the same end stage ox-

idation products are reached, during the early stages of the low NOx experiments (i.e.

approximately around the time of nucleation) the system chemistry is somewhat differ-10

ent, generating an organic gas phase matrix that is more strongly dominated by the

primary O2-bridged bicyclics, methyl glyoxal and the m/z 113 compounds. This find-

ing implies therefore that such species may play some role in the formation of aromatic

SOA.

3.10 Identification of compounds contributing to SOA formation and growth15

Although a large fraction of SOA mass remains to be identified, recent studies into the

composition of aerosol formed from aromatic compounds has highlighted the presence

of a discrete set of organic species originating directly from gas phase oxidation of the

precursor. Of these compounds previously identified within the aerosol, several were

measured (or their analogous counterparts were measured) in the gas phase during20

the present study, including 3,5-dimethylbenzaldehyde (Hamilton et al., 2003) from the

ring retaining route, certain of the isobaric m/z 113 furanones (Forstner et al., 1997;

Hamilton et al., 2003) and methyl glyoxal (Kalberer et al., 2004) from the ring open-

ing route, along with the later stage decay products hydroxy acetone, glycoaldehyde

(Cocker III et al., 2001), formic acid and acetic acid (Fisseha et al., 2004).25

For the gas phase species to take part in the SOA formation process, first of all

their presence in the chamber must coincide with or precede the onset of nucleation.

By the time of nucleation in each high NOx experiment, virtually all of the measured
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organic species had appeared within the chamber and hence (where possible) were

available for partitioning. In contrast, a more select group of only 13 spectral features

were present in the mass spectra of both low NOx experiments prior to nucleation, and

hence available to the aerosol. This result implies that the early stage aerosol in the

low NOx systems may be less compositionally diverse.5

Several of the “early” features of the low NOx system were observed within the first

few minutes of experiment: these include, the O2-bridged nitrate (at m/z 232, 214

and 109), diol (m/z 169), and fragment (m/z 125), methyl glyoxal (m/z 73) and the

m/z 113 ring opening compounds. Other notable cases of early appearance include,

the O2-bridged ketone, 3,5-dimethyl benzaldehyde, hydroxy acetic acid, acetic acid10

and the carbonyl marker (m/z 185, 137, 77, 61 and 43, respectively). As some or-

ganic compounds are not easily ionised using the proton transfer reaction technique

(e.g. peroxides) and as detection limits may have excluded some compounds, it is

not possible at present to conclusively assign the nucleating species. However, with

only the above listed compounds measured before nucleation in every experiment, it15

is possible that at least some of these species will be of some importance in the SOA

formation process.

The appearance times of the majority of the oxidation products during low NOx Ex-

periment 5 were slightly later than in the corresponding low NOx Experiment 7, as was

the time of the nucleation event. Although nucleation during Experiment 7 was influ-20

enced by the presence of the inorganic seed particles, the slightly higher [OH] would

have facilitated faster oxidation and therefore earlier SOA formation. A similar trend

was also noted when the VOC/NOx ratio was set to ∼1:2. Here the appearance times

of most of the TMB oxidation products were significantly delayed with respect to all

other experiments. For example, methyl glyoxal (m/z 73) and the m/z 113 compounds25

appeared ∼ 30 minutes later and the signals observed in mass channels representative

of the primary bicyclic compounds (e.g. m/z 214, 109 and 125) a full hour later than in

Experiment 6 (see Table 4 for further comparison). Subsequently methyl glyoxal, the

m/z 113 species.
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As noted above, the low NOx system was characterised by an enhancement in

the yields for certain gas phase species, including several organic acids. Hydroxy

acetic acid, acetic acid and formic acid yields during the low NOx experiments were

on average ∼3.5, 2.2 and 3.7 times larger than during the high NOx experiments of

VOC/NOx∼2:1 and 1.5, 2.8 and 6.8 times larger than during the high NOx Experi-5

ment 3 of VOC/NOx∼1:2. As Experiment 3 was conducted with the same initial TMB

concentration as the two low NOx experiments, yield concentration artefacts suggested

by some authors can be ruled out (Ng et al., 2007).

Considering that these organic acids were available in the gas phase from early on

in all experiments it is possible that their enhanced gas phase yields were at least in10

some part responsible for the observed increase in aerosol yields obtained under low

NOx conditions, thus supplying confirmation to recent reports concerning the impor-

tance of organic acids in the composition of SOA. For example, Fisseha et al. (2004)

have shown that around the point of maximum aerosol number density, organic acids

comprised as much as 43% of aerosol mass. As well as simply being detected in the15

aerosol phase, evidence has come to light implicating that such organic acids may be-

come incorporated into polymer-like structures found within SOA (Gross et al., 2006;

Kalberer et al., 2006). Other findings published recently by various authors indicate

that an acidic environment is crucial for the formation of such polymer species via var-

ious mechanistic pathways (Jang and Kamens, 2001; Czoschke et al., 2003; Limbeck20

et al., 2003; Gao et al., 2004; Tolocka et al., 2004; Northcross and Jang, 2007; Surratt

et al., 2007; Verheggen et al., 2007). However as noted above, no distinct difference

in aerosol yield was obtained between the homogeneous nucleation Experiment 5 and

the acid-seeded Experiment 7. It would seem reasonable to assume therefore that if

enough SO2 was present to cause an acid seed effect and that the observed enhance-25

ment in aerosol yield is related to the enhancement in yields of the gaseous organic

acid, then the levels of acids produced under low NOx conditions were large enough to

facilitate any acid-catalysed polymerisation without the need for the inorganic acid sur-

face. Alternatively, the organic acids may contribute to SOA mass without involvement
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in additional acid-catalysed polymerisation.

With no calibration method or reliable kinetic information available for the primary

bicyclic compounds, it is not possible at present to derive their absolute concentra-

tions or yields. However, pseudo yields may be derived by applying the CIR-TOF-MS

sensitivity for a structurally similar compound, and in this instance m-tolualdehyde was5

employed. Regardless of the absolute values obtained, a ratio of the yields for the

low versus high NOx experiments can be used to infer the importance of the primary

bicyclic species in the SOA formation process. Using data from experiments 6 and 7,

the ratio of pseudo yields obtained for
∑

(m/z 109+214+232) was 1.36, suggesting a

slight enhancement in the bicyclic nitrate under low NOx conditions. The corresponding10

ratios for m/z 169 and 185 were 5.97 and 2.89, respectively, indicating much stronger

production of the O2-bridged diol and ketone in the absence of NOx. Similar yield ratios

were obtained for the measured O2-bridged compounds when comparing high and low

NOx experiments with the same starting concentration of TMB (i.e. Experiments 3 and

7, respectively).15

As with the organic acids, the increased yield of the O2-bridged compounds could

explain the enhanced SOA yield observed under low NOx conditions, particularly when

supported with evidence of their appearance in the chamber prior to nucleation in each

experiment. Furthermore, modelling studies by Stroud et al. (Stroud et al., 2004) and

Johnson et al. (Johnson et al., 2005) have shown that the analogous O2-bridged ni-20

trate (as well as some of the other multi-functional O2-bridged products) in the toluene

system and the O2-bridged ketone in the TMB system are liable to undergo partitioning

to the aerosol phase and make a significant contribution to the simulated SOA mass.

Using the methodology applied by Ng et al. (Ng et al., 2006) it is possible to glean

further information regarding which species contribute to SOA growth via close inspec-25

tion of their time series profiles. The concentration peaks of the O2-bridged nitrate, the

unidentified nitrate at m/z 136 and the isobaric m/z 113 oxygenates roughly coincide

with the nucleation event: indeed it was observed that a shift in the time of peak was

matched by a corresponding shift in the time of nucleation. Plotting the mass of these
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compounds consumed (or lost) after their concentration peak versus SOA mass pro-

duced (up to the point of maximum mass) gives a strong correlation. An example of

this is given in Fig. 12a and b for the nitrate of m/z 136.

The correlation plots of O2-bridged nitrate for experiments conducted under high

NOx conditions are similar to those conducted under low NOx (plots for Experiments 65

and 7, given in Fig. 13a and b). The correlation between mass lost and SOA mass

produced indicates that the O2-bridged nitrate contributes to SOA growth, either by

direct partitioning or via further reaction generating condensable products. A steeper

line fit during the low NOx experiment suggests more rapid contribution in the absence

of NOx (see Fig. 13 for line fit coefficients). The presence of a non-zero intercept on the10

ordinate axis (∼14–24µg m
−3

) implies that a given amount of SOA mass was formed

before any contribution to SOA growth from the O2-bridged nitrate.

Correlation plots for loss of the nitrate at m/z 136 (not shown) and the m/z 113

compounds under low NOx conditions (Fig. 13d) are very similar to those of the bi-

cyclic nitrate. Hence, similarly under low NOx conditions it appears that the nitrate of15

m/z 136 and one or more of the compounds measured at m/z113 contribute to SOA

growth once SOA has formed. Under high NOx the corresponding correlations are

very strong (Figs. 12b and 13c), but as with the bicyclic nitrate the gradient of the line

fit remains steepest under low NOx conditions. For both m/z 136 and 113 under high

NOx conditions, there exists a small non-zero intercept on the abscissa, suggesting20

that either no or very little SOA mass was formed prior to loss of these compounds

from the gas phase. This result suggests that as well as contributing to SOA growth,

the nitrate of m/z 136 and the compounds of m/z 113 may play some role in particle

formation under high NOx conditions.

It would seem from the evidence presented here that the O2-bridged nitrate and25

m/z 113 compounds contribute towards SOA growth, along with compounds such as

the unidentified nitrate (m/z 136), the O2-bridged diol and the lower molecular mass

organic acids. However, evidence obtained from the low NOx experiments suggests

that the presence of other species is required to initiate nucleation. From the discussion
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presented here two likely candidates for the role of “nucleating species” are:

1. O2-brigded ketone. The bicyclic ketone is present in the gas phase before nu-

cleation in all experiments and has a temporal profile that grows in line with SOA

mass. Furthermore, the higher gas phase yield for the bicyclic ketone under low

NOx conditions is matched by an ultimately higher aerosol yield. This suggestion5

also supports modelling studies of Johnson et al., who propose significant parti-

tioning of the O2-bridged ketone to the aerosol phase in their gas-aerosol coupled

box model (Johnson et al., 2005).

2. O2-bridged peroxide. As discussed in Sects. 3.3–3.5 there exists evidence from

this work and from that of previous studies, that organic peroxides may play a10

significant role in SOA formation and growth. Considering the mechanism outlined

in Fig. 6, the most dominant organic peroxide available in the early chamber matrix

is the O2-bridged peroxide (compound M), formed from the parent O2-bridged

peroxy radical (K) reacting with HO2. No direct measurements of the bicyclic

peroxide were made within this study; however from observations of the peroxy15

radical behaviour and from the partitioning theory of equation E2 (see Fig. 3), it is

highly likely that the O2-bridged peroxide would have been present in the chamber

prior to nucleation in each experiment. We discuss the potential role of the O2-

bridged peroxide in SOA formation and growth in more detail in a companion

modelling paper, utilising comparison between the measurements described here20

and modelling results obtained from a chamber box model (Rickard et al., 2008).

4 Conclusions

The work presented here constitutes the most comprehensive set of gas phase mea-

surements made to date describing the unexplored composition and evolution of the

organic oxidation products of an anthropogenic SOA precursor. VOC measurements25
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made by CIR-TOF-MS include gas phase oxidation products with the highest mass ob-

served in aerosol simulation experiments so far. Furthermore, the high mass resolution

available in TOF-MS has helped us to identify certain primary bicyclic oxidation prod-

ucts, measurements of which have not previously been reported in the literature, which

crucially give support to our current understanding of aromatic hydrocarbon oxidation.5

Moreover, compound appearance times, temporal behaviour and enhanced yields un-

der low NOx conditions (that correlate with enhanced SOA yields), imply a role for the

oxygen-bridged species and certain organic acids in the growth of TMB-SOA.

Variation of the initial chamber NOx conditions and time-dependent SOA growth

curves indicate a potential role for various other (multi-functional) gas phase organics10

in SOA growth, which appear at various stages in the oxidation chain. These include,

3,5-dimethylbenzaldehyde, nitrogenated compounds, furanone and dicarbonyl type

species as well as simple low molecular weight organic acids. Along with methyl gly-

oxal, the O2-bridged ketone and the m/z 113 isobaric furanone and δ-dicarbonyl ring

opening products act as “mass conduits” through which a significant portion of mass15

transit occurs. Such strong markers could be used during gas phase measurements

to “fingerprint” SOA formation episodes in the real atmosphere.

References

Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101,20

2000.

Baltensperger, U., Kalberer, M., Dommen, J., Paulsen, D., Alfarra, M. R., Coe, H., Fisseha, R.,

Gascho, A., Gysel, M., Nyeki, S., Sax, M., Steinbacher, M., Prevot, A., Sjogren, S. H. S., and

Weingartner, E.: Secondary organic aerosols from anthropogenic and biogenic precursors,

Faraday Discuss., 130, 265–278, 2005.25

Blake, R. S., Whyte, C., Hughes, C. O., Ellis, A. M., and Monks, P. S.: Demonstration of

Proton-Transfer Reaction Time-of-Flight Mass Spectrometry form Real-Time Analysis of

Trace Volatile Organic Compounds, Analytical Chemistry, 76, 3841–3845, 2003.

11724

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Blake, R. S., Wyche, K. P., Ellis, A. M., and Monks, P. S.: Chemical ionization reaction time-of-

flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition,

I. J. Mass Spectrom., 254(1–2), 85–93, 2006.

Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M. E., Wirtz, K., Martin-Reviejo, M., and Pilling,

M. J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environ-5

mental chamber data, Atmos. Chem. Phys., 5, 623–639, 2005a,

http://www.atmos-chem-phys.net/5/623/2005/.

Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz,

K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Developement of a detailed

chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons,10

Atmos. Chem. Phys., 5, 641–664, 2005b,

http://www.atmos-chem-phys.net/5/641/2005/.

Bohn, B.: Formation of Peroxy Radicals from OH-Toluene Adducts and O2, J. Phys. Chem.,

A105, 6092–6101, 2001.

Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J., Wallington, T. J., and15

Yarwood, G.: The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford

University Press, 2002

Cocker III, D. R., Mader, B. T., Kalberer, M., Flagen, R. C., and Seinfeld, J. H.: The effect

of water on gas-particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-

trimethylbenzene photooxidation systems, Atmos. Environ., 35, 6073–6085, 2001.20

Czoschke, N. M., Myoseon, J., and Kamens, R. M. : Effect of acidic seed on biogenic secondary

organic aerosol growth, Atmos. Environ., 37, 4287–4299, 2003.

de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, M.,

Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton transfer reaction-

mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the at-25

mosphere during the New England Air Quality Study (NEAQS) in 2002, J. Geophys. Res.-

Atmos., 108(D21), 4682, doi:10.1029/2003JD003863, 2003.

Derwent, R. G., Jenkin, M. E., Passant, N. R., and Pilling, M. J.: Photochemical ozone creation

potentials (POCPs) for different emission sources of organic compounds under European

conditions estimated with Master Chemical Mechanism, Atmos. Environ., 41, 2570–2579,30

2007a.

Derwent, R. G., Jenkin, M. E., Passant, N. R., and Pilling, M. J.: Reactivity-based strategies for

photochemical ozone control in Europe, Environ. Sci. Policy, 10, 445–453, 2007b

11725

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/5/623/2005/
http://www.atmos-chem-phys.net/5/641/2005/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Derwent, R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., Simmonds, P. G., Passant, N.

R., Dollard, G. J., Dumitrean, P., and Kent, A.: Photochemical ozone formation in north west

Europe and its control, Atmos. Environ., 37, 1983–1991, 2003.

Dommen, J., Metzger, A., Duplissy, J., Kalberer, M., Alfarra, M. R., Gascho, A., Weingart-

ner, E., Prevot, A. S. H., Verheggen, B., and Baltensperger, U.: Laboratory observation of5

oligomers in the aerosol from isoprene/NOx photooxidation, Geophys. Res. Lett., 33(13),

L13805, 2006.

Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., and

Claeys, M.: Formation of 2-methyl tertrols and 2-methylglyceric acid in secondary organic

aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in am-10

bient PM2.5 samples collected in the eastern United States, Atmos. Environ., 39, 5281–5289,

2005.

Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere,

Academic Press, 2000.

Fisseha, R., Dommen, J., Sax, M., Paulsen, D., Kalberer, M., Maurer, R., Hofler, F., Wein-15

gartner, E., and Baltensperger U.: Identification of Organic Acids in Secondary Organic

Aerosol and the Corresponding Gas Phase from Chamber Experiments, Analytical Chem-

istry, 76(22), 6535–6540, 2004.

Fleming, Z. L., Monks, P. S., Rickard, A. R., Bandy, B. J., Brough, N., Green, T. J., Reeves, C.

E., and Penkett, S. A.: Seasonal dependence of peroxy radical concentrations at a Northern20

hemisphere marine boundary layer site during summer and winter: evidence for radical ac-

tivity in winter, Atmos. Chem. Phys., 6, 5415–5433, 2006b,

http://www.atmos-chem-phys.net/6/5415/2006/.

Fleming, Z. L., Monks, P. S., Rickard, A. R., Heard, D. E., Bloss, W. J., Seakins, P. W., Still, T.

J., Sommariva, R., Pilling, M. J., Morgan, R., Green, T. J., Brough, N., Mills, G. P., Penkett,25

S. A., Lewis, A. C., Lee, J. D., Saiz-Lopez, A., and Plane, J. M. C.: Peroxy radical chemistry

and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002,

Atmos. Chem. Phys., 6, 1–22, 2006a,

http://www.atmos-chem-phys.net/6/1/2006/.

Forstner, H. J. L., Flagan, R. C., and Seinfeld, J. H.: Secondary Organic Aerosol from Pho-30

tooxidation of Aromatic Hydrocarbons: Molecular Composition, Environ. Sci. Technol., 31,

1345–1358, 1997.

Friedrich, R., and Obermeier, A.: Anthropogenic Emissions of Volatile Organic Compounds:

11726

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/6/5415/2006/
http://www.atmos-chem-phys.net/6/1/2006/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Reactive Hydrocarbons in the Atmosphere. H. C. N. London, Academic Press, 2–38, 1999.

Gao, S., Ng, N. L., Keywood, M., Varutbangkul, V., Bahreini, R., Nenes, A., He, J., Yoo, K. Y.,

Beauchamp, J. L., Hodyss, R. P., Flagan, R. C., and Seinfeld, J. H.: Particle Phase Acidity

and Oligomer Formation in Secondary Organic Aerosol, Environ. Sci. Technol., 38, 6582–

6589, 2004.5

Green, T. J., Reeves, C. E., Fleming, Z. L., Brough, N., Rickard, A. R., Bandy, B. J., Monks,

P. S., and Penkett, S. A.: An improved dual channel PERCA instrument for atmospheric

measurements of peroxy radicals, J. Environ. Monitor., 8, 530–536, 2006.

Grosjean, D.: Insitu organic aerosol formation during a smog episode- estimated production

and chemical funstionality, Atmos. Environ., 26A, 953–963, 1992.10

Gross, D. S., Galli, M. E., Kalberer, M., Prevot, A. S. H., Dommen, J., Alfarra, M., Duplissy,

J., Gaeggeler, K., Gascho, A., Metzger, A. and Baltensperger, U.: Real-Time Measurement

of Oligomeric Species in Secondary Organic Aerosol with the Aerosol Time-of-Flight Mass

Spectrometer, Analytical Chemistry, 2006.

Hamilton, J. F., Lewis, A. C., Bloss, C., Wagner, V., Henderson, A. P., Golding, B. T., Wirtz,15

K., Martin-Reviejo, M., and Pilling, M. J.: Measurments of photo-oxidation products from the

reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using compre-

hensive gas chromatography, Atmos. Chem. Phys., 3, 1999–2014, 2003,

http://www.atmos-chem-phys.net/3/1999/2003/.

Hansel, A., and Wisthaler, A.: A Method for Real-Time Detection of PAN, PPN and MPAN in20

Ambient Air, Geophys. Res. Lett., 27(6), 895–898, 2000.

Havers, N., Burba, P., Lambert, J., and Klockow, D.: Spectroscopic Characterization of Humi-

cLike Substances in Airborne Particulate Matter, J. Atmos. Chem., 29, 45–54, 1998.

Holmes, N. S.: A review of particle formation events and growth in the atmosphere in the various

environments and discussion of mechanistic implications, Atmos. Environ., 41, 2183–2201,25

2007.

IPCC: Intergovernmental Panel on Climate Change, Fourth Assessment Report, Climate

Change, 2007.

Izumi, K., Murano, K., Mizuochi, M., and Fukuyama, T.: Aerosol Formation by the Photooxida-

tion of Cyclohexene in the Presence of Nitrogen Oxides, Environ. Sci. Technol., 22, 1207-30

1215, 1988.

Jang, M., and Kamens, R. M.: Atmospheric Secondary Aerosol Formation by Heterogeneous

Reactions of Aldehydes in the Presence of a Sulfuric Acid Aerosol Catalyst, Environ. Sci.

11727

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/3/1999/2003/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Technol., 35, 4758–4766, 2001.

Jang, M., Lee, S., and Kamens, R. M.: Organic aerosol growth by acid-catalyzed heteroge-

neous reactions of octanal in a flow reactor, Atmos. Environ., 37(15), 2125–2138, 2003.

Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development

of the Master Chemical Mechanism MCM v3 (Part B): tropospheric degredation of aromatic5

volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, 2003,

http://www.atmos-chem-phys.net/3/181/2003/.

Johnson, D., Jenkin, M. E., Wirtz, K., and Martin-Reviejo, M.: Simulating the Formation of

Secondary Organic Aerosol from the Photooxidation of Toluene, Environ. Chem., 1, 150–

165, 2004.10

Johnson, D., Jenkin, M. E., Wirtz, K., and Martin-Reviejo, M.: Simulating the Formation of

Secondary Organic Aerosol from the Photooxidation of Aromatic Hydrocarbons, Environ.

Chem., 2, 35–48, 2005.

Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R.,

Weingartner, E., Frankevich, V., Zenobi, R., and Baltensperger, U.: Identification of polymers15

as major components of atmospheric organic aerosols, Science, 303(1659), 1659–1662,

2004.

Kalberer, M., Sax, M., and Samburova, V.: Molecular Size Evolution of Oligomers in Organic

Aerosols Collectes in Urban Atmospheres and Generated in a Smog Chamber, Environ. Sci.

Technol., 40, 5917–5922, 2006.20

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Detener, F. J., Facchini, M. C., Van

Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y.,

Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. L., Tsigaridis, K., Vignati, E.,

Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review,

Atmos. Chem. Phys., 5, 1053–1123, 2005,25

http://www.atmos-chem-phys.net/5/1053/2005/.

Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.: Secondary

Organic Carbon and Aerosol Yields from the Irradiations of Isoprene and r-Pinene in the

Presence of NOx and SO2, Environ. Sci. Technol., 40(12), 3807–3812, 2006.

Kleindienst, T. E., Smith, D. F., Li, W., Edney, E. O., Driscoll, D. J., Speer, R. E., and Weathers,30

W. S.: Secondary organic aerosol formation from the oxidation of aromatic hydrocarbon in

the presence of dry submicron ammonium sulfate aerosol, Atmos. Environ., 33, 3669–3681,

1999.

11728

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/3/181/2003/
http://www.atmos-chem-phys.net/5/1053/2005/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Limbeck, A., Kulmala, M., and Puxbaum, H.: Secondary organic aerosol formation in the at-

mosphere via heterogeneous reaction of gaseous isoprene on acid particles, Geophys. Res.

Lett., 30(19), 1996, doi:10.1029/2003GL017738, 2003.

Lindinger, W., Hirber, J., and Paretzke, H.: An ion/molecule-reaction mass spectrometer used

for on-line trace gas analysis, International Journal of Mass Spectrometry and Ion Processes,5

129, 79–88, 1993.

Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc. Rev., 34(5), 376–

395, 2005.

Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillett, R. W., Galbally, I. E., and

Meyer, C. P.: Fundamental ozone photochemistry in the remote marine boundary layer: The10

SOAPEX experiment, measurement and theory, Atmos. Environ., 32(21), 3647–3664, 1998.

Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.:

Secondary Organic Aerosol Fromation from m-xylene, toluene, and benzene, Atmos. Chem.

Phys., 7, 4085–4126, 2007,

http://www.atmos-chem-phys.net/7/4085/2007/.15

Ng, N. L., Kroll, J. H., Keywood, M., Bahreini, R., Varutbangkul, V., Flagan, R. C., and Sein-

feld, J. H.: Contribution of First- versus Second-Generation Products to Secondary Organic

Aerosols Formed in the Oxidation of Biogenic Hydrocarbons, Environ. Sci. Technol., 40,

2283–2297, 2006.

Northcross, A. L., and Jang, M.: Heterogeneous SOA yield from ozonolysis of monoterpenes20

in the presence of inorganic acid, Atmos. Environ., 41(7), 1483–1493, 2007.

Odum, J. R.,Hoffman, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.:

Gas/Particle Partitioning and Secondary Organic Aerosol Yields, Environ. Sci. Technol., 30,

2580–2585, 1996.

Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H.: The Atmo-25

spheric Aerosol-Formation Potential of Whole Gasoline Vapor, Science, 276, 96–99, 1997.

Parker, A. E. Measurements of Peroxy Radicals Chemistry and Transport in the Atmosphere.

Ph.D Thesis, Department of Chemistry, Leicester, University of Leicester, 2007.

Paulsen, D., Dommen, J., Kalberer, M., Prevot, A. S. H., Richter, R., Sax, M., Steinbacher, M.,

Weingartner, E., and Baltensperger, U.: Secondary organic aerosol formation by irradiation30

of 1,3,5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry

and physics, Environ. Sci. Technol., 39(8), 2668–2678, 2005.

Sax, M., Zenobi, R., Baltensperger, U., and Kalberer, M.: Time Resolved Infrared Spectro-

11729

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/7/4085/2007/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

scopic Analysis of Aerosol Formed by Photooxidation of 1,3,5-Trimethylbenzene and α-

Pinene, Aerosol Science and Technology, 39, 822–830, 2005.

Seinfeld, J. H., and Pankow, J. F.: Organic Atmospheric Particulate Material, Annual Review of

Physical Chemistry, 54, 121–140, 2003.

Smith, D. F., Kleindienst, T. E., and McIver, C. D.: Primary Production Distributions from the5

Reactions of OH with m-,p-Xylene, 1,2,4- and 1,3,5-Trimethylbenzene, J. Atmos. Chem., 34,

339–364, 1999.

Song, C., Kwangsam, N., and Cocker, D. R.: Impact of the Hydrocarbon to NOx Ratio on

Secondary Organic Aerosol Formation, Environ. Sci. Technol., 39, 3143–3149, 2005.

Stern, J. E., Flagan, R. C., Grosjean, D., and Seinfeld, J. H.: Aerosol Formation and Growth in10

Atmospheric Aromatic Hydrocarbon Oxidation, Environ. Sci. Technol., 21(12), 1224–1231,

1987.

Stroud, C. A., Makar, P. A., Michelangeli, D. V., Mozurkewich, M., Hastie, D. R., Barbu, A., and

Humble, J.: Simulating Organic Aerosol Formation during the Photoxidation of Toluene/NOx

Mixtures: Comparing the Equilibrium and Kinetic Assumptions, Environ. Sci. Technol., 38,15

1471–1479, 2004.

Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O.,

and Seinfeld, J. H.: Effect of acidity on secondary organic aerosol formation from isoprene,

Environ. Sci. Technol., 41(15), 5363–5369, 2007.

Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hilderbrandt, L., Sorooshian, A., Szmigielski,20

R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagen, R., and Seinfeld, J. H.: Chemical

Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, J.

Phys. Chem. A, 110, 9665–9690, 2006.

Taira, M., and Yukio, K.: Continuous Generation System for Low-Concentration Gaseous Ni-

trous Acid, Analytical Chemistry, 62, 630–633, 1990.25

Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., and Johnston, M. V.: For-

mation of Oligomers in Secondary Organic Aerosol, Environ. Sci. Technol., 38, 1428–1434,

2004.

Tsigaridis, K., and Kanakidou, M.: Global modelling of secondary organic aerosol in the tro-

poshere: A sensitivity analysis, Atmos. Chem. Phys. Discuss., 3, 2879–2929, 2003,30

http://www.atmos-chem-phys-discuss.net/3/2879/2003/.

Verheggen, B., Mozurkewich, M., Caffrey, P., Frick, G., Hoppel, W., and Sullivan, W.: alpha-

Pinene oxidation in the presence of seed aerosol: Estimates of nucleation rates, growth

11730

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys-discuss.net/3/2879/2003/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

rates, and yield, Environ. Sci. Technol., 41(17), 6046–6051, 2007.

Wyche, K. P., Blake, R. S., Ellis, A. M., Monks, P. S., Brauers, T., Koppman, R., and Apel,

E.: Performance of a Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-

TOF-MS) for the Measurement of Atmospherically Significant Oxygenated Volatile Organic

Compounds, Atmos. Chem. Phys.,7, 609–620, 2007.5

Yu, J., Jeffries, H. E., and Sexton, K. G.: Atmospheric Photooxidation of Alkylbenzenes-I. Car-

bonyl Product Analysis, Atmos. Environ., 31(15), 2261–2280, 1997.

11731

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Summary of the major gas phase parameters for Experiments 1–7 along with CIR-

TOF-MS conditions applied for VOC monitoring.

Exp. Initial [VOC]/ Initial [NO]/ Initial [NOb]/ VOC/NOx Relative Exp. Duration
a
/ Estimated [OH]

b
/ CIR-MS Conditions

c

No. ppbV ppbV ppbV Ratio Humidity/ Mins. pptV (E/N)/Td

%

1 560 129 141 2.07 52 539 0.04 120/170

2 1.180 535 0 2.21 49 521 0.02 120/170

3 143 134 129 0.54 48 596 0.06 140/140

4 554 135 129 2.10 52 521 0.02 120/150

5 151 Continuous ∼15.10 62 488 0.05 90/150

HONO input
d

6 597 135 130 2.25 53 462 0.03 90/190

7 166 Continuous ∼16.60 50 549 0.06 90/190

HONO input
d

a
Experiment duration taken from the time that chamber lights were switched on.

b
Estimated average [OH] over the entire Experiment.

cE/N conditions of the centre reaction cell/CDC ramping region.
d

HONO injected continuously throughout experiment, chamber concentration ∼10 ppbV.
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Table 2. Summary of the aerosol phase parameter for experiments 1–7.

Exp. CPC Nuc. SMPS [No.] Half Max. Max. [No.]
c

Time Max. [No.] [NO]
c

[NO]→0 Time
d

Aerosol Aerosol SOA Yield

No. T
a

Nuc. T
b

/Mins. /#cm-3 /Mins. Nucleation/ /Mins. Diameter (Time) Mass (Time) /%

/Mins. /Mins. ppbV /nm (Mins.) /µg m
−3

(Mins.)

1 108 108 183 580 225 16.2 152 387 (357) 47 (465) 1.94

2 145 149 167 1099 228 6.2 152–169
e

663 (505) 182 (433) 7.47

3 400 420 543 406 609 1.4 325 155 (618) 2 (621) 0.29

4 188 193 226 491 256 1.2 157 507 (484) 36 (415) 2.29

5 50 58 94 407 163 0.4 –
f

462 (513) 33 (504) 7.87

6 184 182 218 494 257 1.4 162 484 (487) 31 (358) 1.79

7 22 28 43 2216 76 0.4 –
f

404 (550) 45 (487) 6.21

a
Nucleation time obtained using data from CPC (particles of diameter ≥3 nm).

b
Nucleation time obtained using data from SMPS (particles of diameter ≥15 nm).

c
Data obtained from SMPS.

d
Defined as the time at which [NO] reaches 2 ppbV.

e
NO analyser off line, [NO] dropped below 2 ppbV during this time.

f
Low NOx experiment, [NO] <1 ppbV throughout Experiment.
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Table 3. Key TMB, O3 and NO2 parameters for Experiments 1–7.

Exp. HC Consumed/ Peak d[TMB]/dt Peak [O3] Time Peak [O3] Peak [NO2] Peak [NO2]

No. % /Mins. /Mins. /ppbV Time/Mins. /ppbV

1 89.4 130 278 274.1 103 212.7

2 44.3 120 259 365.2 137 446.2

3 91.5 120 600 199.1 188 187.4

4 63.5 110 287 230.8 104 196.4

5 82.2 – 489 43.8 – –

6 62.1 110 284 226.3 110 200.9

7 92.5 – 551 58.9 – –
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Table 4. Most major VOC contributors to the gas phase as measured by CIR-TOF-MS. Mea-

sured m/z, approximate peak signal intensity, appearance time and tentative assignments

are included. MCM species names are included and can be used for navigation around the

MCMv3.1 TMB degradation scheme via the MCM website (http://mcm.leeds.ac.uk/MCM).

Appearance Time/Minutes

Measured m/z Peak Signal/ncps Tentative Assignment

Name (MCM designation)/(Fig. 6 identifier)

Mass/Da Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

232.20 200 1,3,5-Trimethyl-4-nitrooxy-6,7-

dioxa-bicyclo[3.2.1]oct-2-en-8-ol

(TM135BPNO3)/(L)

231.20 120 90 n/m 51 36 51 3

214.15 200 TM135BPNO3 Fragment: MH
+
[– H2O] 213.19 96 100 87 81 33 12 27

185.20 300
8-Hydroxy-1,3,5-trimethyl-6,7-

dioxa-bicyclo[3.2.1]oct-3-en-2-one

(TM135OBPOH)/(P)

184.19
130 130 288

∗
108 24 60 15

2-Methyl-3-(1-methyl-3-oxo-but-1-enyl)-

oxirane-2-carboxylic acid (TM135MUO2H)

184.19

169.22 70
1,3,5-Trimethyl-6,7-dioxa-bicyclo[3.2.1]oct-

3-ene-2,8-diol (TM135BP2OH)/(O)

Fragment: MH
+
[–H2O]

169.20
36 93 n/m 69 36 42 3

2-Methyl-3-(1-methyl-3-oxo-but-1-enyl)-

oxirane-2-carbaldehyde (TM135OXMUC)

168.19

167.18 120 3,5-Dimethyl-benzenecarboperoxoic acid

(TMBCO3H)

166.18 147 177 n/m 81 114 63 n/m

157.20 150 5-Hydroxy-4-methyl-hept-3-ene-2,6-dione

(C7M2CO5OH)

156.18 150 126 240 99 102 66 24

155.18 120 4-Methyl-hept-4-ene-2,3,6-trione

(C7M3CO)

154.17 453
∗

171 n/m 111 183 129 30
∗

n/a = Mass not applicable
n/m = Compound not measured during specific Experiment
∗
= Weak signal, appearance time not reported
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Table 4. Continued.

Appearance Time/Minutes

Measured m/z Peak Signal/ncps Tentative Assignment

Name (MCM designation)/(Fig. 6 identifier)

Mass/Da Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

153.22 100 (3,5-Dimethyl-phenyl)-methyl-hydroperoxide (TM-

BOOH)

152.20

151.17 160 3,5-dimethylbenzoic acid (TMBCO2H) 150.18 105 84 465
∗

72 135 60 39
∗

145.17 50

2-Methyl-4-oxo-pent-2-enoic acid (C5CODBCO3H) 144.13

2-Hydroxy-2-methyl-3,4-dioxo-pentanal

(C6CO3MOH)

144.13

2-Oxo-propionic acid 1-methyl-2-oxo-ethyl ester

(C23O3MCHO)

144.13

1-(3-Methyl-3-vinyl-oxiranyl)-ethanone

(EPXMALKT)

144.13

143.19 120 Unidentified n/a 366
∗ ∗

406
∗

129 78 75 30
∗

141.18 140 Unidentified n/a 126 111
∗

132 138 75 60

139.18 400 3,5-Dimethyl-phenyl-hydroperoxide (DMPHOOH)
138.16

309
∗

78
∗

51 3 66 3

137.19 220

2,4,6-trimethyl phenol (TM135BZOL)/(D) 136.19

81 75 96 54
∗

15 15
(3,5-Dimethyl-phenyl)-methanol (TMBOH) 136.19

m-xyloquinone 136.15

136.09 400 Unidentified nitrate n/a 114 132 141 87 45 96 n/m

135.18 1000

3,5-dimethyl benzaldehyde (TMBCHO)/(W) 134.18

63 78 93 57 30 39 182-Hydroxy-2-methyl-3-oxo-propaneperoxoic acid

(CHOMOHCO3H)

134.09
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Table 4. Continued.

Appearance Time/Minutes

Measured m/z Peak Signal/ncps Tentative Assignment

Name (MCM designation)/(Fig. 6 identifier)

Mass/Da Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

2-Hydroxy-3-oxo-butaneperoxoic acid

(CO2H3CO3H)

134.09

Malic acid 134.09

129.17 500
2-Methyl-4-oxo-pent-2-enoic acid

(C5CODBCO2H)

128.12
84 93 168 66 3 72 33

3-Acetyl-2-methyl-oxirane-2-carbaldehyde

(EXPMALKT)

128.12

127.17 300 Related to Bicyclic Signals n/a 90 90 144 96 99 57 27

125.15 1200 Bicyclic Fragment: [C6H3O3]H
+

125.10 99 102 69 45 3 33 3

123.17 400 Unidentified
∗ ∗ ∗

183
∗ ∗ ∗ ∗ ∗

119.18 200
2-Hydroperoxy-2-methyl-malonaldehyde

(C3MDIALOOH)

118.09
90 75

∗
123 33 69 3

∗

Succinic acid 118.09

117.14 140 3-Hydroxy-pentane-2,4-dione

(C5CO243OH)

116.12 174 129 183 84 42 81 12

115.13 250 Pentane-2,3,4-trione

(C5CO234)

114.10 153 108 183 111 18 3 33
∗

113.13 7400

Methyl maleic anhydride

(MMALANHY)/(AF)

112.08

15 15 33 15 9 3 6

2-methyl-4-oxo-2-pentenal

(C5MDICARB)/(R)

112.13

3,5-dimethyl-3(2H)-2-furanone/(AF) 112.13

3,5-dimethyl-5(2H)-2-furanone

(MXFUONE)/(S)

112.13
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Table 4. Continued.

Appearance Time/Minutes

Measured m/z Peak Signal/ncps Tentative Assignment

Name (MCM designation)/(Fig. 6 identifier)

Mass/Da Exp 1 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

111.12 6000 3 methyl-5-methylidene-5-(2H)

furanone

110.04 72 60 105 66 15 21 39

109.15 400 TM135BPNO3 Fragment:

MH
+
[– O.NO3.3(CH3)]

109.10 84 75 51 60 3 54 3

103.11 150 2-Hydroxy-2-methyl-malonaldehyde

(C3MDIALOH)

102.09 150 126
∗

126 93 12 27

101.13 400 2,3-dioxobutanal 100.7 126 90 129 84 60 12 15

99.12 160 Unidentified n/a 183 171 n/m 177
∗

366 99 30
∗

97.13 1000 Unidentified n/a 72 78 102 81 51 9 33

87.10 1200 Related to Bicyclic Signals n/a 117 75 123 90 42 12 24

85.11 500 m/z 113 Fragment: MH
+
[-CO]

Butenedial

85.13 84.07 84 63 81 51 63 33 27

77.07 1400 Hydroxy acetic acid

(CH3CO3H)

76.05 99 135 168 90 36 63 15

75.09 400
Hydroxyacetone 74.08

141 66 147 105 72 66 3

Oxo-acetic acid

(HCOCO2H)

74.04

73.07 1600 Methyl glyoxal

(MGLYOX)/(Q)

72.06 36 30 39 15 9 36 15

61.07 6000

Acetic Acid (CH3CO2H)/(X) 60.05

36 72 60 90 12 18 3Glycoaldehyde 60.50

Pyruvic Acid Fragment 88.06

Lactic Acid Fragment 90.08
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Table 4. Continued.

Appearance Time/Minutes

Measured m/z Peak Signal/ncps Tentative Assignment

Name (MCM designation)/(Fig. 6 identifier)

Mass/Da Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

59.08 1200 Acetone 58.08 n/m n/m 174 51 72
∗

207 27

57.10 1000 Carbonyl/Hydrocarbon Fragment:

[C3H5O
+
] / [C4H

+

9 ]

57.07 / 57.12 225 141 n/m 147 114 183 51

47.01 600 Formic Acid/(Y) 46.03 198 105 69 72 72 252
∗

46.01 5000 PAN Fragment: [NO
+

2 ] 46.01 102 105 105 72 93 72 51

45.06 3500 Me. Glyoxal Fragment

(CH3OOH)/(AD)

44.05 63 42 93 48 99 45 12

43.04 5000 Carbonyl/Hydrocarbon Fragment:

[C2H3O
+
] / [C3H

+

7 ]

43.05 / 43.09 63 18 69 57 3 3 0

33.05 5000 Methanol (CH3OH)/(AA) 32.04 105 141 399
∗

106 132 153 90

31.03 1000 Formaldehyde (HCHO)/(AB) 30.03 264 159 345
∗

132
∗

243
∗

249 27
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Table A1. CIR-TOF-MS calibration details. The measured compound is given along with the

method employed for calibration, the relative humidity of the sample matrix during calibration

and, where appropriate the surrogate compound employed. The instrument sensitivity to each

given compound is provided along with an uncertainty/error estimate for the measurement.

Target Method Relative Humidity/% Calibration Compound Sensitivity
a
/ncps ppbV

−1
Calibration Error

b
/%

2,4,6-trimethyl phenol Gas Standard
c

0 Phenol 226.35–372.54 11.04–21.78

3,5-dimethyl benzaldehyde Gas Standard 0 m-tolualdehyde 98.65–145.35 9.35–17.20

O2 Bridged Nitrate (TM135BPNO3)
d

Gas Standard 0 m-tolualdehyde 98.65–145.35 9.35–17.20

O2 Bridged Diol (TM135BP2OH)
d

Gas Standard 0 m-tolualdehyde 98.65–145.35 9.35–17.20

O2 Bridged Ketone (TM135OBPOH)
d

Gas Standard 0 m-tolualdehyde 98.65–145.35 9.35–17.20

Bicyclic Marker
d

Gas Standard 0 m-tolualdehyde 98.65–145.35 9.35–17.20

m/z 129 Permeation Tube 50 Methacrolein 9.46–19.27 3.95–4.20

Unsaturated Anhydrides (m/z 111 & 113) Teflon Bag
e

50 Citraconic Anhydride 32.53–119.90 27.60–27.63

Hydroxy Acetic Acid Permeation Tube
f

50 Acetic Acid 17.43–45.93 2.93–5.96

Hydroxy Acetone Permeation Tube 50 Acetone 55.60–104.04 3.25–4.87

Methyl Glyoxal Permeation Tube 50 Isoprene 9.46–19.27 6.53–11.56

Acetic Acid Permeation Tube 50 Acetic Acid 17.43–45.93 2.93–5.96

Acetone Permeation Tube 50 Acetone 55.60–104.04 3.25–4.87

Formic Acid Permeation Tube 50 Formic Acid 5.14–9.52 3.77–6.78

Acetaldehyde Permeation Tube 50 Acetaldehyde 57.01–107.33 3.17–3.31

Carbonyl Marker Permeation Tube 50 Acetone 55.60–104.04 3.25–4.87

Methanol Permeation Tube 50 Methanol 22.25–46.06 3/94–6.76

a
Instrument sensitivity is given as a range covering all drift cell conditions employed during the study (see Table 1 for

further information).
b

Measurement uncertainty/error is given as a range covering all drift cell conditions employed during the study (see
Table 1 for further information).
c

Gas standards provided by Air Environmental Inc. (US) and courtesy of PSI. Compound mixing ratio accuracy: 10%.
d

Calibrated values used only to calculate “pseudo” VOC yields.
e

Calibration conducted by injecting liquid citraconic anhydride (Sigma Aldrich, 99%) into an 80 L Teflon sample bag
(SKC, Ltd). Sticking factors employed to adjust for deposition/wall loss.
f
Permeation tubes supplied by Ecoscientific (UK) and Vici Inc. (US). Compound emission rate accuracy: 2.02–11.24%.
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Table A2. VOC yields for various compounds measured by CIR-TOF-MS during Experi-

ments 1–7.

Volatile Organic Compound Product Yield / %

Experiment 1 2 3 4 5 6 7

Compound

O2 Bridged Nitrate (TM135BPNO3) 1.8 2.8 2.7 2.9 4.3 3.7 5.1

O2 Bridged Ketone (TM135OBPOH) 0.7 0.6 1.0 1.1 3.0 0.8 2.3

O2 Bridged Diol (TM13BP2OH) 0.2 0.3 n/m 0.4 0.8 0.2 0.9

3,5-dimethylphenol

3,5-dimethyl benzaldehyde 1.3 2.5 1.6 2.6 1.9 2.7 2.2

m/z 129 5.0 4.4 11.8 18.6 29.5 8.4 12.9

m/z 113 15.6 46.6 37.2 38.4 33.3 39.6 26.5

3 Me. 5-methyl-5-(2H) furanone 5.7 10.3 8.8 7.9 3.6 8.1 8.9

Hydroxy-acetone 0.6 0.5 1.1 1.0 1.5 0.6 1.2

Hydroxy acetic acid 3.1 n/m 2.0 3.1 18.6 5.9 8.3

Methyl glyoxal 13.5 24.3 31.1 28.8 21.3 22.5 21.0

Acetic acid 19.5 14.7 11.9 10.0 33.1 16.0 32.2

Acetone n/m 0.4 3.3 1.4 3.1 1.3 1.5

Formic acid 11.51 13.1 32.5 15.3 48.5 10.9 n/m

Carbonyls 32.1 44.7 51.2 26.2 17.8 24.9 41.2

Methanol 1.7 1.0 1.0 0.7 2.8 1.4 2.6

n/m: Not measured
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Fig. 1. Temporal evolution of the major gas phase components of the 1,3,5-TMB photooxidation

system during (a) Experiment 6 (VOC/NOx∼2:1), (b) Experiment 2 (VOC/NOx∼2:1, NO only),

(c) Experiment 3 (VOC/NOx∼1:2) and (d) Experiment 7 (VOC/NOx∼17:1). In each plot the left

ordinate axis gives the concentration of the inorganic components (NO, NO2 and O3) while the

right axis gives the concentration of TMB.
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Fig. 2. Temporal evolution of the aerosol number density (ND), geometric mean diam-

eter (GMD) and volume concentration (Vol) within the chamber during (a) Experiment 6

(VOC/NOx∼2:1), (b) Experiment 2 (VOC/NOx∼2:1, NO only), (c) Experiment 3 (VOC/NOx∼1:2)

and (d) Experiment 7 (VOC/NOx∼17:1).
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Fig. 3. Theoretical variation in partitioning of RO2 species with evolving chamber [NO] for

(a) high NOx conditions and (b) low NOx conditions. Φ gives the percentage of RO2 species

forming peroxides (see Eq. 2 and text for further details).

11744

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

150

100

50

0Σ(H
O

2
 +

 R
O

2
) 

/ 
p

p
tV

4003002001000

Time / Minutes

40

30

20

10

0

[O
3
] 

/ 
p

p
b

V

 

∑

Δ μ

Δ
μ

Δ

Fig. 4. Temporal evolution of the sum of hydro and organic peroxy radicals (i.e.
∑

(HO2+RO2))

recorded by the PERCA during the low NOx Experiment 5 (VOC/NOx ratio ∼15:1).

11745

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11685/2008/acpd-8-11685-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11685–11754, 2008

SOA Formation from

1,3,5-TMB

K. P. Wyche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Σ
∑

 

30

20

10

0
2000150010005000

50

40

30

20

10

0
8006004002000

120
80
40
0

0.8
0.6
0.4
0.2
0.0

Δ[TMB] / μg m
-3

ΔM
S

O
A
 /
 μg

 m
-3  [
N

O
] 
/ 
p
p
b

V
[N

O
] 
/ 
p

p
b
V

 

 

Δ

a 

b 

Fig. 5. SOA growth curves for (a) Experiment 6 (high NOx experiment, VOC/NOx∼2:1) and (b)

Experiment 7 (low NOx experiment, VOC/NOx∼17:1). ∆[TMB]=reacted mass of TMB following

initiation of the oxidation chemistry.
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Fig. 6. Mechanism summary of OH radical-induced photooxidation of 1,3,5-trimethylbenzene.

Key primary and secondary product formation shown, branching ratios are taken from MCMv3.1

(http://mcm.leeds.ac.uk/mcm) (see text).
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Fig. 7. Comparison of CIR-MS mass spectra recorded 400 minutes after the start of exper-

iments for (a) Experiment 6 (VOC/NOx∼2:1), (b) Experiment 2 (VOC/NOx∼2:1, NO only), (c)

Experiment 3 (VOC/NOx∼1:2) and (d) Experiment 7 (low NOx, VOC/NOx∼17:1). Each mass

spectrum corresponds to data accumulation for a ten-minute period.
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Figure 8 Evolution of the gas phase organic species during experiment 6 

Fig. 8. Evolution of the gas phase organic species during Experiment 6 (VOC/NOx∼2:1).
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Fig. 9. Temporal evolution of certain key VOCs during the photooxidation of 1,3,5-TMB in Ex-

periment 6 (VOC/NOx 2:1). (a) (1) O2-bridged nitrate, (2) O2-bridged ketone (on right axis),

(3) O2-bridged diol fragment, (b) (4) methyl glyoxal, (5) m/z 113-isobaric ring opening prod-

ucts citraconic anhydride, 3,5-dimethyl-3(2H)-2-furanone, 3,5- dimethyl-5(2H)-2-furanone and

2-methyl-4-oxo-2-pentenal,, (6) 3 methyl-5-methylidene-5-(2H)-furanone, (c) (7) m/z 43: car-

bonyl marker (left axis), (8) 2-methyl-4-oxo-pent-2-enoic acid and 3-acetyl- 2-methyl-oxirane-2-

carbaldehyde (first right axis), (9) hydroxy acetone (second right axis) and (d) (10) acetic acid,

(11) formic acid, (12) hydroxy acetic acid.
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Fig. 10. Temporal evolution of certain key VOCs during the photooxidation of 1,3,5-TMB during

experiment 7 (VOC/NOx∼17:1). Compound numbering is the same as that used in the caption

for Fig. 9. Note: in figure (a) signal of O2-bridged diol (3) is given on the right axis and in figure

(d) concentration of hydroxyl acetic acid (10) is given on the left axis.
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Fig. 11. Principal component analysis conducted on VOC data for (a) Experiment 6 (high

NOx, VOC/NOx∼2:1) and (b) Experiment 7 (low NOx, VOC/NOx∼17:1). Percentage vari-

ance captured: PC1=78.0%, PC2=19.7% and PC3=1.9% for Experiment 6 and PC1=90.0%,

PC2=8.0% and PC3=0.6% for Experiment 7.
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Fig. 12. (a) Temporal evolution of the unidentified nitrate of m/z 136 (solid blue line) during

Experiment 6 (high NOx). Plot includes total amount of m/z 136 formed (dashed green line)

and total amount lost (red circles). Also included is an overlaid profile of SOA mass (solid black

line). (b) Correlation between m/z 136 mass lost and SOA mass formed (up to the point of

peak mass) for Experiment 6. Line fit: y=2.21 (±0.04)×−0.21 (±0.35), r2
=0.94. Coefficients

quoted±one standard deviation.
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Fig. 13. Correlation between mass of VOC lost and mass of SOA formed (up to the point of

peak mass), for the O2-bridged nitrate for (a) Experiment 6 (high NOx) and (b) Experiment 7

(low NOx) and for the m/z 113 ring opening compounds for (c) Experiment 6 and (d) Experi-

ment 7. Correlation coefficients quoted±one standard deviation.
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