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Abstract

In this study, two different types of assays were used to quantitatively measure the re-

dox activity of PM and to examine its intrinsic toxicity: 1) in vitro exposure to rat alveolar

macrophage (AM) cells using dichlorofluorescin diacetate (DCFH-DA) as the fluores-

cent probe (macrophage ROS assay), and: 2) consumption of dithiothreitol (DTT) in5

a cell-free system (DTT assay). Coarse (PM10−2.5), accumulation (PM2.5−0.25), and

quasi-ultrafine (quasi-UF, PM0.25) mode particles were collected weekly at five sam-

pling sites in the Los Angeles-Long Beach Harbor and at one site near the University

of Southern California campus (urban site). All PM samples were analyzed for organic

(total and water-soluble) and elemental carbon, organic species, inorganic ions, and10

total and water-soluble elements. Quasi-UF mode particles showed the highest redox

activity at all Long Beach sites (on both a per-mass and per-air volume basis). A sig-

nificant association (R
2
=0.61) was observed between the two assays, indicating that

macrophage ROS and DTT levels are affected at least partially by similar PM species.

Relatively small variation was observed for the DTT measurements across all size15

fractions and sites, whereas macrophage ROS levels showed more significant ranges

across the three different particle size modes and throughout the sites (coefficients of

variation, or CVs, were 0.35, 0.24 and 0.53 for quasi-UF, accumulation, and coarse

mode particles, respectively). Association between the PM constituents and the redox

activity was further investigated using multiple linear regression models. The results20

showed that OC was the most important component influencing the DTT activity of

PM samples. The variability of macrophage ROS was explained by changes in OC

concentrations and water-soluble vanadium (probably originating from ship emissions

– bunker oil combustion). The multiple regression models were used to predict the av-

erage diurnal macrophage ROS and DTT levels as a function of the OC concentration25

at one of the sampling sites.
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1 Introduction

Epidemiological and toxicological studies have shown a positive association between

adverse health effects and exposure to fine and ultrafine particulate matter (PM) (Dock-

ery et al., 1993; Pope et al., 2002; Pope et al., 2004). Atmospheric PM and its com-

ponents have the potential to interact with airway epithelial cells and macrophages to5

generate reactive oxygen species (ROS), which have been linked to respiratory inflam-

mation and other adverse health effects (Cho et al., 2005; Nel, 2005). A variety of

methods in both cell-free and cell-based systems have been employed to examine the

oxidative stress activity of PM. Cho et al. (2005) demonstrated that the dithiothreitol

(DTT) assay can provide a good measure of the redox activity of particles by deter-10

mining superoxide radical formation as the initial step in the generation of ROS. Li et

al. (2003) showed that the consumption rate of DTT by PM samples is directly related

to the particles’ ability to induce a stress protein in cells. Other types of in vitro assays

are able to assess the ability of PM (or PM extracts) to stimulate cellular generation of

ROS in macrophage cells (Sioutas et al., 2005). Despite recent advancements in ROS15

analysis, the aerosol components driving the formation of ROS remain unclear. PM

constituents that have been considered as major driving forces for ROS formation in-

clude organic species, transition metals, and polycyclic aromatic hydrocarbons (PAHs)

(Cho et al., 2005; Li et al., 2003). Due to the complex chemical compositions of PM,

the specific role of different particle species in inducing oxidative stress, whether in20

non-cellular or cellular assays, is still not well understood and could be assays and/or

method dependent.

The link between PM components and their toxicity provides a particularly useful

metric for aerosol monitoring, as there is wide agreement among the air pollution com-

munity that not all PM species are equally toxic. Ntziachristos et al. (2007a) demon-25

strated that the DTT activity could be attributed to PAHs via the formation of quinones.

Geller et al. (2006) investigated the toxicity of PM emissions from gasoline and diesel

passenger cars and demonstrated that a link exists between redox activity and chem-

11645

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11643–11672, 2008

Redox activity of

size-segregated PM

samples

S. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

ical species including organic carbon (OC), low molecular weight PAHs and trace ele-

ments such as nickel and zinc. Water soluble metals could also be biologically active

and act as catalysts to favor the formation of ROS (Mudway et al., 2004). However,

there are limited studies examining the relationships between the water-soluble PM

content and its underlying toxic response.5

Efforts have also been made to associate specific sources of PM to oxidative stress

(Zhang et al., 2008
1
). However, toxicological studies on the adverse health effects of

PM have focused on data collected at limited sampling sites dominated by only a few

emission sources (e.g. vehicular emissions) (Li et al., 2003), or from laboratory gen-

erated aerosols (Su et al., 2008). There are few works conducted to-date examining10

the toxicity of PM collected at urban areas of interest, including locations impacted

by nearby airports, harbors, power plants and refineries. The present study was con-

ducted in the Los Angeles-Long Beach port, which represents the busiest harbor in the

US and the fifth most important port complex in the world in terms of commercial activ-

ity. This is an area impacted by various sources, including several types of industries,15

refineries, as well as vehicular and marine vessels. The current work is an extension

of a previous study conducted by Ntziachristos et al. (2007a), which addressed re-

dox activity and chemical speciation of size-fractionated PM in urban and rural areas

of the Los Angeles Basin. In addition to the DTT assay employed in Ntziachristos et

al. (2007a), a macrophage-based ROS assay was also used, and associations be-20

tween PM components (including water-soluble elements and water-soluble OC) and

redox activities were investigated.

1
Zhang, Y., Schauer, J. J., Shafer, M. M., Hannigan, M. P., and Dutton, S. J.: Source Appor-

tionment of in vitro Reactive Oxygen Species Bioassay Activity from Atmospheric Particulate

Matter., submitted to Environ. Sci. Technol., 2008.
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2 Experimental methods

2.1 Site locations

Size-segregated PM samples were collected at four sampling locations in the Los

Angeles-Long Beach port area (SITE 1–SITE 4), at a background location near the

harbor of the Los Angeles port (SITE 5, the closest to the oceanfront; see Fig. S1 in5

the supporting information document for a map of the sampling sites), and at an urban

site (SITE 6) at the University of Southern California (USC) campus. Samples were

collected daily on weekdays (Monday to Friday) over a 7-week period from February

to May of 2007. A detailed description of the sampling and chemical analysis methods

is described elsewhere (Arhami et al., 2008
2
); only a brief summary is reported here.10

The six sampling sites were selected to capture the impact of a complex source mix

within the harbor community. SITES 1, 2 and 3 were located in Wilmington, West Long

Beach. SITE 1 was set-up at the intersection between a major street and a local resi-

dential road. SITE 2 was about 3 km north of the ocean coast, at the intersection of two

major streets, and in close proximity to the Alameda corridor (a 32 km freight rail “ex-15

pressway”). SITE 3 was located inside a semi-industrial area and less than 1 km north

of the CA-1 highway. SITE 4 was further away from the ocean coast (∼7 km north),

about 1 km east (downwind) of the I-710 freeway (where more than 25% of the vehicle

fleet is represented by heavy-duty diesel vehicles), and about 1 km north of the I-405

freeway. SITE 5 was a typical background site for the Long Beach harbor, while SITE 620

(located at the USC main campus), was representative of urban air quality conditions

in downtown Los Angeles.

2
Arhami, M., Sillanpää, M., Hu, S. R. O. M., Schauer, J. J., and Sioutas, C.: Size-Segregated

Inorganic and Organic Components of PM in the Communities of the Long Beach and Los

Angeles Harbor, submitted to Aerosol Sci. Technol., 2008.
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2.2 Sampling description

At each site, size-segregated ambient aerosols were collected using two parallel

Sioutas™ impactors (SKC Inc, PA; operating flow rate=9 lpm), one loaded with Zefluor

filters (3µm pore-size, Pall Life Sciences, Ann Arbor MI) and the other with Quartz fiber

filters (Pall Life Sciences, Ann Arbor MI). Three different size fractions of PM were col-5

lected, coarse (2.5µm<Dp<10µm), accumulation (0.25µm<Dp<2.5µm), and quasi-

ultrafine (Dp<0.25µm) modes. All substrate were either baked at 550
◦
C (Quartz fiber

filter) or cleaned with a series of solvents (Zefluor) before usage to minimize contami-

nations (see Arhami et al., 2008
2
, for further details). After sampling, each Quartz fiber

filter sample was wrapped in a piece of pre-baked aluminum foil, placed in a Petri dish10

and kept frozen (at –4
◦
C) until analysis.

2.3 Gravimetric and chemical analyses

Zefluor filters were weighed before and after sampling using a Mettler-Toledo MX5 mi-

crobalance (Mettler-Toledo, Columbus, OH; weight uncertainty ±2µg) in a room with

controlled temperature and humidity to determine the mass of the collected PM. Labo-15

ratory filter blanks were also weighed before, during, and after each weighing session

to verify the accuracy and consistency of the microbalance. The electrostatic charges

of the Zefluor substrates were minimized using a static neutralizer (500µCi Po210,

NRD LLC, Grand Island, NY).

Weekly composites (one for each size fraction) were analyzed at the Wisconsin State20

Lab of Hygiene (University of Wisconsin-Madison) for several important inorganic and

organic species. Quartz composites were analyzed by: a) Ion Chromatography (IC),

b) Thermal Evolution/Optical Transmittance (TOT), and c) Gas Chromatography/Mass

Spectrometry (GC/MS) to determine the concentrations of inorganic ions (Sheesley et

al., 2000), OC and elemental carbon (EC) (Turpin et al., 2000;Schauer, 2003), and25

organic species/tracers including PAHs, n-Alkanes, n-Alkanoic Acids, Resin Acids,

Hopanes and Steranes (Chowdhury et al., 2007; Zheng et al., 2002), respectively.
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The Zefluor filters were sectioned in half, with one half used in the DTT assay. The

remaining 1/2 filters were sectioned in thirds and weekly composites (one for each size

fraction) prepared for the following analyses: (a) Total Elements (b) Water Soluble Ele-

ments, and (c) Water Soluble OC (WSOC) and macrophage ROS. A magnetic sector

inductively coupled plasma mass spectrometer (HR-ICPMS, Finnigan Element 2) was5

applied for the quantification of 52 trace elements (Herner et al., 2006) in the total di-

gests and water extracts. A General Electric Instrument (Sievers Total Organic Carbon,

TOC; GE, Inc.) was used to determine WSOC concentrations.

2.4 Macrophage ROS and DTT assays

The redox activity of PM was measured by two different types of assays: 1) in-vitro10

exposure to rat alveolar macrophage (AM) cells using dichlorofluorescin diacetate

(DCFH-DA) as the fluorescent probe and 2) consumption of dithiothreitol (DTT) in a

cell-free system (DTT assay). The first assay (applied to water soluble extracts of

the collected PM filter samples) is directed at the biologically mediated production of

ROS within the macrophage cell in response to cell stimulation from “toxic” species.15

ROS species produced within the cytoplasm de-acetylate the DCFH-DA, resulting in

the fluorescing compound (DCFH). Extracellular and abiotic de-acetylation is consid-

ered to be small. Hereafter, this assay is referred to as Macrophage ROS. Alveolar

macrophage cell lines (NR8383, American Type Culture Collection) were exposed to

aqueous extracts of PM and subsequently assessed for viability (membrane integrity20

– LDH assay) and production of ROS as an indicator of macrophage oxidative stress

(Landreman et al.,2008
3
). Zymosan (a β-1,3 polysaccharide of D-glucose) was cho-

sen as the primary positive control because it is recognized by TLR-2 receptors on

macrophage cells, activating a strong immuno-chemical response.

3
Landreman, A. P., Shafer, M., Hemming, J., Hannigan, M., and Schauer, J. J.: A

Macrophage-Based Method for the Assessment of the Oxidative Stress Activity of Atmospheric

Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring Studies,

submitted to Aerosol Sci. Technol., 2008.
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The DTT assay (applied to suspensions of the collected particles) provides an es-

timate of the redox activity of a sample based on the ability of the PM to catalyze

electron transfer between DTT and oxygen in simple chemical systems (Cho et al.,

2005). The electron transfer is monitored by the rate at which DTT is consumed under

a standardized set of conditions and the rate is proportional to the concentration of the5

catalytically active redox-active species in the PM sample. This chemical assay mea-

sures the consumption of DTT that is capable of quantitatively determining superoxide

radical formation as the first step in the generation of ROS. The methodological proce-

dure used for the DTT assays conducted for this work is described in great detail by

Cho et al. (2005) and Li et al. (2003).10

2.5 Statistical data analysis

Bivariate Pearson Correlations between Macrophage ROS and DTT levels, and the

concentrations of the chemically speciated PM were calculated for a preliminary iden-

tification of the most important predictor variables that could be included in multiple

regression models for macrophage ROS and DTT. The chemical species with a signifi-15

cantly positive correlation (p<0.05) with the macrophage ROS and DTT concentrations

were then chosen as predictors in a series of multiple linear regression analyses (i.e.,

stepwise, forward, and backward elimination selections) using SAS for Windows (V

9.1, SAS Inc., Cary, NC). A general multiple linear regression equation expresses the

response variable (Yi ) as a linear combination of (p–1) predictor variables (Xi ):20

Yi = β0 + β1Xi ,1 + β2Xi ,2 + ..... + βp−1Xi ,p−1 + εi (1)

where, Yi is the response in the i th trial (i.e. Macrophage ROS or DTT), β0, β1,

. . . ,βp−1 are the regression coefficients, Xi ,1, Xi ,2, ..., Xi ,p−1 are predictor variables

(i.e. inorganic and organic species and trace elements), and εi is the error term.
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3 Results and discussion

3.1 Overview of the PM chemical speciation

Table 1 shows the concentration of PM in three particle size ranges at each sampling

site, and the corresponding percentage contribution of major aerosol components to

PM mass. A detailed discussion about the chemical speciation results is described5

elsewhere (Arhami et al., 2008
3
). The mass distribution of the different species in differ-

ent size fractions was relatively homogeneous across sampling sites. OC was the most

abundant component of quasi-ultrafine (quasi-UF) particles at all sites (31.0 to 38.9%

at SITE 5 and SITE 2, respectively). The organic material in ultrafine particles predom-

inantly originates from various combustion sources (Seinfeld and Pandis, 1998), such10

as vehicular and ship emissions. OC in the accumulation mode may also originate from

the photo-oxidation of reactive gaseous precursors (i.e. secondary organic aerosol, or

SOA, formation) (Turpin et al., 2000; Polidori et al., 2006); EC, primarily formed from in-

complete combustion processes and often considered to be a good surrogate of diesel

emissions (Seinfeld and Pandis, 1998), was present mainly in the quasi-UF mode (7.915

to 13.5% at SITE 4 and SITE 1, respectively).

Secondary aerosol components, such as sulfate, nitrate and ammonium, were the

most dominant species in accumulation mode particles, together accounting between

41.2% (SITE 5) and 60.0% (SITE 6) over the six sampling sites. Sulfate was the most

abundant component in the accumulation mode (21.3 to 29.2% at SITE 5 and SITE 1,20

respectively) and the second most abundant component following OC in the quasi-UF

mode (13.2 to 20% at SITE 2 and SITE 5, respectively) at most sites. Accumulation

mode sulfate is mainly present in the urban air as ammonium sulfate, a secondary

aerosol component formed in the atmosphere through the oxidation of sulfur dioxide

..(Rodhe, 1999), whereas in the quasi-UF fraction, a significant part of sulfate also25

originates from bunker-fuel combustion from the nearby marine port vessels (Lin et al.,

2005; Arhami et al., 2008
3
). Nitrate contributed mostly to the mass of accumulation

mode (12.6 to 24.8% at SITE 1 and SITE 6, respectively) and coarse mode parti-
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cles (11.2 to 23.4% at SITE 2 and SITE 1, respectively). In the accumulation mode,

nitrate originates through secondary processes involving nitric acid and ammonia (Se-

infeld and Pandis, 1998), while in the coarse fraction it is mostly formed from reactions

between nitric acid and sea salt or mineral compounds (Kerminen et al., 1998; Pio

and Lopes, 1998). Ammonium (NH
+

4 ), present in the atmosphere mainly as ammo-5

nium nitrate and ammonium sulfate, is also formed through secondary processes from

gaseous precursor, and typically contributed more to the mass of accumulation mode

PM (5.8 to 11.7% at SITE 5 and SITE 6, respectively).

Inorganic elements accounted from 9.2 to 17.6% of the coarse particle mass, and

between 7.5 and 19.1% of the accumulation mode mass. Their contribution to the10

quasi-UF fraction was relatively lower (3.9 to 6.9%) at all sites. Na and S were the most

abundant elements in all three size fractions, followed by Ca, Mg, K, Fe and Al. Among

all elements, Al, Fe, Ti, K, Mn, and Cs, which have a crustal origin (Ntziachristos et al.,

2007b; Arhami et al., 2008
3
) and are products of re-suspended soil dust, were found

mostly in coarse PM. Sb, S, Cd, Mo, Zn, Pb and Cu, mainly generated by vehicular15

sources and present as constituents of lube oil (Ntziachristos et al., 2007b), were found

in all size fractions. V and Ni, which are mostly emitted by marine vessels and oil

combustion (Lu et al., 2006;Isakson et al., 2001), were more abundant in the quasi-UF

mode.

3.2 Water-soluble elements and water-soluble organic carbon (WSOC) content20

Figure 1 shows water-soluble elements as a fraction of total element concentration in

the three size ranges. Generally, trace elements in quasi-UF and accumulation mode

particles are more soluble than those in coarse PM. For certain elements, in particular

for Cd, Zn, Sb, Ni, Li, Co, and Cu, the solubility is highest in quasi-UF PM (>0.75) and

decreases with increasing particle size. This class of compounds might originate from25

high temperature combustion processes, such as fresh vehicular emissions. Zn and

Cd are almost entirely water-soluble in both quasi-UF and accumulation modes. Na

showed very high and comparable water solubility among the three size ranges. The
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solubility of Ba, Mo, Mn, V, Mg, Cs, Pb and K, Sr peaked in the accumulation mode.

The least soluble elements were Cr, Fe, Al, Ce, La and Ti (<15%), a finding consistent

with their geochemical origin. These results agree with those reported in other studies

conducted in an urban area of Birmingham, UK (Heal et al., 2005; Birmili et al., 2006).

Birmili et al. (2006) reported that Zn and Cd in ambient PM7.2 particles are the most5

soluble trace elements (∼50%), followed by Mn, Cu, Ba, Pb and Co.

Figure 2 shows water-soluble (WSOC) and water-insoluble OC (WIOC) concentra-

tions in three size ranges at all sampling sites. While some WSOC originates from

primary emission sources, such as biomass burning, its production is mostly attributed

to SOA formation processes (Weber et al., 2007). The highest WSOC concentra-10

tions were in fine PM at all sites, with relatively equal partitioning between quasi-UF

and accumulation modes (site-average WSOC concentrations were 0.25±0.08 and

0.20±0.12µg C/m
3

for quasi-UF and accumulation modes, respectively). The average

percentage contributions of WSOC to measured OC across all sites were 13.3±4.0%,

22.1±10.8% and 16.6±11.9% for quasi-UF, accumulation and coarse mode particles,15

respectively, consistent with WSOC/OC wintertime ratios measured at other locations

(Miyazaki et al., 2006). The relatively low WSOC/OC values as well as absolute WSOC

concentrations compared to those reported in other studies are reflective of the limited

photochemical activity during our sampling period. Decesari et al. (2001) observed

seasonal variations in WSOC/OC ratio from 0.38 (winter) to 0.50 (summer) for fine20

particles (Dp<1.5µm) in the Po Valley. Sullivan and Weber (2006) reported mean

WSOC/OC ratios for PM2.5 particles in the range of 0.50 and 0.60 in winter and sum-

mer, respectively, for measurements in St. Louis, MO, and Atlanta, GE. Ruellan and

Cachier (2001) observed low mean WSOC/OC values (0.13) near a highly trafficked

road around Paris in the summer and fall.25

During this study, the highest WSOC concentrations as well as WSOC/OC fractions

were observed at SITE 6 (downtown LA). This site is a receptor of freshly emitted

particles upwind in the harbor area and transported to that site after considerable at-

mospheric aging (SITE 6 is approximately 40 km north, thus mostly downwind, of the

11653

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11643–11672, 2008

Redox activity of

size-segregated PM

samples

S. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

harbor sites). Ho et al. (2006) reported that the WSOC/OC fraction in PM2.5 measured

in Hong Kong was lower at an urban site than at urban-residential and background

sites, due to the formation of SOA during transport/aging of the PM mass from urban

to background sites.

3.3 Measured redox activities5

The redox activities of size fractionated PM measured by the two assays are shown,

for all sites, on a per PM mass basis in Table 1. The macrophage ROS level of quasi-

UF particles measured at SITE 1 was extremely high compared to those obtained in

the same size-range at other sites. We do not have an obvious explanation for the

higher PM activity in that site, at lest based on the detailed chemical PM composition10

discussed in earlier paragraphs. We thus treated this data point as an outlier in the

statistical analysis described in subsequent sections. On a per mass basis, ultrafine

particles exhibited significantly higher redox activity than fine and coarse mode PM.

Few previous studies have demonstrated this size-dependent contrast in PM toxicity

(Li et al., 2003; Ntziachristos et al., 2007a; Cho et al., 2005). We also investigated the15

redox potential of PM on a per unit of air volume basis (Fig. 3a), and quasi-UF particles

still showed the highest activity levels at all Long Beach sites (SITE 1-5), but not at

SITE 6 (urban site near USC), where accumulation mode particles had higher toxicity

measured by the macrophage ROS assay.

The average DTT activities for PM2.5 particles at the Long Beach sites20

(0.027+0.004 nmol DTT/min/µg mass; individual values for each site are reported in

Table 1 on a per PM mass basis, and on Fig. 3b on a per unit of air volume basis)

are well in the range of those reported for PM2.5 particles in a previous study con-

ducted during different seasons at different urban areas in Southern California (Ntzi-

achristos et al., 2007a) (0.027+0.005 nmol DTT/min/µg mass). The average DTT ac-25

tivity of PM0.25 (0.039+0.010 nmol DTT/min/µg mass) in this study is somewhat lower

than that of PM0.15 (0.058+0.015 nmol DTT/min/µg mass) estimated by Ntziachristos et

al. (2007a). This discrepancy is probably due to the relatively lower contribution of par-
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ticles between 0.15 and 0.25µm to the DTT activity on a per mass basis.

The variability of the redox potential among size-fractions was estimated by its co-

efficient of variation (CV; the standard deviation to mean ratio). CVs for DTT activities

were 0.25, 0.20 and 0.27 for quasi-UF, accumulation and coarse mode PM, respec-

tively. This rather low variability could be attributed to the fairly homogenous distribution5

of organic species on a per mass basis among the three size ranges in that area. As it

will be discussed later, these species are mostly responsible for the variability in DTT.

By contrast, higher CVs were observed for macrophage ROS (0.35, 0.24 and 0.53, for

quasi-UF, accumulation and coarse mode particles, respectively.

3.4 DTT vs. macrophage ROS10

DTT activities and macrophage ROS measurements are compared on Figure S2 (sup-

porting information). Macrophage ROS is significantly correlated with DTT consump-

tion (R
2
=0.61, p<0.05) for the pooled samples (17 data points; as stated previously

quasi-UF ROS at SITE 1 was excluded from all calculations). It should be noted that

these are two independent and intrinsically different assays and, thus, should not be15

expected to be correlated a priori. The consumption of DTT is based on the ability

of a PM sample to accept electrons from DTT and transfer them to oxygen (Cho et

al., 2005); whereas macrophage ROS assays use a filtered extract, so that cells are

exposed to the soluble components of PM only. The substantial correlation between

these two assays suggests that both analyses may be driven, at least in part, by vari-20

ations in the concentrations of similar chemical species. The association between the

DTT and Macrophage ROS assay and PM constituents are further investigated in the

following sections.

3.5 Macrophage ROS/DTT vs. chemical speciation

Table 2 shows Pearson’s correlation coefficients of macrophage ROS and DTT vs se-25

lected PM components. All data points obtained in the three size ranges at the six
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sampling sites were pooled to calculate the resulting mean Pearson’s coefficients and

p values. The species with a significantly positive correlation (p<0.05) with the re-

dox activities are highlighted in bold in the table. Inorganic ions show insignificant or

negative correlation with both assays, which agrees with the findings of other studies

(Ntziachristos et al., 2007a). Nitrate and sulfate have no functional groups to result5

in the formation of ROS, but may play a general role on particle toxicity by affecting

PM acidity. OC showed a significant correlation with both assays. EC is also signifi-

cantly correlated with both macrophage ROS and DTT levels, but this strong associa-

tion may be due to the high correlation between EC and OC concentrations, both being

emitted mostly by motor-vehicles. A strong correlation of water soluble V and Ni with10

macrophage ROS was observed, with R values of 0.94 and 0.93, respectively. These

two trace elements were highly correlated in this study (Arhami et al., 2008
3
), suggest-

ing that they originated from bunker fuel combustion from marine vessels (Isakson et

al., 2001). With the exception of V, Ni and few other elements, the other species are

moderately, insignificantly (p>0.05) or negatively correlated with both ROS and DTT15

assays (Table S1, see supporting information for details).

Figures 4 show correlations between a selected group of PM components (ex-

pressed as a percentage of the measured PM mass) and redox activities of PM mea-

sured by the macrophage ROS (Fig. 4a) and DTT (Fig. 4b) assays. The corresponding

regression slopes, intercepts, and correlation coefficients (R
2
) are summarized in Table20

S2 (supporting information). Water soluble V and, to a lesser degree, light molecular

weight PAHs (MW≤228) and OC are well correlated with macrophage ROS levels. With

the exception of one data point (quasi-UF at SITE 5), WSOC was also well correlated

with ROS (R
2
=0.69, after excluding the influence of this last measurement). We hy-

pothesize that the relative higher macrophage ROS level of quasi-UF particles at SITE25

5 is mostly driven by the abundance of water soluble V and Ni, rather than water solu-

ble OC, given the proximity of the site to the port and the lack of notable traffic sources

nearby. OC had the highest correlation with DTT than any other PM species (Fig. 4b).

A multiple linear regression (MLR) analysis was conducted to further investigate the
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contribution of the PM chemical components to the measured redox activities.

3.6 Multi-variance analysis

3.6.1 “Best-fitting” model for DTT

The “best-fitting” (3-parameters) regression equation for the DTT concentration was

obtained using a “forward” selection method in SAS (“PROC REG”):5

DTT = 0.034 + 5.585 × 10−02
· OC + 9.15E−06

· Alsoluble + 7.39 × 10−04
· Cosoluble (2)

where, OC, Alsoluble and Cosoluble are measured concentrations of OC, water-soluble

Al and water-soluble Co, respectively. The model was run considering all of the

quasi-ultra-fine, accumulation and coarse concentrations together (a total of 16 data-

points; 2 outliers were found and excluded), and the correlation between predicted10

and measured DTT was excellent (y [predicted DTT]=0.95×[measured DTT]+0.0076);

R
2
=0.95).

As shown in Table S3a (supporting information), OC is by far the most significant

factor in the regression (partial R
2
=0.76). The overall model is statistically significant

(p<0.0001), has an R
2

of 0.95, and a parameter coefficient (Cp) of 4 (the same as15

the predicted number of parameters), indicating that the regression equation has an

appropriate number of predictors. Thus, 95% of the DTT concentration variance can

be explained by the variance of this 3-parameters model. These results confirm our

earlier observations that organics drive the DTT response (Ntziachristos et al., 2007a).

According to Cho et al. (2005), this assay is relatively insensitive to trace elements,20

which is consistent with our regression results. Although the redox activity of transition

metals in biological reactions is well established, the DTT assay does not reflect the

redox activity for trace elements such as Al and Co. We hypothesize this could be

due to the correlation of the trace metals with PAHs as indicated by Ntziachristos et

al. (2007a). Al showed moderated correlation with light-MW PAHs (R=0.46), suggest-25

ing Al concentrations in the regression model (Eq. 2) might serve as a surrogate for
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the effect of light-MW PAHs on the DTT activity levels. Co concentration is not well

correlated with PAHs (R=0.15); however, it is highly correlated with total OC (R=0.59).

The PAHs only accounts for a small fraction of total OC (less than 30 ppm). Therefore

Co might be a surrogate for other organic species. It is possible that regression models

using different selection criteria, including OC and PAHs as predictor variables, could5

explain the variability of DTT equally well.

The above best fitting regression equation (Eq. 2) can be used to estimate the effect

of an increase/decrease in the concentration of any of the predictive variables (i.e. OC,

Alsoluble and Cosoluble) on the DTT levels. For example, we varied OC over its typical

average diurnal range at SITE 2 (at the Wilmington site average hourly OC data were10

available only for May 2007), while holding constant the Alsoluble and Cosoluble concen-

trations to their average background levels (those measured at SITE 5). This approach

allowed us to describe/predict the DTT concentration at SITE 2 as the sum of its “urban

background” concentration and the enhancement due to an increase in OC. As shown

in Figure 5a, the predicted DTT at SITE 2 peaked during morning rush hour traffic15

because of increased motor-vehicle emissions, reached a minimum late in the after-

noon, and slightly increased again at night because of a lowered mixing height and

increased atmospheric stability. The DTT activity rates and OC concentrations were

∼4 times higher between 9 and 11 a.m. than at 17–18 p.m., indicating (as expected)

that traffic emissions can increase the redox potential of airborne PM substantially.20

It should be noted that the intercept term influenced between 8 to 16% of the DTT

levels predicted by Eq. 2, when considering the typical concentration range for OC in

Wilmington. This small, but non-negligible effect of the intercept may be due to the

contribution of redox active PM components, which are not included in our chemical

analysis.25
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3.6.2 “Best-fitting” model for ROS

The “best-fitting” (2-parameters) regression equation for the ROS concentration was

also obtained using a “forward” selection method in SAS (“PROC REG”):

ROS = 0.332 + 0.399 · OC + 2.2 × 10−04
· Vsoluble (3)

where, OC and Vsoluble are the measured concentrations of OC and water-soluble V,5

respectively. Similarly to DTT, the model was run considering all of the quasi-ultra-fine,

accumulation and coarse concentrations together (a total of 16 data-points; 2 outliers

were found and discarded), and the correlation between predicted and measured ROS

was excellent (y [predicted ROS]=0.93×[measured ROS]+0.075); R
2
=0.93.

As shown in Table S3b (supporting information), water-soluble V is the most influ-10

ential factor in the regression (partial R
2
=0.86). OC was also selected as a predictor

variable (partial R
2
=0.07). The overall model is statistically significant (p<0.0001), with

an R
2

of 0.93, and a parameter coefficient (Cp) of 3, which suggests that the regression

equation has an appropriate number of predictors. Hence, 93% of the ROS concen-

tration variance can be explained by the variance of this 2-parameters model. These15

results indicate that the ROS response depends on two variables, each of which is an

indicator of two major sources in that Long Beach area: OC (vehicular traffic) and V

(ship emissions and oil combustion). The rest of PM species considered in this analy-

sis were either non-correlated to ROS or, if they showed a significant association with

ROS, they were probably emitted by the same two major sources.20

The best fitting regression equation for ROS (Eq. 3) can also be used to estimate the

effect of an increase/decrease in the concentration of any of the predictive variables

(i.e. OC or Vsoluble) on the ROS levels. We varied OC over its average diurnal range

at SITE 2 (Wilmington site; average hourly OC data were available only for May 2007),

while holding constant the Vsoluble concentrations to its average background level (mea-25

sured at SITE 5). This approach allowed us to describe/predict the ROS level at SITE

2 as the sum of its “urban background” concentration and the enhancement due to an

increase in OC (Fig. 5b).

11659

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11643–11672, 2008

Redox activity of

size-segregated PM

samples

S. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The predicted ROS values in Wilmington peaked during morning rush hour traffic be-

cause of increased motor-vehicle emissions, reached a minimum late in the afternoon,

and slightly increased again at night. The predicted ROS trend tracks reasonably well

the diurnal patterns of OC, though not to the same degree of the DTT assay, shown in

Figure 5a. This is mostly because of the significant influence of Vsoluble on ROS; unfor-5

tunately, the lack of methodologies for near continuous measurements of particulate V

prevent us from conducting a similar analysis for this species, but our data indicate the

need and associated benefits for developing such methods, given the toxicity of some

trace elements. Nonetheless, ROS and OC concentrations were ∼3–4 times higher

between 9 and 11 a.m. than their daily average value, indicating that traffic emissions10

can increase the potential of airborne particles to induce oxidative stress on human

cells.

Finally, when considering the typical concentration range for OC in Wilmington, the

intercept term influenced 6 to 15% of the ROS levels predicted by Eq. 3. In this case as

well, the non-negligible effect of the intercept may be related to the fact that the model15

only explains 93% of the ROS variance, although the presence of a non-PM related

background activity for ROS could not be excluded.

We continue to confirm our earlier observations that organics are important and in-

fluence the redox properties of PM measured by the DTT assay. According to Cho

et al. (2005), most trace elements do not mitigate this assay; therefore all of our re-20

sults are internally consistent with our prior works. In contrast, the macrophage ROS

assay is mainly a function of two PM species, OC and V, which are indicators of the

two major sources dominating the study area, i.e. vehicular traffic and ship emissions,

respectively.

4 Summary and conclusions25

The redox properties of size fractionated PM samples collected in the Los Angeles-

Long Beach port area were measured using: 1) a “biological” assay applied to water
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soluble extracts of the collected particles (Macrophage ROS assay), and: 2) a “chemi-

cal” assay performed on suspensions of the PM filter samples (DTT assay). Quasi-UF

mode particles showed the highest redox activities at all sites, on both a per-mass

and per-air volume basis, and the substantial correlation between these two assays

(R
2
=0.61) suggests that both assays may be driven, at least in part, by variations5

in the concentrations of similar chemical species. A multiple linear regression model

showed that OC (emitted from vehicle exhaust and port activities) was the single most

important component influencing the DTT levels. A similar model also indicated that the

variability of macrophage ROS is explained by changes in OC and water-soluble vana-

dium concentrations (from vehicular traffic and ship emissions/bunker oil combustion,10

respectively). The predicted DTT and ROS activity rates and measured OC concen-

trations at one of the port sites were ∼3–4 times higher between 9 and 11 a.m. than

at 17–18 p.m., confirming that traffic emissions can increase the redox potential of air-

borne PM substantially and induce oxidative stress on human cells. The DTT and

ROS are two independent and intrinsically different assays that measure different as-15

pects/modes of PM toxicity, and, in this respect, they complement each other. A better

understanding of the relationships between size-segregated PM (and PM components)

and the associated DTT and ROS activities is important in terms of public health man-

agement and prevention policies.

5 Supplemental information20

Pearson correlation coefficients between macrophage ROS (and DTT) and selected

chemical species, Pearson coefficients among selected water-soluble elements, sum-

mary statistics for Figs. 4 and 5, a map of the sampling sites, and the results of

the linear regression between macrophage ROS and DTT are included in the Sup-

plemental Information document http://www.atmos-chem-phys-discuss.net/8/11643/25

2008/acpd-8-11643-2008-supplement.pdf.
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Table 1. Size-resolved PM mass concentration, chemical composition and redox activities at

the six sampling sites.

Size Site Mass

(µg/m
3
)

OC

(%)

EC

(%)

SO
2−

4

(%)

NO
−

3

(%)

Na
+

(%)

NH
+

4

(%)

K
+

(%)

Metals &

Elements

(%)

DTT

(nmol

min
−1

/

µg

PM)

Macrophage

ROS

(µg

Zymosan

Units/

µg PM )

Quasi-UF

S1 5.4 33.7 13.5 19.1 2.5 0.6 7.9 0.4 5.6 0.035 0.987
∗

S2 6.3 38.9 12.0 13.2 3.7 0.8 5.8 0.2 4.5 0.032 0.353

S3 5.2 35.1 13.1 17.9 3.8 1.6 7.2 0.3 6.9 0.047 0.393

S4 5.0 38.1 7.9 15.7 6.2 0.7 7.1 0.3 3.9 0.055 0.312

S5 4.1 31.0 8.1 20.0 2.8 2.6 6.6 0.1 6.1 0.033 0.506

S6 5.4 32.1 11.9 14.5 6.3 1.4 7.0 0.3 3.9 0.031 0.170

Accumulation

S1 5.5 13.5 2.8 29.2 12.6 6.3 9.1 0.5 11.2 0.024 0.180

S2 7.5 12.7 1.5 25.3 14.5 7.6 8.4 0.5 13.2 0.018 0.123

S3 6.6 14.0 2.4 26.1 14.0 6.5 9.0 0.5 14.1 0.023 0.216

S4 8.8 12.5 1.4 25.2 18.1 6.8 9.2 0.4 8.7 0.014 0.118

S5 4.8 12.8 1.4 21.3 14.2 10.9 5.8 0.5 19.1 0.020 0.136

S6 9.6 12.2 1.9 23.4 24.8 4.3 11.7 0.4 7.5 0.017 0.157

Coarse

S1 2.2 12.7 1.8 8.9 23.4 13.3 1.5 0.6 12.5 0.018 0.210

S2 10.4 8.7 1.0 3.8 11.2 9.7 0.8 0.5 12.8 0.012 0.072

S3 10.0 7.5 1.1 5.5 14.1 12.0 0.7 1.1 10.2 0.017 0.172

S4 12.5 7.5 1.3 5.3 16.3 12.0 1.5 0.5 9.2 0.012 0.065

S5 7.1 5.5 0.9 6.1 17.8 16.9 0.9 0.6 17.6 0.008 0.097

S6 8.5 8.6 0.6 5.7 22.9 10.5 2.8 0.5 10.1 0.012 0.075

∗
Outlier
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Table 2. Pearson Correlation between Macrophage ROS activity, DTT level, and selected

species.

Species
Macrophage ROS DTT

R p R p

Ions

SO
2−

4
0.26 0.31 0.27 0.30

NO
−

3
–0.71 0.00 –0.74 0.00

Na
+

–0.67 0.00 –0.80 0.00

NH
+

4 0.29 0.25 0.38 0.13

K
+

–0.56 0.02 –0.53 0.03

Carbonaceous Species

EC 0.75 0.00 0.82 0.00

OC 0.81 0.00 0.91 0.00

WSOC 0.69 0.007 0.67 0.005

PAHs (MW<=228) 0.75 0.00 0.79 0.00

Levoglucosan 0.40 0.11 0.52 0.03

Water-Soluble Elements

Al 0.50 0.04 0.62 0.01

S 0.53 0.03 0.50 0.04

V 0.94 0.00 0.76 0.00

Cr 0.49 0.05 0.69 0.00

Co 0.56 0.02 0.65 0.01

Ni 0.93 0.00 0.78 0.00

Zn 0.50 0.04 0.47 0.06

Pb 0.64 0.01 0.72 0.00

Mo 0.63 0.01 0.78 0.00

Sb 0.17 0.52 0.46 0.06

Pt 0.14 0.60 0.48 0.05
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Fig. 1. Mean fractions of water-soluble elements in each size range. Error bars are the standard

deviation of measurements obtained over the sampling sites.
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Fig. 2. Concentrations of water-soluble organic carbon (WSOC) and water insoluble organic

carbon (WIOC) in three size ranges at all sampling sites.

11669

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11643/2008/acpd-8-11643-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11643–11672, 2008

Redox activity of

size-segregated PM

samples

S. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

a). Macrophage ROS

Sampling Sites

SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6

μg 
Z

y
m

o
sa

n
 U

n
it

s/
ai

r 
v
o
lu

m
e 

(m
3
)

0

1

2

3

4

5

6

b). DTT Activity

Sampling Sites

SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6

n
m

o
l 

D
T

T
 /

m
in

/a
ir

 v
o
lu

m
e 

(m
3
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Quasi-UF Accumulation Coarse  
 

Fig. 3. Spatial distribution of size fractioned redox activities at the Long Beach Harbor; (a)

Macrophage ROS assay and (b) DTT assay.
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Fig. 4. Scatter Plot of (a). Macrophage ROS and (b) DTT, with total, insoluble and water soluble

OC (OC, WIOC, and WSOC, respectively) and selected water soluble elements.
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Fig. 5. Prediction of diurnal cycles of PM redox activity based on real time OC concentration;

(a) DTT assay and (b) Macrophage ROS assay. The minimum and maximum estimated ROS

and DTT values were included within broken horizontal lines.
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