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Abstract

A large number of published and unpublished measurements of cloud condensation

nuclei (CCN) concentrations and aerosol optical thickness (AOT) measurements have

been analyzed. AOT measurements were obtained mostly from the AERONET net-

work, and selected to be collocated as closely as possible to the CCN investigations.5

In remote marine regions, CCN0.4 (CCN at a supersaturation of 0.4%) are around

110 cm
−3

and the mean AOT500 (AOT at 500 nm) is 0.057. Over remote continental

areas, CCN are almost twice as abundant, while the mean AOT500 is ca. 0.075. (Sites

dominated by desert dust plumes were excluded from this analysis.) Some, or maybe

even most of this difference must be because even remote continental sites are in10

closer proximity to pollution sources than remote marine sites. This suggests that the

difference between marine and continental levels must have been smaller before the

advent of anthropogenic pollution.

Over polluted marine and continental regions, the CCN concentrations are about

one magnitude higher than over their remote counterparts, while AOT is about five15

times higher over polluted than over clean regions. The average CCN concentrations

from all studies show a remarkable correlation to the corresponding AOT values, which

can be expressed as a power law. This can be very useful for the parameterization

of CCN concentrations in modeling studies, as it provides an easily measured proxy

for this variable, which is difficult to measure directly. It also implies that, at least at20

large scales, the radiative and microphysical effects of aerosols on cloud physics are

correlated and not free to vary independently. While this strong empirical correlation

is remarkable, it must still be noted that that there is about a factor-of-four range of

CCN concentrations at a given AOT, and that there remains considerable room for

improvement in remote sensing techniques for measuring CCN abundance.25
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1 Introduction

The concentration of cloud-active particles, especially in the lower troposphere, has

a profound influence on the microphysical processes in clouds, and consequently on

many aspects of weather and climate. These interactions have been summarized in

a number of recent reviews, addressing in particular the effects of aerosols on cli-5

mate (Penner et al., 2001; Lohmann and Feichter, 2005; IPCC, 2007) and on cloud

processes and precipitation (McFiggans et al., 2006; Rosenfeld, 2006a; IAPSAG,

2007; Andreae and Rosenfeld, 2008). In addition to their cloud microphysical effects,

aerosols also modulate cloud formation and convective behavior through their radiative

effects, for which aerosol optical thickness (AOT) is a commonly used metric. AOT has10

the advantage of being readily observed by remote sensing, and AOT measurements

are now done routinely from space by several sensors (Kaufman et al., 2002; Yu et

al., 2003; Kahn et al., 2007; Kokhanovsky et al., 2007) as well as by ground-based

sunphotometer networks (Holben et al., 2001; Kim et al., 2008).

In order to incorporate the effects of cloud condensation nuclei (CCN) in meteoro-15

logical models at all scales, from large eddy simulation (LES) to global climate models

(GCM), knowledge of the spatial and temporal distribution of CCN in the atmosphere

is essential. This information is, however, difficult to obtain from observations. In-situ

measurements of CCN concentrations only provide very localized and sparse informa-

tion, while the detection of CCN by remote sensing has not yet been accomplished.20

This is due to the difference in size ranges important for CCN concentrations on one

hand and for light extinction on the other.

The ability of a particle to nucleate a cloud droplet depends on its size and compo-

sition. The latter is now frequently represented by the hygroscopicity factor, κ, which

typically falls in the range of 0.1–0.9 for ambient aerosols (Petters and Kreidenweis,25

2007; Andreae and Rosenfeld, 2008). At these values of κ, particles must have diam-

eters larger than about 40–70 nm in order to activate at the highest supersaturations

commonly found in clouds (up to about 0.6%). This therefore represents the lower
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boundary of the size range containing CCN-active particles. The upper boundary is

effectively defined by the sharp decrease in the number concentration of particles as a

function of size, with the result that usually only a minor fraction of CCN is in the size

range above some 200–300 nm diameter (Seinfeld and Pandis, 1998). The maximum

of the CCN size distribution thus typically falls in the range of about 70–200 nm. This5

range is well below the maximum in the Mie scattering efficiency function for light with

a wavelength of about 500 nm, which is most commonly used to represent the aerosol

optical thickness (AOT) of the atmospheric column. In contrast, the maximum of the

scattering and extinction efficiency functions often falls near or above the maximum of

the mass size distribution of the aerosol in the range between 400 and 1000 nm, so10

that this part of the size distribution usually has the strongest influence on the AOT500

values. In regions with high loadings of dust and seasalt aerosol, the coarse mode

(>1µm diameter) may also contribute strongly to AOT500.

The disconnect between the parts of the aerosol size spectrum dominating the CCN

abundance and those dominating visible light extinction suggests that correlations be-15

tween these two variables may not be very strong. Consequently, the use of remote

sensing measurements for the estimation of CCN abundances has been considered

difficult (Gasso and Hegg, 2003; Ghan et al., 2006; Kapustin et al., 2006; Rosenfeld,

2006b). However, because of the interest in using CCN concentrations and AOT val-

ues as parameters to represent the effects of aerosols in cloud models, and because a20

substantial amount of data for both variables has recently become available, I decided

to make an empirical investigation of their correlation in collocated (or at least nearly

collocated) data sets.

2 Methods

Most AOT values were obtained from the AERONET database publicly available on25

the Internet at http://aeronet.gsfc.nasa.gov/. These data have the advantage of being

available from a global network of stations with consistent processing algorithms and
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quality control (Dubovik et al., 2000). In most cases, I was able to use Level 2.0 data,

which are fully calibrated and cloud-screened. In some instances, only Level 1.5 data

were available, which do not yet have the final calibration applied. These cases, and

the few cases where other sunphotometer data were used, have been indicated in

the tables below. I calculated the statistics reported in the tables based on the daily5

average data reported in the AERONET database, in order to avoid introducing bias

from variability in the number of measurements available on individual days. I chose not

to use MODIS AOT data for this analysis because of persistent uncertainties regarding

the absolute accuracy of this data (Li et al., 2007).

I chose to use AOT values at 500 nm (AOT500), because they are most commonly10

available and most frequently used as a metric for aerosol burdens. When only mea-

surements at other wavelengths were available, I chose the nearest available wave-

length and made an adjustment using the appropriate Ångstrom exponent.

To represent CCN concentrations, I used the set of particles that activate at a su-

persaturation of 0.4%, a value commonly used for convective clouds. Many of the15

data were taken from the literature and have been obtained using a variety of instru-

ments, about which details can be found in the original papers referenced in the tables.

Our own previously unpublished measurements were obtained with the static chamber

counter described by Frank et al. (2007) and the DMT continuous-flow counter using

the techniques discussed in Rose et al. (2008). When only data at supersaturations20

other than 0.4% were available, they were adjusted to 0.4% using the conventional

power law formulation for the dependence of CCN concentrations on supersaturation,

S ([CCNS ]=[CCN1.0]×S
k
). The exponent, k, was either derived from the data, or where

this was not possible, I used default values of 0.5 for continental and 0.4 for marine

sites.25

In order to increase our database, I deduced CCN concentrations from measure-

ments of aerosol size spectra for some cases where direct CCN measurements were

not available. For this purpose, I used lower cutoff diameters specified in the Comment

column in Table 2, chosen based either on measurements of these cutoff diameters
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from the same site or from similar locations, or obtained using appropriate values of κ,

and the relationships between κ and the activation diameter given by Petters and Krei-

denweis (2007). Obviously, this introduces additional uncertainty into our estimates,

which is in each case a function of the accuracy of the estimate of the cutoff diameter

and the shape of the size distribution. In unfavorable cases, this uncertainty may be5

large (up to about 50%). In most cases, however, the maximum of the size distributions

at our rural and remote stations was well above the range of possible cutoff diameters

(50–90 nm for the range of κ and supersaturations considered here), and therefore the

resulting uncertainty is likely not greater than what one must accept when using liter-

ature data from a great variety of groups and instruments. Since we are looking only10

for fairly broad relationships and consider a wide range of datasets and conditions, it is

unlikely that this approach would introduce a systematic bias.

In addition to data sets where corresponding pairs of AOT and CCN data were avail-

able, some values where only one of the variables was measured have been added

to the tables for information purposes. Furthermore, condensation nuclei (CN) con-15

centrations have been provided in the tables, when available. These data have been

obtained by a variety of instruments, with different lower cut-off diameters, and thus

some caution must be exercised when comparing their values.

3 Results and discussion

For our study, I have separated the available data into four general regimes:20

continental-remote, continental-polluted, marine-remote and marine-polluted. I have

excluded the analysis of dust-dominated regions downwind of the major dust source

regions from our analysis, because there is little or no collocated CCN and AOT data

available, and because dominance of the coarse mode in these regions precludes a

meaningful relationship between CCN and AOT.25

An emphasis on looking at remote regions came from our interest in estimating the

pre-human aerosol loading of the atmosphere, which is of relevance to understanding
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the human perturbation (Andreae, 2007). At the present time, the most remote, and

therefore probably closest to pristine continental regions are found in Amazonia and

in parts of northern North America and Siberia. Because of the seasonal heavy pol-

lution of the Amazonian atmosphere with biomass smoke, this area also provides the

opportunity to study very clean and highly polluted conditions within the same region.5

3.1 Amazonia

Even in an area as remote as the Amazon Basin, the present-day aerosol population is

influenced by anthropogenic emissions, which are mostly from biomass burning. When

the emission sources are large, as during the regional fire season, or located nearby,

this influence can be readily identified. On the other hand, emissions arriving by long-10

range transport, especially from Africa, can have a significant influence on the aerosol

population over Amazonia, even when there is little fire activity in the Amazon Basin

(Prospero et al., 1981; Talbot et al., 1990; Swap et al., 1992; Formenti et al., 2001).

For this reason, the CCN and CN concentrations summarized in Table 1 must always

be considered as upper limits for the pristine values. The first CCN measurements in15

Amazonia were obtained during CLAIRE-98 by Roberts et al. (2001) at Balbina near

Manaus. Subsequently, CCN and CN measurements were made as part of the LBA-

EUSTACH and SMOCC programs (Andreae et al., 2002, 2004). In the course of a

thorough investigation of the CCN counter used in the study of Roberts et al. (2001), it

was found that the supersaturations in that study had been overestimated (Frank et al.,20

2007). Therefore, the values were corrected to a critical activation diameter of 85 nm

at a supersaturation of 0.4%, corresponding to a CCN0.4/CN ratio for the CLAIRE-98

data of 0.41. This critical diameter appears to be very robust for the clean Amazonian

aerosol, and has been found independently in several studies (Rissler et al., 2004,

D. Rose, personal communication, 2008). It has therefore also been used, where25

necessary, for the calculation of CCN0.4 values from CN values in Table 1.

The results show surprisingly little difference between wet and dry season measure-

ments in clean conditions. The CLAIRE-98, EUSTACH and AMAZE-08 measurements
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during the full wet season (190±130, 155±65 and 138±94 cm
−3

, respectively) are only

moderately lower than the SMOCC-2002 values collected during the full dry season

over the western Amazon (205±40 cm
−3

). One can therefore conclude that the natural

CCN0.4 concentrations over Amazonia are centered around a value no greater than

180 cm
−3

, with a range of about 80–250 cm
−3

, and with only a modest seasonal range5

of about 40 cm
−3

. Again, I emphasize that even these low values must contain some

anthropogenic contamination from long-range transport.

During the burning season, pyrogenic aerosols from tens of thousands of fires over-

whelm the natural aerosol population. It is not very meaningful to give average con-

centrations for this situation, as the actual concentration at any given time and place10

is dictated by the proximity to the fires and the meteorological conditions, and there-

fore varies over orders of magnitude from near-pristine values to those inside fresh

plumes, which can be in the hundreds of thousands per cm
−3

. Table 1 lists the ranges

of typical concentrations observed during several campaigns in the smoky season.

One finds that at sites remote from the fires, such as Balbina in northern Amazonas15

State, CCN0.4 concentrations typically reach up to ca. 1000 cm
−3

, while in the heavily

impacted states of Mato Grosso and Rondonia, typical concentrations are in the range

of 1000–4000 cm
−3

.

Aerosol optical thickness measurements over the Amazon Basin from the AERONET

network have been reviewed by Schafer et al. (2008). In Table 1 I give the averages20

from the cleanest 3 months (April–June in the northern part of the Amazon Basin,

February–April in the southern part) to represent clean conditions, and the average

of August and September in the southern part of the Amazon forest to represent the

smoky period. The average values for the clean period fall near 0.09, while in the

smoky period they range around 0.90, and thus show about the same factor-of-ten25

increase from clean to smoky conditions as the CCN concentrations. During some of

the cleanest episodes, values down to 0.05 were observed. The Ångstrom exponent,

å, during the clean periods is relatively low (0.7–1.1), indicating that coarse particles

(primary biogenic material, but also some dust from long-range transport) contribute
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significantly to AOT. The results from the Amazon forest are nearly identical to values

observed at tropical and subtropical marine sites (cf. Table 2 and Fig. 1), such as Lanai

(Hawaii) and San Nicolas Island (California), where AOT500 values of 0.08±0.03 have

been observed, with å in the range of 0.6 to 1.3 (Holben et al., 2001).

During the smoky period, å increases to 1.7±0.1 as a result of the increased impor-5

tance of the fine mode aerosol. The single scattering albedo of the smoke aerosol over

the Amazon forest is 0.92±0.01, with excellent agreement between sunphotometer and

in-situ measurements (Schmid et al., 2006; Schafer et al., 2008).

3.2 Remote temperate continental regions

Because the large expanses of temperate ecosystems fall into the same latitude belt10

as the regions with the highest density of anthropogenic emissions, it is very difficult to

estimate pristine CCN concentrations and AOT over them. There is a surprisingly small

number of data sets from remote regions in the temperate zone, and none where CCN

and AOT measurements are truly collocated. Furthermore, the direct CCN measure-

ments must either be taken from older studies, with sometimes uncertain measurement15

accuracy, or have to be deduced from size distributions. In spite of these problems, a

surprisingly consistent picture emerges. In western and northern North America, re-

mote sites tend to have CCN0.4 concentrations ranging from about 90 in winter to ca.

280 in summer. Average AOT500 values typically fall in the 0.06–0.12 range. The north-

ern European CCN concentrations tend to be somewhat higher, which is not altogether20

surprising considering the likely impact of residual air pollution in this region (Putaud

et al., 2004; Van Dingenen et al., 2004). Unfortunately, no AOT data are available from

this region.

An area of great potential interest for aerosol studies are the remote regions of

Siberia, where the first measurements with modern aerosol size spectrometers have25

recently been reported (Heintzenberg et al., 2008). A preliminary analysis of a one year

data set from the ZOTTO tall tower site near 60
◦
N, 90

◦
E shows an average CCN0.4

concentration (calculated from CN>60 nm) of about 190 cm
−3

during clean periods (de-
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fined as those times when the aerosol absorption coefficient is <2 Mm
−1

, correspond-

ing to an equivalent black carbon concentration of about <0.2µg m
−3

). It is difficult

to find corresponding AOT data, as the two nearest AERONET sites are in Krasno-

yarsk and Tomsk, two highly industrialized cities with strong local pollution sources.

The median and quartile ranges for AOT500 at these sites are 0.163(0.122, 0.219) and5

0.138(0.094, 0.209), respectively. A better site to represent remote values in boreal

Siberia may be Yakutsk, which has a much smaller population and little industry. The

median AOT500 there is 0.081(0.053–0.120), comparable to many other remote con-

tinental sites, but still considerably higher than at Fort McMurray in northern Canada:

0.057(0.034, 0.089). The only report from the extratropical continental Southern Hemi-10

sphere is from a flight campaign in South Africa, where CCN0.4 values of 137±63 were

measured over the Highveld region on a clean day (Ross et al., 2003). On the same

day, the AERONET site at Bethlehem, in the center of the Highveld, measured an

AOT500 of 0.045±0.013.

In summary, the mean values of CCN0.4 and AOT500 over extratropical remote sites15

are not distinctly different from those measured over Amazonia, even considering that

some influence from long-range transport of pollution aerosol is unavoidable in these

measurements. For example, more than half of the sulfate aerosol over remote British

Columbia is from East Asian sources (van Donkelaar et al., 2008). This implies that

pre-anthropogenic CCN0.4 concentrations over most continental regions were below,20

maybe even well below, 200 cm
−3

.

3.3 Remote marine regions

Remote marine regions, especially in the Southern Hemisphere, are usually consid-

ered the least polluted and most pristine parts of the atmosphere, but it must be remem-

bered that anthropogenic pollution reaches even the remotest sites. This is, for exam-25

ple, readily seen at the Cape Grim background station, where aerosols from biomass

burning in Southern Africa are readily detected during the fire season (Heintzenberg
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and Bigg, 1990). Nevertheless, remote marine sites show the lowest number concen-

trations of aerosol particles and CCN worldwide. In the winter season, CCN concentra-

tions in some areas drop down to a few tens per cm
3
, as shown in Table 2 by data from

the Southern Ocean (Cape Grim) and the Northeast Pacific (off Washington State),

while in other areas, e.g. at the Northeast Atlantic coast (Mace Head) this seasonal5

cycle is less pronounced. Over biologically productive ocean regions, such as the trop-

ical oceans and the temperate regions in summer, CCN0.4 concentrations are typically

near or above 100 cm
−3

. This seasonal behavior is related to the biogenic production

of marine aerosols, probably both via the emission of DMS and its oxidation to sul-

fate, and the release of primary biogenic particles (Charlson et al., 1987; Andreae and10

Rosenfeld, 2008). The reduced seasonality at some sites may be related to the effect

of low levels of anthropogenic pollution, which can make a significant contribution to

the very low aerosol concentrations present at remote oceanic sites in winter (Andreae

et al., 1999, 2003; Reade et al., 2006).

Overall, one finds that CCN concentrations over the present-day remote oceans are15

on average about one-half of those over the present-day remote continents (Table 2),

but with a very broad overlap (Fig. 1). In view of the fact that the sources of anthro-

pogenic emissions are all located on land (with the exception of ship-stack emissions),

it must be assumed that this ocean-land difference in CCN concentrations was sub-

stantially lower in pre-human times.20

Remote ocean areas also show very low AOT values, in spite of the relatively

high fraction of scattering associated with the seasalt aerosol (Quinn and Coffman,

1999). The datasets compiled in Table 2 yield an average AOT500 of 0.055±0.023, in

good agreement with the “baseline” marine AOT550 of 0.06±0.01 given by Kaufman

et al. (2005). Interestingly, the seasonality of AOT at Cape Grim is opposite to that25

of seasalt aerosol, which has its highest concentrations in the winter (Andreae et al.,

1999). This argues against a dominant role of seasalt in controlling AOT, and suggests

that the fine aerosol fraction may dominate both CCN concentration and AOT. The

same conclusion was reached by Vallina et al. (2006) based on a statistical analysis of
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the CCN concentrations over the Southern Ocean and their controlling variables.

3.4 Polluted continental and marine regions

CCN concentrations and AOT values in polluted regions show a continuous increase

from near-pristine values to extremely high levels in urban or biomass-burning regions

(Table 2). In general, polluted marine regions tend to have lower values (range of5

study averages: CCN0.4 600–1700 cm
−3

, AOT500 0.15–0.39) than continental polluted

areas (CCN0.4 370–9100 cm
−3

, AOT500 0.10–0.90) because they are usually more dis-

tant from sources. This can be also seen at some coastal sites, such as Amnyeon

and Gosan (Korea), which experience both direct continental flow and inflow of pol-

luted airmasses that have spent up to several days over the ocean. Thus, the CCN0.410

concentrations in these airmasses, which in terms of airmass trajectories would be

classified as marine, are in the range conventionally thought of as “continental”, again

putting in question the validity of this classification (Roberts et al., 2001). On the other

hand, some of the continental sites in Europe and North America (e.g. the Hohenpeis-

senberg, New Hampshire and North Carolina sites) show relatively low CCN and AOT15

values, most likely as a result of the reductions in pollutant emissions over the last

two decades. The highest values in Table 2 come from peri-urban regions in China,

i.e. from locations just outside the urban areas of Guangzhou and Beijing. I have not

included any urban measurements, because it is difficult to obtain representative mea-

surements in such a highly variable environment, and because this analysis is mainly20

directed towards the regional to global scale.

3.5 Relationship between CCN0.4 and AOT500

The scatterplot between CCN0.4 and AOT500 (Fig. 1) shows a surprisingly tight rela-

tionship, which can be fitted with a power law AOT500=0.0027·[CCN0.4]
0.640

with a very

high degree of correlation (r
2
=0.88). While the deviations of individual studies from25

this trend are sometimes large (up to a factor of three), and obviously deviations for
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single measurements at one place and time must be expected to be even greater, this

does provide a basis for a parameterization of CCN concentrations in large-scale re-

gional and global climate models. Note that in almost all cases the regression line goes

through the error bars of the data. Figure 1 also highlights the broad overlap between

remote marine and continental values.5

Some further developments to this approach suggest themselves. Given that the

CCN concentration is more closely tied to the finer fraction of the aerosol, AOT mea-

surements at lower wavelengths might provide better correlations than the commonly

used AOT500, which was employed in this study. Alternatively, instead of AOT500, one

might examine correlations between CCN and the aerosol index AI, defined as the10

product of AOT and the Ångstrom exponent, thus providing another way of weighting

the AOT measurement towards the fine mode. Finally, instead of the use of ground-

based AOT measurements, one could examine the use of products based on satellite

remote sensing, such as the fine mode AOT product from MODIS (Remer et al., 2005),

especially once the remaining calibration issues in the MODIS products have been re-15

solved. These investigations go beyond the scope of the present study, however, which

has been designed as a first examination of large-scale relationships between potential

proxies for the radiative and cloud microphysical forcings of anthropogenic aerosols.

Figure 2 shows the relationship between CCN0.4 and CN concentrations. Again,

there is a surprisingly good correlation, especially in view of the very different regimes20

from which the data are taken and the many different instruments by which they have

been collected. The data in Table 2 suggest a fairly constant CCN0.4/CN ratio of

0.36±0.14 (excluding the two very low values from Laramie, Wyoming), which has

been plotted as a line in Fig. 2. This relationship reflects the relatively narrow range of

hygroscopicity parameters and the convergent character of aerosol size distributions25

typical of many non-urban regions (Andreae and Rosenfeld, 2008).
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4 Summary and conclusions

Analysis of published and unpublished data on AOT500 and CCN concentration shows

that measurements from remote oceanic and continental regions fall into relatively nar-

row ranges. Remote marine CCN0.4 concentrations are typically near or slightly above

100 cm
−3

in biologically productive regions and seasons, and of the order of a few tens5

per cm
3

in winter. The average AOT500 over the remote oceans is 0.057±0.023, again

with lower values in winter. Remote continental areas have, on average, almost twice

as many CCN, and a mean AOT500 of 0.075±0.025 (Table 2). Some, or maybe even

most of this difference, must be related to the closer proximity that even remote conti-

nental sites have to pollution sources, underscoring that the difference between marine10

and continental levels must have been smaller before the advent of anthropogenic pol-

lution. CCN concentrations over polluted regions are on average about one order of

magnitude greater than over their remote counterparts, while the AOT500 values over

the polluted regions are about 5 times those over their remote equivalents (Table 2).

CCN0.4 concentrations and AOT500 values show a surprising degree of correlation,15

which can be expressed as a power law (Note that regions dominated by desert dust

have been excluded from this analysis). Given the difficulty of making direct CCN mea-

surements, this relationship should be of great practical value in large-scale studies on

the influence of the various direct and indirect aerosol effects on climate, as it provides

an easily measured proxy for CCN concentrations. It also implies that the radiative and20

microphysical effects of aerosols on clouds, and therefore on climate and precipitation,

are correlated and cannot vary independently of one another, at least not on larger

scales. Various refinements to this analysis can be suggested, including the use of

different AOT measurement wavelengths and spaceborne remote sensing.
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(1993–1995 and 1999–2006), J. Geophys. Res., 113, D04204, doi:10.1029/2007JD009319
2008.

Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter,
M., and Andreae, M. O.: Spectral light absorption by ambient aerosols influenced by biomass10

burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement
techniques, Atmos. Chem. Phys., 6, 3443–3462, 2006,
http://www.atmos-chem-phys.net/6/3443/2006/.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to
climate change, New York: John Wiley, 1326 p., 1998.15

Squires, P. and Twomey, S.: A comparison of cloud nucleus measurements over central North
America and the Caribbean Sea, J. Atmos. Sci., 23, 401–404, 1966.

Stroud, C. A., Nenes, A., Jimenez, J. L., DeCarlo, P. F., Huffman, J. A., Bruintjes, R., Nemitz,
E., Delia, A. E., Toohey, D. W., Guenther, A. B., and Nandi, S.: Cloud activating properties of
aerosol observed during CELTIC, J. Atmos. Sci., 64, 441–459, 2007.20

Swap, R., Garstang, M., Greco, S., Talbot, R., and Kållberg, P.: Saharan dust in the Amazon
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Table 1. CCN0.4, CN, and AOT500 measurements from the Amazon Basin.

Campaign,
Time, Season

CCN0.4 (cm
−3

) CN (cm
−3

) AOT (500 nm) Location Reference

Clean conditions

CLAIRE-98
Feb–Mar 1998, wet

190±130 460±320 0.089±0.020
∗

Balbina, Amazonas
01.92 S, 059.49 W

Roberts et al. (2001);
Mar–Jun 2000–2001

LBA-EUSTACH
Apr 1999, wet

155±65
a

380±160 0.048 Rebio Jarú, Rondonia
10.08 S, 061.93 W

Guyon et al. (2003)

LBA-EUSTACH
Jan–Mar, Nov 1999

230±100
a

– 0.121±0.033
∗

Ji Paraná, Rondonia
10.88 S, 061.94 W

Williams et al. (2002)

CLAIRE-2001
Jul 2001, late wet

190±90 530±430 0.082±0.008
∗

Balbina, Amazonas
01.92 S, 059.49 W

Rissler et al. (2004)

SMOCC
Oct 2002, late dry

205±40 500±100 – NW of Cruzeiro do Sul, AM
∼07 S, 073 W

Andreae et al. (2004)

AMAZE-08
Feb–Mar 2008, wet

138±94
a

336±228 – N of Manaus
02.60 S, 060.21 W

S. Gunthe, J. Schneider,
unpubl.

AERONET
1993–2006

– – 0.093±0.06 Amazon Basin forest Schafer et al. (2008)

Smoky conditions

LBA-EUSTACH
Sep–Oct 1999, dry

1000–4000
a

2000–8000 0.80±0.24 Rebio Jarú, Rondonia
10.08 S, 061.93 W

Guyon et al. (2003)

LBA-EUSTACH
Sep–Oct 1999, dry

1300–7500
a

2500–15 000 0.91 Fazenda Nossa Senhora, RO
10.76 S, 062.36 W

Artaxo et al. (2002)

LBA-EUSTACH
Oct 1999, late dry

650–2000
a

– 0.90
∗

Ji Paraná, Rondonia
10.88 S, 061.94 W

Williams et al. (2002)

CLAIRE-2001
Jul 2001, late wet

400–1000 800–2000 0.089±0.023
∗

Balbina, Amazonas
01.92 S, 059.49 W

Rissler et al. (2004)

SMOCC
Sep–Oct 2002, dry

1000–4000 2000–8000 0.95
∗

Rondonia and Mato Grosso
∼98–13 S, 056–064 W

Andreae et al. (2004)

AERONET
1993–2006

– – 0.90±0.63 Southern Amazon Basin forest Schafer et al. (2008)

Smoke plumes

SMOCC
Oct 2002, dry

10 000–22 000 20 000–44 000 – Rondonia and Mato Grosso
∼98–13 S, 056–064 W

Andreae et al. (2004)

∗
Data from the AERONET website. When the AERONET data period differs from the campaign period, it is indicated in the Reference column.

a
CCN0.4 calculated from CN using CCN0.4 /CN ratio (see text).

11315

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/11293/2008/acpd-8-11293-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/11293/2008/acpd-8-11293-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 11293–11320, 2008

Global CCN and AOT

correlations

M. O. Andreae

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. CCN0.4, CN, and AOT500 measurements from remote and polluted, marine and con-
tinental environments. Data are presented as means and standard deviations (mmm±sss) or
medians and quartile ranges [nnn (lll-uuu)]. “Æ:” identifies the AERONET site from which the
AOT data are taken. Where the CCN and AOT data are from different locations, this is indicated
in the Position column.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference

[cm
−3

] [cm
−3

]

Clean conditions, marine

Cape Grim
summer 119±32 570±80 0.21 0.048±0.010 AOT data from CGO station 40.68 S, 144.69 E Gras (1990); J. Gras, unpubl.;
winter 46±11 153±37 0.30 0.015±0.010 Wilson and Forgan (2002)

Southern Ocean, off Tasmania
summer 90±20 266±150 0.34 0.048±0.010 aircraft, baseline ∼41–42 S, 144 E Yum and Hudson (2004)
winter 27±10 210±190 0.13 0.015±0.010 AOT data from CGO station 40.68 S, 144.69 E

S. Indian Ocean, 210±140 – – off S. Africa Ross et al. (2003)

Mar–Apr 2001 0.065 (0.048, 0.091)
b

Æ: Reunion 20.88 S, 055.48 E

S. Trop. Indian Oc. 150±20 361±31 0.42 INDOEX ∼3–8 S, ∼072–074 E Hudson and Yum (2002)

Feb/Mar 1999 0.058±0.035
b

Æ: Reunion 20.88 S, 055.48 E

Trop. S. Pacific 240±90 350±150 0.69 STRATUS 2003/04 ∼11–28 S, 71–90 W Tomlinson et al. (2007)

Nov/Dec 2003/04 0.078 (0.060, 0.010)
b

Æ: Tahiti 17.58 S, 149.60 W

Trop. N. Pacific 80±50 180±110 0.44 near Hawaii Hudson (1993)
Jul–Aug 1990 0.065±0.026 Æ: Lanai, Jul/Aug 1997–2003 20.73 N, 156.92 W

Temp. S. Pacific 108±44 330±70 0.33 – ACE1 ∼41–51 S, 138–150 E Hudson et al. (1998)
Nov–Dec 1995

Temp. N. Pacific
winter 1988–1990 23 252 0.09 – off Washington ∼47 N, 128 W Hegg et al. (1991)
summer 1989 78 594 0.13

Temp. N. Pacific 55±35 170±80 0.32 – FIRE, below stratus ∼31 N, 122 W Hudson and Frisbie (1991a)
Jun–Jul 1987 0.072 (0.058, 0.096) Æ: San Nicolas Isl. 32.26 N, 119.49 W

Arctic Ocean 54±21 161±125 0.34 – below low cloud ∼76 N, 165 W Yum and Hudson (2001)
May 1998 180±30 395±95 0.46 – no low cloud

Temp. North Atlantic 120±50 – – – little seasonality 53.33 N, 009.90 W Jennings et al. (1998)
Mace Head

N. Atl., Mace Head 81±11 – – – clean marine periods 53.33 N, 009.90 W Reade et al. (2006)
summer 96±4
winter 69±6

Temp. N. Atlantic 155±50 380±150 0.41 – ASTEX ∼30–35 N, 18–25 W Hudson and Xie (1999)
June 1992

Temp. N. Atlantic 190±50 910±160 0.21 ACE-2 ∼32–38 N, 011–013 W Johnson et al. (2000)
4 Jul 1997 0.095±0.018 Æ: Tenerife 28.03 N 016.63 W

Puerto Rico Æ: Cape San Juan
13–14 Dec 2004 108±54 290±100 0.37 0.065±0.020 Dec 2005 18.38 N, 065.62 W Allan et al. (2008)
1–9 Jan 2005 101±42 0.060±0.016 1–9 Jan 2007 G. Frank, unpubl.

Caribbean Sea 93 – – – aircraft, BL ave. ∼17 N, 066 W Squires and Twomey (1966)
Aug 1965

Tropical Atlantic 90±40 320±120 0.28 – Atlantic transect ∼10 N–30 S, 020–040 W Schäfer et al. (1993)
Oct/Nov 1990

Average 107±56 350±200 0.32±0.15 0.057±0.023

a
median

b
AERONET level 1.5 data 11316
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Table 2. Continued.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference

[cm
−3

] [cm
−3

]

Clean conditions, continental

Amazon Basin 185±120 440±100 0.41 0.082±0.020 clean conditions from Table 1

Laramie, Wyoming
Summer 280±100 6800±3800 0.04 0.117 (0.081–0.179) ∼41 N, 104 W (CCN) Delene and Deshler (2001)
Winter 92±12 3180±1120 0.03 0.069 (0.051–0.106) Æ: Missoula, MT 46.9 N, 114.08 W (Æ)

Yukon Valley 90±10 – – – – ∼66 N, 148 W Hoppel et al. (1973)
Feb 1972

Colorado Plains 280 – – – somewhat polluted ∼40 N, 105 W Squires and Twomey (1966)
Summer 1965

Fort McMurray – – – 0.057 (0.034–0.089) Æ: Fort McMurray 56.75 N, 111.48 W
Canada

Pallas, Finland 152±33 410 0.37 – CN>80 nm, activated particles Komppula et al. (2005)
Apr 2000–Feb 2002

Pallas, Finland 235 810 0.29 – CN>80 nm 67.97 N, 024.12 E Lihavainen et al. (2003)
winter ∼200
summer ∼1200

Hyytiälä, Finland 354
a

2125 0.17 – median, CN>65 nm 61.85 N, 024.30 E M. Kulmala, unpubl.
1996–2007

Siberia, ZOTTO 187 283 (173, 446) 0.66 CN>60 nm, σa <2 Mm
−1

60.80 N, 089.35 E W. Birmili, J. Heintzenberg, unpubl.
Sep 2006–Sep 2007 (109, 297) 0.081 (0.053-0.120) Æ: Yakutsk 61.66 N, 129.37 E (Æ)

South Africa 137±63 – – S. Highveld, dry season Ross et al. (2003)
1 Sep 2000 0.045±0.013 Æ: Bethlehem 28.25 S, 028.33 E (Æ)

Average 200±90 2010±2370 0.38±0.18 0.075±0.025

a
median

b
AERONET level 1.5 data
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Table 2. Continued.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference

[cm
−3

] [cm
−3

]

Polluted conditions, marine

North Atlantic 630±380 – – – polluted conditions 53.33 N, 009.90 W Jennings et al. (1998)
Mace Head

NW Atlantic, off 1170±700 4420±6160 0.26 NARE 43.85 N, 066.12 W Liu et al. (1996)
Nova Scotia 0.15±0.06 Æ: Keijmkuijk 44.38 N, 065.28 W
Aug–Sep 1993 (Aug–Sep 1998–1999)

Temp. N Atlantic 840±340 1390±550 0.60 – ASTEX ∼30–35 N, 18–25 W Hudson and Xie (1999)
June 1992

Temp. N Atlantic
16–18 Jul 1997 660±200 2270±800 0.29 0.32±0.09 ACE-2 ∼33–40 N, 011–014 W Osborne et al. (2000)
23–24 Jul 1997 830±130 1710±200 0.49 ∼30–38 N, 011–013 W Wood et al. (2000)

Temp. NW Pacific 1570±500 3510±1790 0.45 0.28+0.02 ABC-EAREX 33.29 N, 126.16 W Yum et al. (2007)
Gosan, Korea

Temp. NW Pacific 1670±390 3980±970 0.42 0.38±0.17 Æ: Amnyon 36.54 N, 126.33 E Yum et al. (2005)
Anmyeon Isl., KR
1–22 May 2004

Indian Ocean, NH 1100±100 1810±40 0.61 INDOEX ∼0–4 N, ∼072–074 E Hudson and Yum (2002)
Feb/Mar 1999 0.39±0.17 Æ: Kaashidoo 4.96 N, 073.47 E

Average 1060±400 2700±1200 0.44±0.14 0.30±0.10

Polluted conditions, continental

Mace Head, Ireland 370±70 – – – polluted continental Reade et al. (2006)

Amazon, 2500±1500 5000±3000 0.50 0.90±0.30 southern part of Amazon Basin 6–17 S, 45–70 W From Table 1
smoky season

Feldberg, near Frankfurt, Germany 2300±1000 4650±1800 0.49 0.30±0.16 20 Jul–11 Aug 2004 freq. nucleation events U. Dusek, unpubl.
1400±800 5700±4700 0.25 0.20±0.13 22 Jun–6 Jul 2005

Æ: Mainz, summer 2004/06 50.00 N, 008.30 E

Hohenpeissenberg 1120±670 3130±2580 0.36 0.10±0.07 CCN0.4=CN(>60 nm) 47.80 N, 011.12 E A. Wiedensohler, unpubl.
Germany, 1999–2001, GAW Birmili et al. (2003)
1998–2000 GAW Brief Nr. 9

South Africa 740±460 – – 0.17±0.15 wet and dry seasons ∼−18–30 S, 25–32 E Ross et al. (2003)
1999–2001

Reno, Nevada 1310±580 8790±2000 0.15 – Hudson and Frisbie (1991b)
Dec 1988–May 1990

New Hampshire 1090±350 ∼5000 0.22 rural site Medina et al. (2007)
Aug 2004 0.24±0.21 Æ: Billerica 42.53 N, 71.27 W

North Carolina 930 3400 0.27 Stroud et al. (2007)
Duke Forest, Jul 2003 0.38±0.16 Æ: Walker Branch 35.96 N, 84.29 W

Gosan, Korea 2010±950 5600±3500 0.36 0.35±0.31 ABC-EAREX 33.29 N, 126.16 W Yum et al. (2007)
11 Mar–9 Apr 2005

Anmyeon Isl., KR 3350±980 8310±1780 0.40 0.50±0.24 Æ: Amnyon 36.54 N, 126.33 E Yum et al. (2005)
1–22 May 2004

Beijing, 7200±3000 16 200±8500 0.44 Yufa site D. Rose, unpubl.
10 Aug–9 Sep 2006 0.77±0.55 Æ: Yufa 39.52 N, 116.33 E

Guangzhou Region 7300±3300 16 500±8800 0.44 CN>60 nm 22.60 N, 113.60 E A. Wiedensohler, unpubl.
NE monsoon Xinken site
Sep–Oct 2004 0.80±0.38 Æ: Hong Kong Poly 22.30 N, 114.18 E

Guangdong rural, 9100±4800 18 700±8200 0.49 0.68±0.44 Æ: Backgarden site 23.49 N, 113.04 E D. Rose, unpubl.
SE monsoon, Jul 2006

Average 2900±2800 8400±5500 0.36±0.12 0.45±0.27

a
median

b
AERONET level 1.5 data 11318
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Fig. 1. Relationship between AOT500 and CCN0.4 from investigations where these variables
have been measured simultaneously, or where data from nearby sites at comparable times
were available. The error bars reflect the variability of measurements within each study (stan-
dard deviations or quartiles).
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Fig. 2. Scatterplot of CN vs. CCN0.4 based on the data from Table 2. The line represents the
mean CCN0.4/CN ratio of 0.36.
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