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Abstract

We report an extensive airborne characterization of aerosol downwind of a massive
bovine source in the San Joaquin Valley (California) on two flights during July 2007.
The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter
probed chemical composition, particle size distribution, mixing state, sub- and super-
saturated water uptake behavior, light scattering properties, and the interrelationship
between these parameters and meteorology. Total PM,  levels and concentrations of
organics, nitrate, and ammonium were enhanced in the plume from the source as com-
pared to the background aerosol. Organics dominated the plume aerosol mass (~56—
64%), followed either by sulfate or nitrate, and then ammonium. Particulate amines
were detected in the plume aerosol by a particle-into-liquid sampler (PILS) and via
mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a signifi-
cant atmospheric base even in the presence of ammonia; particulate amine concentra-
tions are estimated as at least 14—23% of that of ammonium in the plume. Enhanced
sub- and supersaturated water uptake and reduced refractive indices were coincident
with lower organic mass fractions, higher nitrate mass fractions, and the detection of
amines. Kinetic limitations due to hydrophobic organic material are shown to have
likely suppressed droplet growth. After removing effects associated with size distribu-
tion and mixing state, the normalized activated fraction of cloud condensation nuclei
(CCN) increased as a function of the subsaturated hygroscopic growth factor, with the
highest activated fractions being consistent with relatively lower organic mass fractions
and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the or-
ganic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes
Robinson (ZSR) mixing rule. Representative values for a parameterization treating
particle water uptake in both the sub- and supersaturated regimes are reported for
incorporation into atmospheric models.
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1 Introduction

Bovine emissions are a major source of methane (CH,), nitrous oxide (N,O), and am-
monia (NH3); they are also the dominant anthropogenic source for amines (Schade and
Crutzen, 1995). Ammonia is the dominant base in the atmosphere, efficiently neutraliz-
ing acidic substances. The main global sources of ammonia are from livestock waste,
fertilizer applications, biomass burning, motor vehicle emissions, and coal combustion
(Apsimon et al., 1987; Asman and Janssen, 1987; Kleeman et al., 1999; Anderson et
al., 2003; Battye et al., 2003). Typical ammonia mixing ratios over continents range
between 0.1 and 10 ppb (Edgerton et al., 2007, and references therein), while levels
as high as a few ppm have been reported near areas of extensive livestock operations
(Rumburg et al., 2006).

The principal inorganic aerosol components involving ammonia are ammonium ni-
trate and ammonium sulfate. The formation of these inorganic salts depends on tem-
perature, relative humidity (RH), and concentrations of NH3, nitric acid (HNOj), and
sulfur dioxide (SO,). Ammonium nitrate tends to form after sulfuric acid is completely
neutralized. Atmospheric ammonium nitrate generally obeys thermodynamic equilib-
rium with gaseous nitric acid and ammonia (Stelson et al., 1979; Doyle et al., 1979;
Stelson and Seinfeld, 1982a, 1982b; Russell et al., 1983; Hildemann et al., 1984;
Zhang et al., 2002; Takahama et al., 2004; Yu et al., 2005), although some studies
have pointed out that factors such as mass transport limitations can, at times, result
in departures from equilibrium (Wexler and Seinfeld, 1992; Meng and Seinfeld, 1996;
Fridlind and Jacobson, 2000; Fridlind et al., 2000). The equilibrium between particulate
ammonium nitrate and gaseous nitric acid and ammonia shifts to the gas phase as am-
bient temperature increases, and RH decreases. Similar to ammonia, amines undergo
neutralization reactions with nitric and sulfuric acids to form amine salts (Mozurkewich,
1993; Stelson and Seinfeld, 1982a; Angelino et al., 2001; Murphy et al., 2007). The
photooxidation of gas-phase amines has been shown to form aerosol based on recent
laboratory experiments (Angelino et al., 2001; Murphy et al., 2007).

10417

ACPD
8, 10415-10479, 2008

Aerosol from a
bovine source

A. Sorooshian et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/10415/2008/acpd-8-10415-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/10415/2008/acpd-8-10415-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Gaseous amines, including methylamine, dimethylamine, trimethylamine, ethy-
lamine, diethylamine, triethylamine, ethanoloamine, n-butylamine, amylamine, 1,4-
butanediamine, isobutylamine, and isopropylamine, have been identified in emissions
from bovine sources (Mosier et al., 1973; Hutchinson et al., 1982; Schade and Crutzen,
1995; Rabaud et al., 2003; Ngwabie et al., 2005). Amine emission rates from animal
husbandry sources are typically two to three orders of magnitude lower than those of
ammonia (Schade and Crutzen, 1995; Ngwabie et al., 2005). Gaseous amines are
also present in vehicular exhaust (Cadle and Mulawa, 1980; Westerholm et al., 1993),
the marine atmosphere (Vanneste et al., 1987), biomass burning plumes (Lobert et
al., 1991), as well as emissions from decaying organic matter, waste incineration,
and sewage treatment plants (Manahan, 2005). Amine salts have sufficiently low va-
por pressures to partition to the aerosol phase; moreover, they exhibit greater water-
solubility as compared to other particulate organic nitrogen species (Milne and Zika,
1993; Gorzelska et al., 1994; Murphy and Thomson, 1997; Glagolenko and Phares,
1994; Abalos et al., 1999; Angelino et al., 2001; Makela et al., 2001; Tan et al., 2002;
Zhang et al., 2002; Zhang and Anastasio, 2003; Maria et al., 2003; Beddows et al.,
2004; Denkenberger et al., 2007; Murphy et al., 2007; Sorooshian et al., 2007a).

The availability of a massive, concentrated source of ammonia and amines offers a
unique opportunity to probe the response of the resulting aerosol. During July 2007,
the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter
probed the aerosol downwind of a major cattle feedlot in the San Joaquin Valley in Cal-
ifornia. The San Joaquin Valley, the major geographical feature in central California, is
bordered on its west and east sides by mountain ranges and is characterized by rela-
tively stagnant air circulation (Fig. 1a). Consequently, this region is one of the largest
nonattainment areas for ozone and particulate matter in the United States (Chow et
al., 2006). The San Joaquin Valley contains numerous animal husbandry operations,
the largest of which is the focus of this study. This feedlot operation covers several
hundred acres and contains up to 100000 head of cattle at any one time. Although
gas-phase measurements were not carried out, the presence of ammonia and amines
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is inferred from established emissions inventories from animal husbandry sources and
from measurements of the ammonium and amine content of the aerosol downwind of
the plume source.

The goal of the present study is to provide a comprehensive airborne characteriza-
tion of the aerosol downwind of a major bovine source. First, the aircraft instrument
payload and flight path strategy are presented. Detailed measurements were obtained
for: meteorology, aerosol size distributions and number concentrations, aerosol com-
position, mixing state, refractive index, hygroscopic growth factors at three different
relative humidities, and cloud condensation nucleus (CCN) behavior. Special attention
is given to the sub- and supersaturated water uptake properties of the aerosol, and how
these relate to chemical composition. Subsaturated hygroscopic growth factors for the
organic fraction of the aerosol are reported based on a closure analysis employing
the Zdanovskii-Stokes Robinson mixing rule. Subsaturated hygroscopic growth data
are then compared to measured supersaturated CCN activity to evaluate the level of
consistency between observed water uptake in the two regimes.

2 Experimental methods

The data on which the present study is based were acquired during two clear air flights
in the San Joaquin Valley on 12 July 2007 and 30 July 2007. Henceforth, these two
flights will be termed flight A (12 July 2007) and flight B (30 July 2007). The aircraft total
aerosol inlet, characterized by Hegg et al. (2005), provided sample air to instruments
on the aircraft. The instrument payload on the Twin Otter aircraft is described elsewhere
(http://www.cirpas.org), however, attention is given below to those instruments the data
from which will be discussed in detail.
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2.1 Aerosol chemical composition (PILS)

Water-soluble aerosol chemical composition was measured by a particle-into-liquid
sampler (PILS, Brechtel Mfg Inc.; Sorooshian et al., 2006a). In the PILS, submicrome-
ter ambient particles are grown into droplets sufficiently large to be collected by inertial
impaction for subsequent chemical analysis. At the entrance to the instrument a se-
ries of three denuders (URG and Sunset Laboratories) remove inorganic (basic and
acidic) and organic gases that would otherwise bias aerosol measurements. The de-
nuders have been shown to successfully remove gaseous amine species (Murphy et
al., 2007). The impacted droplets are delivered to a rotating carousel containing 72
vials, with each vial containing material representing a period of ~5min of flight, or
alternatively, a distance of 15km in flight (aircraft speed ~50 m/s). The contents of the
vials are subsequently analyzed off-line using a dual ion chromatography (IC) system
(ICS-2000, Dionex Inc.) for simultaneous anion and cation analysis.

The PILS-IC instrument uncertainty has been established as+7%, and the detection
limit (calculated as air-equivalent concentration of the lowest concentration standard
that is distinct from baseline noise in the IC plus three times the standard deviation
of this measurement) is <0.1 pg/m° for the inorganic ions (Na*, NH}, K*, Mg®*,
ca®*, CI”, NO,, NO;, and SOi‘) and <0.01 ug/m3 for the organic acid ions (car-
boxylic acids with one to nine carbon atoms) (Sorooshian et al., 2007b). The PILS-IC
technique has been demonstrated to speciate amines, including ethylamine, diethy-
lamine, triethylamine, methylamine, dimethylamine, and trimethylamine (Murphy et al.,
2007); however, only ethylamine and diethylamine were measured above detection lim-
its (0.01 ug/m3) in the present study. It should be noted that ammonium and ethylamine
co-elute in the IC cation column; however, ethylamine was detected at sufficiently high
concentrations for its peak to be distinguishable from that of ammonium. The reported
concentrations of ethylamine represent a lower limit due to this co-elution effect. Since
acetate, lactate, and glycolate also co-elute, these three species are reported as a
collective mass using the calibration equation of acetate; therefore, the contribution of
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acetate reported is likely an overestimate. As compared to acetate, using the calibra-
tion equation of glycolate would reduce the estimates by <10%.

2.2 Aerosol chemical composition (Aerodyne cToF-AMS)

Chemical composition measurements for non-refractory aerosol species (sulfate, ni-
trate, ammonium, and organics) were performed using an Aerodyne compact Time of
Flight Aerosol Mass Spectrometer (cToF-AMS; Drewnick et al., 2004a, 2004b). At the
entrance to the instrument, an aerodynamic lens focuses particles with vacuum aero-
dynamic diameters between approximately 50 nm and 800 nm through a 3.5% chopper
and onto a tungsten vaporizer (~550°C) (Murphy et al., 2007). The chopper can be
operated in three modes to gather either background mass spectra, ensemble average
mass spectra over all particle sizes, or size-resolved mass spectra. Once vaporized,
molecules undergo electron impact ionization and travel through a time of flight mass
analyzer. The cToF-AMS detects the presence of amines in the form of characteristic
amine peaks at m/z 30, 56, 58, 73, and 86 (McClafferty and Turecek, 1993; Angelino
et al., 2001; Murphy et al., 2007). The detection limit, calculated as three times the
standard deviation of the noise for filtered air, is <0.05 ug/m3 for all species measured.

The cToF-AMS can be used to calculate a quantity that will be referred to subse-
quently as excess nitrate. Excess nitrate is defined as the nitrate mass, derived from
cToF-AMS spectra, remaining after both sulfate and nitrate have been fully neutralized
by ammonium. A zero or slightly negative value indicates that sufficient ammonia exists
to neutralize both sulfate and nitrate, while a positive value indicates that some nitrate
is associated with other cations besides ammonium. cToF-AMS calibrations allow an
assessment of the error associated with the excess nitrate calculation; introducing pure
ammonium nitrate into the instrument should result in an excess nitrate value of zero.
After flight A, calibrations were conducted with monodisperse ammonium nitrate parti-
cles ranging from 50 nm to 400 nm and mass concentrations ranging from 1.5 ug/m3
to 7.0 ug/ms, similar to concentrations in flight. Thirty-three calibration points were
collected that exhibited an average excess nitrate of 0.08+0.31 ug/ms. Similarly dur-
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ing a calibration on the day of flight B, 350 nm and 400 nm ammonium nitrate particles
were introduced into the instrument at levels near ~3 ug/m3, which exceeds the peak
nitrate concentration observed during the flight. The average excess nitrate was —
0.014:|:0.095ug/m3 (n=17). As will be shown, ambient excess nitrate concentrations
in the plume aerosol significantly exceeded the background values for pure ammonium
nitrate.

Nitrate species can be detected by peaks at m/z 30 and 46. A problem innate to
cToF-AMS unit mass-resolution spectra is differentiating between NO*, CH,O", and
CQHg, all of which give peaks at m/z 30. If the contribution of organic fragments to
the signal at m/z 30 is not correctly accounted for, the mass of nitrate, as inferred
from NO™, can be overestimated. A relatively conservative approach is to calculate
nitrate mass using the peak intensity at m/z 46 (Nog), which rarely corresponds to an
organic fragment (McClafferty and Turecek, 1993). Calibration of the instrument with
pure ammonium nitrate allows observation of the ratio of the peak intensities at m/z 30
and 46 when NO* and NOQ are present without organic interference. During such a
calibration conducted after flight A, the peak at m/z 30 was observed to be 2.2 times
that at m/z 46. Thus, for this flight, nitrate mass at m/z 30 was calculated to be 2.2
times the mass at m/z 46. Based on calibrations on the day of flight B, the peak at m/z
30 was observed to be 2.8 times that at m/z 46. The two calibrations were seventeen
days apart, and instrumental drift is responsible for the difference in the m/z 30:46 ratio
between the two days; typical values observed with this instrument range between two
and three. The mass remaining at m/z 30 after the nitrate contribution is subtracted
is assumed to be organic, including amine species, which often exhibit a major peak
here.

2.3 Aerosol hygroscopicity and refractive index (DASH-SP)

A differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP; Brech-
tel Mfg Inc.; Sorooshian et al., 2008) was included in the instrument payload on the
aircraft. The DASH-SP consists of a single classification differential mobility analyzer
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(DMA) followed by a set of parallel hygroscopic growth chambers operated at different
relative humidities. A ~0.5 LPM aerosol sample flow passes first through a Nafion drier,
and then through a '°Po neutralizer that brings the dried particles to a stable, steady-
state charge distribution. A cylindrical DMA selects particles in a narrow interval of
mobility-equivalent diameters in the 0.1 to 1.0 um range. The classified aerosol leaving
the DMA is split into five separate flows. In one of the five streams, the total concentra-
tion of classified particles is determined using an integral TSI Model 3831 water-based
condensation particle counter (CPC). The remaining four classified aerosol flows pass
through a Nafion humidifier (Perma Pure, LLP, Model MD-070-24FS-4) to achieve ther-
modynamic equilibrium with water vapor at a constant, predetermined RH. The four
conditioned aerosol flows pass directly to dedicated, custom-built OPCs (1 =532 nm,
World Star Technologies, Model TECGL-30) designed to size particles in the 100 nm
to 3 um diameter size range. An iterative data processing algorithm quantifies an ’ef-
fective’ aerosol refractive index that is used to calculate hygroscopic growth factors
(GF=D,, /D, 4ry) corrected for the refractive-index dependence of the OPC response
(Sorooshian et al., 2008). During this study, the DASH-SP provided simultaneous mea-
surements of GFs at different RHs for dry DMA-selected particle diameters between
D,=150-200nm. One humidifier was operated dry (RH <8%), and the other three
were at RHs of 74%, 85%, and 92%. (No data from the RH=85% channel were avail-
able during flight A.) The uncertainty associated with growth factor measurements is
~+4.5%, and the uncertainty in the RH is+1.5%.

2.4 Cloud condensation nuclei counter (CCNc)

A continuous flow thermal gradient cloud condensation nuclei counter (CCNc, Droplet
Measurement Technologies Inc.; Roberts and Nenes, 2005; Lance et al., 2006) was
used to quantify the number of particles that activate at supersaturations ranging from
0.1% to 0.6%. In the instrument a supersaturation is generated in an axisymmetric flow
by applying a constant streamwise temperature gradient, using three sets of thermal
electric coolers across a wetted column. At the exit of the CCNc column, those par-
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ticles that activate and grow sufficiently large (D,>0.75 pm) for detection by an OPC
were quantified. The activated fraction is determined as the ratio of the CCN number
concentration to the total particle (CN) number concentration.

2.5 Size Distributions and particle number concentration

Aerosol size distribution data were obtained by a DMA (D,=10-800nm) and an exter-
nal passive cavity aerosol spectrometer probe (0.1-3 um) (PCASP, PMS Inc., modified
by DMT Inc.). Particle number concentrations were quantified with two condensation
particle counters (CPC Model 3010, TSI Inc., D,>10nm; UFCPC Model 3025, TSI
Inc., D,>3nm). When the two CPCs experienced electrical saturation, particle num-
ber concentrations from the DMA are reported. The DMA time resolution is 74 s as
opposed to 1s for the CPCs.

2.6 Flight strategy

Complete flight tracks from flights A and B are shown in Fig. 1a. Both flights were
intended to resemble each other in the time of the day and flight path. Starting from
the Marina, CA airport, the aircraft transited east before descending to 50 m above the
surface of the San Joaquin Valley. Then the aircraft flew southeast directly towards
the feedlot, approaching to within one kilometer of the feedlot. A close-up of the flight
tracks near the plume source with step-by-step details of the flight strategy is shown in
Fig. 1b/c. In each flight, the Twin Otter circled above the perimeter of the source several
times, performed a spiral ascent to characterize the meteorological profile, performed
several downwind transects of the plume at various altitudes below the boundary layer
top, flew directly in the plume for several legs (only flight B), and transited northwest
back up the valley. Sampling lasted for more than three hours starting just before noon
during both flights. The feedlot operation is slightly larger than 3km? in area (~800
acres). The feedlot is bordered on the west side by the Interstate 5 roadway, which is a
major transportation route and source of vehicular emissions, connecting northern and
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southern California.

3 Results
3.1 Meteorology

Figures 2 (flight A) and 3 (flight B) display the time evolution of meteorological and
particle number concentration data, while Fig. 4 presents vertical profiles. During flight
B, ambient temperatures (27.5+2.4°C) were higher and RHs (25.8+5.9%) were lower
than observed in flight A (21.8+2.3°C; 49.0+7.8%). During both flights, the aircraft per-
formed three vertical profiles of the boundary layer. The temperature inversions were
weak (<1°C), so decreases in RH and particle number concentrations, as quantified
by the DMA and PCASP, are used as indicators for inversion layers. The boundary
layer exhibited multiple inversions, the highest of which was observed at the end of
the flights (~3 PM local time) at ~630 m. The depth of the inversion layers increased
with time as the surface warmed. The vertical temperature and RH profiles, and the
relatively uniform particle concentrations with altitude (Fig. 4) provide evidence for a
vigorously-mixed boundary layer, as was previously observed by Neuman et al. (2003)
in the San Joaquin Valley in May 2002.

Five-day back-trajectories, computed using the NOAA HYSPLIT model (Draxler and
Rolph, 2003), show that the background air during flight A originated over the Pacific
Ocean, whereas the background air during flight B was transported over land from
the north (Fig. 5). This suggests that the background aerosol in flight A may have
carried the signature of cleaner marine air, while that measured during flight B was
more exposed to urban and agricultural emissions.

3.2 Particle number concentrations and size distributions

Average submicrometer particle number concentrations in the plume were
30528+8987cm™° (flight A) and 16 606+4286 cm™ (flight B) (Table 1). Particle num-
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ber concentrations in and out of the plume were similar, indicating the absence of
significant emissions of particles from the source. (As noted in Sect. 3.3, nitrate en-
hancement is used to identify the location of the plume.) During the downwind plume
transects, number concentrations decreased slightly with increasing altitude until a
sharp decrease near the top of the boundary layer to below 300 cm™3 (flight A) and
800cm™° (flight B) at altitudes of 550 m and 400 m, respectively. The ratio of the num-
ber concentration of particles with D,,>3nm to the number concentration of particles
with D,>10nm was 1.1+0.1 and 1.2+0.1 for flights A and B, respectively. This ratio
showed no difference in and out of the plume and decreased with altitude.

The vertical structure of the PCASP (D,=0.1-3 um) and CPC number concentra-
tions were similar. Average PCASP concentrations in the plume for flights A and B
were 1065+330 and 675+£220cm ™, respectively, indicating that most of the particles
were smaller than 100 nm in diameter. The number of 0.1 to 3um diameter parti-
cles in the plume was enhanced by a factor of 2.5-3 times as much over that in the
background aerosol. This is especially evident by the increase in number concentra-
tion (D,>100 nm) observed when passing through the beginning of the plume over the
perimeter of the source (upper panels of Fig. 2/ 3; see the flight segments labeled “2”
when the aircraft was circling the perimeter of the plume source); this likely is a re-
sult of smaller particles growing into this size range. However, the increase in number
concentration for particles with D,=0.1-3 um was not sufficiently large to result in a
significant difference in the submicrometer number concentration (D,=0.01-1pum) in
and out of the plume.

Aerosol number and volume distributions were similar both between the two flights,
and in and out of the plume. Multiple modes normally existed in the number and volume
distributions. A number concentration mode was generally present between D,=20—
60 nm, with a weaker mode between D,=60-100 nm (lower panels of Fig. 2/ 3). There
was also a dominant number concentration mode, which will be referred to as the
nucleation mode, at sizes smaller than the detection limit of the DMA (10 nm); this
mode is evident from the difference in number concentration measured by the DMA
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and the UFCPC 3025. Volume concentration modes existed at D,=30-60nm, D,
~100nm, and frequently at D,>100nm. The number and volume distributions in the
plume shifted slightly to larger sizes with downwind distance from the plume source.

3.3 Submicrometer aerosol chemical composition

Figures 6 (time series), 7/8 (spatial distribution), and 9 (vertical distribution) summa-
rize the submicrometer aerosol composition data, in addition to Table 1, which reports
the background and in-plume composition for both flights. The reported total organic
mass is non-refractory organic mass that was measured by the cToF-AMS. The total
aerosol mass is determined as the sum of inorganic mass, as determined by the PILS
and cToF-AMS, and non-refractory organic mass from the cToF-AMS. Nitrate enhance-
ment is used to define the location of the plume. Then, knowing where the plume is,
local enhancements in other species concentrations and aerosol properties can be de-
termined. Plume ages are noted on the spatial plots in Fig. 1B/C and were calculated
using downwind distance and average wind speed in the vicinity of the source. The
highest plume age encountered in flights A and B was 0.9h and 1.2 h, respectively.

3.3.1 Total aerosol mass and major components

The average total aerosol mass in the boundary layer was 8.85+1.79 ug/m3 and

3.40+0.98 ug/m3 during flights A and B, respectively, with significant enhancements i |n
the plume (Table 1). The highest concentrations, 17.07 ug/m" (flight A) and 6.27 pg/m
(flight B), occurred in the plume while the lowest concentrations were observed at the
highest altitudes when the aircraft performed spiral ascents (flight A=1.40 ug/ms; flight
B=0.24 pug/m?).

Overall, organic species dominated the total mass. Organics accounted for
61.9%+2.6% (flight A) and 55.5%+6.4% (flight B) of the plume aerosol mass, and
63.5%+3.3% (flight A) and 63.1%+11.9% (flight B) of the background aerosol mass.
The organic mass concentration in the plume was 6.48+0.98 ug/m3 (flight A) and

10427

ACPD
8, 10415-10479, 2008

Aerosol from a
bovine source

A. Sorooshian et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/10415/2008/acpd-8-10415-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/10415/2008/acpd-8-10415-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2.46+0.29 ug/m3 (flight B), and in the background aerosol was 5.10+1.07 ug/m3 (flight
A) and 1.73+0.70 ug/m3 (flight B). The next largest contributor to the particulate mass
was either sulfate or nitrate, depending on the day and aerosol type, followed by ei-
ther ammonium or nitrate (see Table 1). The ratio of organic mass to inorganic mass
in the plume was 1.64+0.19 (flight A) and 1.30+0.39 (flight B), while the ratio in the
background aerosol was 1.77+0.29 (flight A) and 1.92+0.68 (flight B). Previous mea-
surements in the San Joaquin Valley have also shown that organic aerosol contributes
significantly to the fine particle mass (Chow et al., 1996; Neuman et al., 2003).

3.3.2 Inorganic aerosol

Within the source plume, the levels of nitrate and ammonium increased significantly
above their respective values in the background valley aerosol (Fig. 6-8). The
ammonium-to-sulfate molar ratio is an important indicator of the level of partitioning
of ammonium nitrate between the gas and aerosol phases. Since this ratio usually ex-
ceeded two, ammonia was available to foster partitioning of nitrate to the aerosol phase
in the plume. The vertical distribution of nitrate and ammonium exhibited similar trends
in each flight, unlike sulfate, which did not increase in concentration at plume altitudes
(~100-300 m) (Fig. 9).

Generally, other inorganic species, including chloride, sodium, potassium, calcium,
magnesium, and nitrite, did not contribute significantly (>0.1 ug/m3) to the aerosol
mass. Many of these species are expected to be found primarily in the coarse parti-
cle fraction (D,>1um), owing to their origins in sea salt (Na*, CI") and dust and soil

(Ca®*, Mg®*, Na*, K*). Magnesium, calcium, and potassium concentrations were all
below detection limits (<0.05 ug/m3). Sodium and chloride were sparsely detected in
both flights, usually in the background aerosol during the transits, with concentrations
near ~0.1 ug/ms. Nitrite above detection limits was found in only one PILS sample
(O.10ug/m3) during flight A while circling the feedlot near the beginning of the flight
(UT ~19:00).
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3.3.3 Organic aerosol

The concentration of total organics, as determined by the cToF-AMS, in the plume
aerosol significantly exceeded those in the background valley aerosol (Fig. 6-8). The
vertical distribution of total organic concentrations was somewhat similar to those of
nitrate and ammonium, with the exception that there was not as sharp an enhancement
in concentration at plume altitudes, as was especially evident in flight B (Fig. 9).
Figure 10 shows the representative mass spectra of the organic fragments detected
by the cToF-AMS in the background valley aerosol, the plume aerosol close to the
source, and farther downwind. All non-organic contributions to the mass spectra have
been removed using the methodology described in Allan et al. (2004); fragmentation
at m/z 30 was further modified as described in Sect. 2.2. Figure 11 indicates that
the signal at m/z 30 represents a large fragment for organics, including amines. The
chemical signatures of the organic aerosol in the three categories appear to be quite
similar. One difference, which is highlighted also in Fig. 11, is that the m/z 30 (common
amine marker) peak intensity is enhanced by ~150% at the closest point to the plume
source as compared to background aerosol, and decreases by ~25% at the farthest
downwind distance. Figure 11 shows comparisons of the plume aerosol organic mass
spectra to the background spectra for both flights. The overall organic aerosol appears
to be similar in and out of the plume; however, peak intensities at m/z 30, 56, 74 and
86 are enhanced in plume. These are all peaks in the electron impact mass spectrum
of amines, including diethylamine and triethylamine (McClafferty and Turecek, 1993;
Angelino et al., 2001; Murphy et al., 2007). A similar analysis for plume organics close
to the feedlot and farther downwind reveals no significant difference in most peaks, al-
though the intensity of the m/z 30 peak decreases with increasing plume age; as will be
discussed subsequently, this is likely attributed to increased partitioning of particulate
amines to the gas phase to maintain thermodynamic equilibrium as the plume dilutes
with background air. An analysis of the background valley aerosol spectra during the
transit portions of the flights indicates that the organic aerosol composition was similar
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throughout the valley.

Two amines were detected by the PILS, diethylamine and ethylamine; these were
found only in the plume (Fig. 6-8). Diethylamine reached higher concentrations (up to
0.18 ug/m3 and 6.0% of the organic mass) and was more abundant farther downwind
of the feedlot as compared to ethylamine; diethylamine was observed at plume ages
up to 0.9h (flight A) and 0.7 h (flight B). Ethylamine was detected by the PILS only in
three samples collected during the two flights. It was found immediately downwind of
the feedlot up to plume ages of 0.7 h (flight A) and 0.3 h (flight B) at concentrations near
0.02 ug/ms, which corresponds to 0.8% of the total organic mass, as inferred from the
cToF-AMS data.

The collective organic acid concentration, as determined by the PILS, reached levels
of up to 0.23ug/m° (flight A) and 0.41 ug/m® (flight B), accounting for 0.4% (+0.8%)
and 0.4% (+0.6%) of the cToF-AMS total organic mass during flights A and B, respec-
tively. Oxalate was the most abundant organic acid, followed by succinate, formate,
and acetate. The concentration of the organic acids (C;—Cgy) were not found to be
correlated with those of total organics, amines, or any inorganic species.

3.4 Aerosol mixing state

Figure 12 shows speciated size distributions for the background and in-plume aerosol
at various downwind distances for both flights. Organics, nitrate, and sulfate all ap-
pear to be externally mixed to some extent. This is especially clear when examining
the plume aerosol at various downwind distances in flight B; the distribution of nitrate
aerosol grows in diameter, while the organic distribution shows relatively less growth
and the sulfate distribution does not exhibit any corresponding shift in size. Speci-
ated size distributions for the valley aerosol during transit are similar to the background
aerosol in the vicinity of the feedlot, indicating chemically similar particles.
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3.5 Refractive index

The background aerosol exhibited a consistent average dry-particle refractive index
of 1.54+0.07 and 1.54+0.04 for flights A and B, respectively (Table 2). Since these
values are close to those of ammonium nitrate (1.55) and ammonium sulfate (1.52—
1.53) (Weast, 1987; Tang, 1996), which are the dominant inorganic components of the
aerosol, assuming a volume-weighted overall refractive index, the organic component
refractive index is calculated also to be 1.54. Notably, Zhang et al. (1994) reported
a similar refractive index of 1.55 for particulate organic compounds in Grand Canyon
aerosol. The overall aerosol refractive indices were slightly lower in the plume, with
the lowest values observed closest to the feedlot during the aircraft circling maneuvers
(1.48+0.09 and 1.51+0.01 for flights A and B, respectively). Organic species, such as
amines, may be responsible for this decrease as the organic mass fraction dominated
the total mass; ethylamine and diethylamine have refractive indices of 1.37 and 1.39,
respectively (Dean, 1999). Although only two particulate amines were speciated at low
concentrations (<4% of total mass), other amine compounds may well have existed in
the total organic mass with comparable refractive indices.

3.6 Hygroscopic properties of the aerosol
3.6.1 Subsaturated water uptake

Figures 13 and 14 present the spatial distribution of hygroscopic growth factors at the
RHs studied for flights A and B, respectively. Aerosol growth factors ranged from 1.00
to 1.27 at 74% RH, 1.21 to 1.62 at 85% RH, and 1.30 to 2.04 at 92% RH (Table 2),
depending on location, altitude, and proximity to the plume source. For reference,
growth factors for pure ammonium nitrate (D, 4,,=150 nm) at RHs of 74%, 85%, and
92% are 1.37, 1.60, and 1.94, respectively (deliquescence RH=61.8%; Brechtel and
Kreidenweis, 2000). Growth factors for pure ammonium sulfate (D, 4,=150 nm) at RHs
of 85% and 92% are 1.56 and 1.80, respectively (deliquescence RH=79.9%; Brech-
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tel and Kreidenweis, 2000). Overall, the plume aerosol exhibited higher hygroscopic
growth factors as compared to the background aerosol. Hygroscopic growth factors in
the immediate vicinity of the source were usually between 1.75—-1.90 at RH=92%.

Hygroscopic growth factors are now related to the mass fractions of the aerosol
components. Figure 15 shows the dependence of growth factors at an RH of 92%
on mass fractions of nitrate and organics measured for flight B. (Similar effects occur
at the other RHs.) Increasing growth factors coincide with higher nitrate mass frac-
tions. This effect is most evident during flight B, in terms of slope (0.31) and correlation
(H2=0.43), partly because of the larger range of nitrate mass fractions observed. In
addition, growth factors exhibited a negative correlation (R2:0.46, slope=-0.28) with
organic mass fractions. Less correlation exists between observed growth factors and
mass fractions of ammonium and sulfate (I?2 <0.21). The data show that subsaturated
hygroscopicity increases as a function of increasing fraction of ammonium nitrate, a
highly hygroscopic salt, and decreasing fraction of organics, the growth factor of which
will be explored subsequently.

3.6.2 CCN

The CCN data acquired are summarized in Table 3 and Fig. 16. Owing to the large
number of particles with diameters below about 60 nm, in the background atmosphere
as well as in the plume, the activated fractions were quite small. An enhancement in
activated fraction was observed in the plume, which is consistent with the observed
behavior of subsaturated hygroscopic growth factors.

An important issue is the extent to which aerosol composition influences CCN be-
havior. This can be manifested in two ways: (1) by affecting the critical supersaturation
of the particles; and (2) by influencing the growth rate once the particle activates. Fig-
ure 17 shows the normalized activation fraction as a function of hygroscopic growth
factor for flight B. The normalization is done by computing the activation fraction as-
suming the CCN are composed of pure ammonium sulfate. The normalization re-
moves any variations due to shifts in the shape of the size distribution. It is noted that,
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in general, higher supersaturations are required to activate particles composed of less
hygroscopic material.

Regarding the effect of particle composition on growth rate, consider two particles
each having the same critical supersaturation. If the ambient supersaturation exceeds
the critical supersaturation, then each particle will activate. The subsequent rate of
growth by water condensation depends on the uptake of water molecules. If the two
particles have different composition, then the uptake coefficients for water vapor can
be different; the particle with the smaller water uptake coefficient will exhibit a slower
rate of growth after activation. In a CCN instrument, like the CCNc employed here,
the more slowly growing particle may not reach its ultimate size before it exits the
growth chamber of the instrument and is detected by the OPC. The growth rate of pure
ammonium sulfate particles of the same critical supersaturation as that of the particle
in question can be taken as the standard against which particle growth rates can be
compared. Since an entire distribution of particles enter the CCNc, with different critical
supersaturations (as a result of size and composition), the standard used is ammonium
sulfate with a critical supersaturation equal to the supersaturation of the instrument.
Based on this standard, if all particles grow as quickly as those composed entirely
of ammonium sulfate, all particles will have droplet sizes equal to or larger than the
standard. Hence, at a given supersaturation, the presence of droplets with a size less
than that of the standard indicates retarded growth. We express this effect in terms of
the fraction of droplets less than the standard at the supersaturation of the instrument.

Figure 18 shows the cToF-AMS—derived ratio of m/z 57:44 as a function of organic
mass fraction. (A larger m/z 57:44 ratio is correlated with the organic material being
less oxidized, and hence more hydrophobic.) The color coding of the data points corre-
sponds to the fraction of droplets that have a size (D;) less than the ammonium sulfate
standard (D,s), as described above. The size of the symbols reflects the hygroscopic
growth factor at 92% RH. The data indicate that at high organic mass fractions when
the particles are composed of less oxidized material, there is a tendency, although
weak, towards retardation of growth. The growth factor exhibits a clear anti-correlation
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with organic mass fraction.

4 Discussion

In this section we explore key findings in this study. The observations reveal significant
differences in aerosol properties in and out of the plume, and as a function of plume
age. Significant enhancements in nitrate, ammonium, and organic levels in the plume
were observed; this coincided with an increased potential for water uptake in both the
sub- and supersaturated regimes. While trends in the data from the two flights were
similar, particle number and mass concentrations were larger in flight A. Explanations
for this discrepancy will be pursued.

Owing to the range of organic fractions observed, the present study provides an op-
portunity to evaluate the sensitivity of mixed inorganic/organic particle hygroscopicity
to the organic fraction. Subsaturated hygroscopic growth factors are calculated for the
organic fraction based on a closure analysis using the Zdanovskii-Stokes Robinson
(ZSR) mixing rule. Measurement of CCN activity in this study also presents an op-
portunity to assess the consistency of observed supersaturated water uptake with the
subsaturated water uptake measurements.

4.1 Enhancements in mass production and water uptake in the plume aerosol

Significant production of ammonium nitrate and organic mass in the plume occurred
during both flights. Ammonium nitrate production is expected due to the high ammonia
levels and the presumed abundance of nitric acid from the daytime photochemistry. Or-
ganic aerosol mass production results from both condensation of semi-volatile organic
species and acid—base chemistry of amines, followed by condensation of low-volatility
products onto pre-existing aerosols.

Enhanced sub- and supersaturated water uptake coincides with greater fractions of
ammonium, nitrate, and amines. Dinar et al. (2008) have shown, for example, that
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the reactive uptake of ammonia by aerosols containing slightly soluble organics leads
to substantial increases in hygroscopic growth and CCN activity. This observation ap-
pears to be consistent with the present measurements. Speciated size distributions
show that the aerosol is, in part, externally mixed, with different species growing inde-
pendently during plume aging (Fig. 12). The high organic fractions, particularly during
flight A, may have masked the expected and significant growth exhibited by pure am-
monium nitrate and ammonium sulfate salts; however, amines, which represent one
class of organic species in the plume, are thought to be highly hygroscopic. Aklilu et
al. (2006) also suggested that the organic fraction of the aerosol can suppress the
growth normally associated with nitrate based on ambient measurements at two rural,
urban-influenced sites.

4.2 Amines as an atmospheric base
4.2.1 s nitric acid or ammonia the limiting reactant?

Previous studies of particulate ammonium nitrate formation in the San Joaquin Valley
suggest that the limiting reactant is nitric acid because of abundant ammonia emissions
(Blanchard et al., 2000; Pun and Seigneur, 1999). During an aircraft study in the San
Joaquin Valley in May 2002, Neuman et al. (2003) reported simultaneous nitric acid
depletion and aerosol mass enhancements when the aircraft either encountered large
ammonia sources or reached lower temperatures at higher altitudes in the boundary
layer. Ammonia is emitted from the ground, whereas nitric acid is efficiently produced
photochemically throughout the entire boundary layer, especially during the summer in
the daytime San Joaquin Valley atmosphere.

Since gas-phase ammonia and nitric acid were not measured in the present study,
observed particulate levels of ammonium, nitrate, sulfate, and amines can help de-
termine the limiting reactant in chemical processing inside the plume. Excess nitrate
is most abundant within the plume, reaching levels as high as 1.72 pg/m3 (flight A)
and 0.89 pg/m3 (flight B). (As defined in Sect. 2.2, excess nitrate is the amount of ni-
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trate remaining after both sulfate and nitrate have been fully neutralized by ammonium.)
The greatest excess nitrate values coincide with relatively lower ambient temperatures,
higher altitudes, the presence of diethylamine and ethylamine, and are correlated with
amine markers in the cToF-AMS spectra (m/z 58, 73, 86) (Figs. 7b/8b/9). The back-
ground aerosol tends to exhibit excess nitrate values close to zero, indicating that just
enough ammonia was present, on average, to neutralize both sulfate and nitrate. The
data suggest either of two conclusions: (1) insufficient ammonia was present to neu-
tralize both sulfate and nitrate within the plume, thereby distinguishing ammonia as
the limiting reactant; or (2) sufficient ammonia was present, but a significant amount
of nitric acid formed salts preferentially with amines rather than ammonia. The detec-
tion of amines by the PILS and the large amount of organic mass, with representative
amine markers detected by the cToF-AMS, suggests that the second explanation may
be more plausible. This is a significant finding in the atmosphere that is consistent
with laboratory observations made in photooxidation experiments of aliphatic amines
(Angelino et al., 2001; Murphy et al., 2007). The affinity of inorganic acids for amines
in the presence of ammonia has even greater implications during the winter and at
night, when lower temperatures and higher RHs enable increasing partitioning of both
ammonium nitrate and amine salts into the aerosol phase.

4.2.2 Sources and character of amines

The formation of particulate amine salts depends on temperature, the identity and con-
centrations of the amine and acidic species present, and the concentration of ammonia
that competes with amines for the acidic species. Once the particulate amine salts are
formed, they may revolatilize, undergo subsequent particle-phase reactions including
oxidation, or serve as a site for the condensation of other organic compounds. Cham-
ber experiments performed by Murphy et al. (2007) showed that the dominant for-
mation mechanism for amines is that of acid-base reactions (amine+nitric acid) rather
than from photooxidation to form non-salt condensable organics. These experiments
showed that nitric acid preferentially reacts with amines, depending on the species,
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rather than ammonia. It is expected that particulate amines should be prevalent close
to the source of amine emissions where gaseous amine concentrations are highest.
If the temperature dependence of amine salt equilibria resembles that of ammonium
nitrate, then amines should partition more favorably to the aerosol phase at lower tem-
perature (higher altitudes) within the plume. Of the six amines studied by Murphy et
al. (2007), diethylamine was shown to have the most favorable equilibrium constant for
salt formation in the presence of ammonia, an observation that is consistent with the
present field measurements since diethylamine was the most abundant amine detected
in the aerosol. The amine salts produced in the laboratory chamber experiments even-
tually repartitioned back to the gas phase. In the present study, amine concentrations
decreased as a function of plume age, as evident in the ethylamine and diethylamine
data and the m/z 30 peak intensity data from the cToF-AMS. The decreasing amine
levels in the aerosol phase presumably occur because of two reasons: (1) amine con-
centrations, like those of ammonium and nitrate, decrease due to dilution as a function
of plume age; and (2) amines partition back to the gas phase to maintain thermody-
namic equilibrium due to the decreasing gas-phase concentrations owing to dilution.

Diethylamine, measured exclusively in the plume, exhibited a strong and positive cor-
relation with nitrate, ammonium, sulfate, and total organics during flight A (n=8, R?: ni-
trate=0.65, ammonium=0.73, sulfate=0.72, organics=0.68), but showed a weaker cor-
relation with the same species during flight B (n=7, R?: nitrate=0.35, ammonium=0.04,
sulfate=0.13, total organics=0.40). The positive correlation between diethylamine and
nitrate suggests that nitric acid exhibits an affinity for amines as an atmospheric base,
even in the presence of ammonia. Diethylamine concentrations correlated more weakly
with sulfate than to nitrate during flight B, possibly because nitric acid levels were higher
than those of sulfuric acid causing the formation of particulate amines to proceed only
through the amine +HNO; acid-base reaction. When diethylamine was detected, its
average mass ratio relative to nitrate was 0.31 (flight A) and 0.36 (flight B); relative to
sulfate it was 0.16 (flight A) and 0.36 (flight B), and relative to ammonium it was 0.31
(flight A) and 0.17 (flight B).
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4.2.3 Total amine mass calculations

One can estimate the total mass of amines present in the plume. This calculation
assumes that excess nitrate is in a 1:1 molar ratio with amines. Amine mass is then
determined by assuming a representative molecular weight for the amine population.
We choose to use methylamine and triethylamine as lower and upper limits, respec-
tively, since these species represent the smallest and largest amines that can be spe-
ciated using the PILS-IC technique (Murphy et al., 2007); the molecular weight of the
two amines detected in this study, ethylamine and diethylamine, fall within the range of
those of methylamine and triethylamine.

On the basis of the molecular weight of methylamine (31.1 g/mol), average amine
concentrations in the plume are calculated to have been 0.23+0.13 ug/m3 (4% of to-
tal organic mass) (flight A) and 0.06+0.10 pg/m3 (2% of total organic mass) (flight B),
while maximum plume concentrations were 0.86 ug/m3 (13% of total organic mass)
(flight A) and 0.44 ug/m3 (19% of total organic mass) (flight B). On the basis of the
molecular weight of triethylamine (101.1 g/mol), average amine concentrations are cal-
culated to have been 0.76+0.43 ug/m3 (12% of total organic mass) (flight A) and
0.20+0.32 ug/m3 (8% of total organic mass) (flight B), while maximum levels were
2.81ug/ m?> (43% of total organic mass) (flight A) and 1.45ug/ m? (63% of total organic
mass) (flight B). Using the conservative molecular weight of methylamine, amine mass
was at least 23% (flight A) and 14% (flight B) of ammonium mass in this plume. In
addition, speciated amines (ethylamine and diethylamine via the PILS) accounted for
at least 25% (flight A) and 45% (flight B) of the estimated total amine mass (via the
excess nitrate calculation from the cToF-AMS).

4.3 Degree of oxidation and volatility in the aerosol

In the absence of strong signals in the data representing primary particulate emission
sources, the submicrometer aerosol in the sampling region is presumed to originate
mainly from secondary production. No obvious signs of primary aerosol vehicular
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emissions existed based on organic markers in the cToF-AMS spectra. The ratio of
m/z 57:44 peak intensities from the cToF-AMS can provide some insight into the rela-
tive ratio of hydrocarbon-like (HOA) and oxygenated organic (OOA) aerosols (Zhang et
al., 2005). This ratio was ~0.07+0.01 during both flights, with no major changes during
the flights, nor between plume and background aerosol (Table 1). Based on this ratio,
it appears that the aerosol was highly oxygenated with relatively little hydrocarbon-like
organic aerosol (HOA). The ratio of the peak intensity between m/z 44 and total organ-
ics was, on average, 0.10+0.01 in the plume aerosol and 0.11+0.02 in the background
aerosol (Table 1). Peak intensities at m/z 44 (and 29 for flight A) are slightly greater
in the background aerosol relative to plume aerosol, indicating a greater degree of
oxidation out of the plume than within it (Fig. 11). This is presumably because the
background aerosol had aged longer than the fresh emissions in the plume.

Organic acids represent a pool of organic species that are water-soluble and
highly oxidized. In previous aircraft measurements, organic acids (C;—Cg) con-
tributed 3.4+3.7% to the total PILS mass in an urban atmosphere (Houston, Texas;
Sorooshian et al.,, 2007a) and 3.5+3.1% in a marine atmosphere (Eastern Pacific
Ocean; Sorooshian et al., 2007b). In the present study, organic acids contributed
2.4+5.5% to the total PILS mass, indicating greater variability and a lower average
mass fraction of organic acids than seen in the other field data. Since the lower or-
ganic acid contributions are likely not a result of less photochemical processing, gas-
particle partitioning of these water-soluble organic species may have been affected
by the high ambient temperatures in the present flights. In addition, the relatively low
humidities and lack of clouds prevented organic acid production via aqueous-phase
processing during the measurement period (Sorooshian et al., 2006b). Organic acid
concentrations were not correlated with ammonium or nitrate, which represent semi-
volatile species, during the present flights. The ammonium nitrate levels varied sig-
nificantly in the plume, but concentrations of the organic acids were relatively stable.
Thus, the data do not allow one to conclude whether volatility or RH was the dominant
factor controlling organic acid levels.
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4.4 Factors influencing aerosol number/mass concentrations

Particle number and mass concentrations were significantly higher during flight A than
in flight B. The presence of nucleation cannot explain this discrepancy, especially in
terms of mass concentration (Table 1). The background aerosol concentration in the
valley was also higher during flight A than in flight B. Since there are no significant
sources of SO, in the sampling region, sulfate can be employed as a tracer for accumu-
lated aerosol originating from long-range transport. It should be noted that comparable
levels of vehicular emissions could be expected both days as both flights occurred on
weekdays. Sulfate concentrations were significantly higher during flight A. The lower
temperatures and higher RH during flight A favored partitioning of semi-volatile species,
such as ammonium nitrate and organics, to the aerosol phase. The back-trajectory
analysis indicates that the sampled air mass during flight A originated three days pre-
viously over the Pacific Ocean, while the air sampled in flight B originated in a more
polluted inland area. We conclude that ventilation of the valley during flight B was more
effective than in flight A, reducing aerosol number and mass concentrations.

Over the flight durations, aerosol concentrations were influenced by competition be-
tween a growing boundary layer, decreasing RH, and increasing temperatures. Al-
though the aerosol was well-mixed locally in the valley, the timescale for equilibration
between the gas and particle phases is shorter than the boundary layer mixing time
(Neuman et al., 2003); this may explain fluctuations in the concentrations of aerosol
species at various altitudes and distances downwind of the plume source. The to-
pography of the sampling region downwind of the source and general buoyancy in the
boundary layer facilitated vertical transport of emissions to lower temperature regions,
reducing the dissociation constant of ammonium nitrate aerosol and, presumably, semi-
volatile organics. This might explain why the concentrations of organics (diethylamine
in particular), nitrate, and ammonium peaked at the highest altitude and farthest down-
wind distance from the plume source in flight A.
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4.5 Estimated subsaturated hygroscopic growth factors for the organic fraction

Calculations were carried out to determine the effective growth factor for the organic
fraction needed to achieve composition—hygroscopicity closure. Due to its simplicity
and frequent application (Cruz and Pandis, 2000; Dick et al., 2000; Choi and Chan,
2002a, 2002b; Prenni et al., 2003; Wise et al., 2003; Clegg et al., 2003; Clegg and Se-
infeld, 2004, 2006a, 2006b; Khlystov et al., 2005; Rissler et al., 2005; Aklilu et al., 2006;
Svenningsson et al., 2006; Varutbangkul et al., 2006; Gysel et al., 2007; Sjogren et al.,
2007; Dinar et al., 2008), the Zdanovskii-Stokes Robinson (ZSR) (Zdanovskii, 1948;
Stokes and Robinson, 1966) mixing rule is employed to predict hygroscopic growth
factors. This procedure of estimating hygroscopic growth based on specified composi-
tion is based on the assumption that water uptake by each individual component of a
particle is independent and additive. We use the following form of the ZSR mixing rule
(Aklilu et al., 2006; Gysel et al., 2007):

1/3
GFixed(@w) ~ <z €/GF/(aw)3) (1)

where GFieq IS the hygroscopic growth factor of the mixed particle, GF; is the hy-
groscopic growth factor of pure compound i, a, is the activity coefficient of water,
and e; is the volume fraction of pure compound i in the dry particle. a,=RH in
Eq. (1) (Seinfeld and Pandis, 2006). Growth factors for the pure inorganic components
were obtained from the Aerosol Inorganics Model (AIM; http://mae.ucdavis.edu/ sc-
legg/aim.html; Clegg et al., 1998). A growth factor of unity is also assumed for EC, as
suggested by Aklilu et al. (2006).

Calculating the individual volume fractions requires an estimate of the organic den-
sity. If it is assumed that the aerosol is composed of ammonium sulfate (AS), ammo-
nium nitrate (AN), organic carbon (OC), and elemental carbon (EC), then total aerosol
density can be expressed as:

P=XocMocPoc + XasMasPas + XanManPan + XecMecPEC (2)
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where x; are mass fractions, m; are mass concentrations, and p is density of the
multicomponent particle, as determined by the ratio of aerosol volume (via the DMA) to
the aerosol mass (via the PILS and cToF-AMS); in Eq. (2), poc is the unknown quantity
that we desire to determine. Elemental carbon was not quantified in the present study;
however, based on extensive chemical characterization of San Joaquin Valley PM, 5
by Chow et al. (2006), the mass fraction of EC tends to be ~5-10% near the present
sampling site. In the absence of a quantitative measure of EC, it is assumed that 5%
of the total submicrometer mass is composed of EC. It is assumed for the purpose of
this calculation that all of the sulfate is neutralized by ammonium, and the remaining
ammonium occurs as ammonium nitrate. Densities of 1.725, 1.769, and 1.9 g/cm
are used for AN, AS, and EC respectively. A wide range of densities are reported
for EC (0.625-2.25 g/cm3) (Fuller et al., 1999); here we assume a value of 1.9 g/cm3,
similar to that employed by Dillner et al. (2001). From the mass concentrations and
respective densities of AN, AS, OC, and OC, the volume fraction of each component
can be calculated.

On average, the in-plume organic growth factors needed to match the data (flight
A/B) are 1.07/1.02 (74% RH), NA/1.28 (85% RH), and 1.49/1.53 (92% RH) (Fig. 19).
The background aerosol organic growth factors (flight A/B) are 1.08/1.03 (74% RH),
NA/1.21 (85% RH), and 1.29/1.24 (92% RH). Flight B is characterized by a wider range
in the mass fractions of organics, thus this flight presents a better indication of trends in
organic growth factor with changing mass fractions. During this flight, inferred organic
growth factors increase in the plume as a function of decreasing organic fraction. The
lowest organic fractions in flight B coincide with the detection of amines, which likely
enhance the hygroscopicity of the organic fraction. There is a significant amount of
variation in predicted growth factors at constant organic mass fractions and the abso-
lute values of some of the predicted organic growth factors (<1 and >2) are unrealistic.
Possible explanations for the unrealistic organic hygroscopic growth factors include: (1)
complex particle morphology; (2) complex interactions between the components in the
particles leading to non-additive water uptake among the individual components; and
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(3) errors associated with the calculation of the volume fractions and uncertainties in
the measurements.

4.6 Relationship between sub- and supersaturated water uptake

One anticipates a direct correspondence between subsaturated hygroscopic behavior
and supersaturated CCN activity. For example, Mochida et al. (2006) explored the
relationship between hygroscopicity and CCN activity for urban aerosols using a hy-
groscopic tandem DMA (HTDMA) coupled in series to a CCNc; enhanced CCN activity
coincided with higher subsaturated growth factors. A similar analysis for the present
data (Fig. 17) shows that the normalized CCN activation ratio is generally consistent
with water uptake in the subsaturated regime. Also, higher activated fractions are
consistent with smaller markers, which represent lower organic mass fractions and
higher nitrate mass fractions. Enhancements in water uptake for aerosols with lower
organic content are likely due to increasing dissolution of water-soluble species, includ-
ing ammonium nitrate and amine salts, and the possible reduction in surface tension
by surface-active species. Organics have previously been shown to influence CCN ac-
tivity by adding solute and suppressing surface tension (Shulman et al., 1996; Facchini
et al., 1999; Feingold and Chuang, 2002; Nenes et al., 2002).

Recent work has shown that kinetic limitations, including surface films and slow
dissolution of particulate substances, can suppress droplet growth (Asa-Awuku and
Nenes, 2007; Ruehl et al., 2008). With few exceptions including solute being physically
“trapped” within some type of waxy material, dissolution kinetics is governed by diffu-
sion of solute from the solid “core” at the center of a droplet to the growing droplet. It
has been argued that the latter process is slow enough for compounds with high molec-
ular weights to influence droplet growth kinetics and the Kohler curve (Asa-Awuku and
Nenes, 2007; Taraniuk et al., 2007; Moore et al., 2008). According to Fig. 18, droplet
growth was at times less than that expected for pure ammonium sulfate. In addition, it
is shown to some extent that the droplet growth was suppressed for CCN with relatively
greater amounts of hydrophobic organic material. This suggests kinetic limitations may
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have played a role in suppressing water uptake. This issue will be revisited in subse-
quent work that will address size-resolved CCN data from this experiment.

4.7 Parameterization for sub- and supersaturated water uptake

To effectively represent the process of water uptake by multicomponent particles in
atmospheric models, parameterizations are used. A number of investigators have at-
tempted to introduce parameters to describe water uptake in both the sub- and super-
saturated regimes. Expanding upon the earlier work of Fitzgerald et al. (1982), Sven-
ningsson et al. (1992) used a parameter termed e to link subsaturated water uptake to
cloud and fog activation. Subsequent work introduced closely related parameters for
sub- and supersaturated regimes (Kreidenweis et al., 2005; Rissler et al., 2006; Petters
and Kreidenweis, 2007). A recently introduced parameter, « (Petters and Kreidenweis,
2007), can be calculated without knowledge of the particle properties such as density,
molecular weight, and surface tension.

Kappa can be determined from either CCN activity data or subsaturated hygroscopic
growth data. Since the subsaturated DASH-SP growth factors are measured for size-
resolved particles, we use the subsaturated hygroscopicity data to predict the value of
with the following equation (Petters and Kreidenweis, 2007):

RH  GF°-1
exp(Dd‘#) GF3-(1-k)

(3)

where A=(4as/aMW)/(RTpW), D, is the dry particle diameter, GF is the growth factor at
the corresponding RH, M,, is the molecular weight of water, p,, is the density of water,
R is the universal gas constant, T is temperature, and oy, is the surface tension at the

air/water interface. The water surface tension of 0.072 J/m? is assumed, as in the anal-

ysis of Petters and Kreidenweis (2007). Briefly, x values of 0.5 to 1.4 represent highly

hygroscopic salts such as sodium chloride, values of 0.01 to 0.5 represent slightly to

very hygroscopic organics, and a value of 0 represents a non-hygroscopic component
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(Petters and Kreidenweis, 2007; see Table 1). k values representative of urban, mar-
itime, continental, and remote areas, as derived by Petters and Kreidenweis (2007)
using data from previous ambient studies (Fitzgerald and Hoppel, 1982; Hudson and
Da, 1996; Dusek et al., 2006), have been reported to range from 0.1 to 0.94.

Table 4 summarizes the values of « derived in the present study. A noticeable en-
hancement in x occurs within the plume as compared to the background aerosol, which
is consistent with the enhancement in subsaturated growth factors. « is enhanced by
between 21% and 67% in the plume, with typical values being between 0.36—-0.44. The
range of k values, based on DASH-SP data at RHs of 85% and 92%, is 0.11-0.87. The
correlation between « values and the mass fraction of organics is more pronounced for
flight B; k increases as the mass fraction of organics decreases and that of nitrate
increases. Representative k values are assigned to two categories: aerosol from the
strong bovine source (k=0.40) and aerosol in an agricultural area (k=0.30). Values of
« determined here fall within the range of those derived from previous ambient studies.

5 Conclusions

An extensive set of airborne aerosol and meteorological measurements were per-
formed downwind of a massive bovine source in the San Joaquin Valley of California
during two flights in July 2007; these include meteorology, particle size distributions,
aerosol composition and mixing state, sub- and supersaturated water uptake behavior,
aerosol refractive index, and interrelationships between these properties.
Concentrations of total mass, organics, nitrate, and ammonium were elevated within
the plume as compared to the background aerosol during both flights. Evidence exists
of some degree of external mixing of particles in the plume. Organics constituted the
dominant fraction of the total mass in the plume and background aerosol (~56—-64%),
followed either by sulfate or nitrate, and then ammonium. Particulate amines were
detected in the plume and are shown to be a significant atmospheric base even in the
presence of ammonia; the total amine concentration accounted for at least 23% (flight
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A) and 14% (flight B) of that of ammonium.

The refractive index of the background aerosol in the valley was on average 1.54, but
reductions were observed in the plume, especially in the immediate vicinity of the plume
source (flight A ~1.48; flight B ~1.51). Measurements indicate that increasing uptake
of ammonia by aerosols, in the form of ammonium nitrate and ammonium sulfate, rel-
ative to the organic fraction, results in an enhancement in particle water uptake and
a reduction in refractive index. Amine salts are also hypothesized to have contributed
to significant hygroscopic growth in the plume. Hygroscopic growth factors in the im-
mediate vicinity of the source were generally between 1.75-1.90 at RH=92%. Esti-
mated hygroscopic growth factors (RH=92%) for the organic fraction on average were
1.49-1.53 in the plume and 1.24—1.29 in the background aerosol. It is shown that ki-
netic limitations associated with hydrophobic organic species likely suppressed droplet
growth. After removing effects associated with size distribution and mixing state, en-
hanced CCN activated fractions were generally observed as a function of increasing
subsaturated growth factors, with the highest activated fractions being consistent with
the lowest organic mass fractions. Representative values (Petters and Kreidenweis,
2007) are assigned to two categories: aerosol from the bovine source (k=0.40) and
aerosol in an agricultural area (k=0.30). Since organics dominated the particle mass,
these values of « are indicative of fairly hygroscopic organics.
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Table 1. Summary of in-plume and out-of-plume measurements of composition and particle

number and mass concentration.
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Total Excess DMA particle ~ (UFCPC cToF- cToF-AMS:
Mass  Organic NO; SOf' NH;’ NO; [NH;:SOf'] % % % %  concentration 3025:CPC AMS:m/z m/z 44/Total
(ug/m®)  (ug/m®)  (ug/m®)  (ugm®) (ug/m®) (ug/m®) molarratio Organic NO; SOF” NHj (#/cm®) 3010)% 57:44 Organic
Flight A Inplume AVE 10.48 6.48 0.93 2.06 1.02 0.04 2.64 61.9 86 198 97 30528 11 0.07 0.10
ST DEV 1.64 0.98 0.40 0.24 0.23 0.50 0.51 26 24 1.7 1.7 8987 0.0 0.01 0.01
Out of AVE 8.01 5.10 0.30 1.81 0.80 -0.16 2.38 63.5 37 228 1041 30778 1.1 0.07 0.10
plume ST DEV 1.48 1.07 0.11 0.31 0.17 0.41 0.47 3.3 11 2.6 1.8 11026 0.0 0.02 0.01
Flight B Inplume AVE 4.53 2.46 1.08 0.54 0.44 0.02 4.61 55.5 227 123 96 16606 1.2 0.07 0.11
ST DEV 0.87 0.29 0.50 0.10 0.14 0.34 225 6.4 7.3 3.0 21 4286 0.1 0.02 0.01
Out of AVE 2.65 1.73 0.19 0.56 0.19 0.00 1.94 63.1 72 231 7.0 18139 1.2 0.09 0.12
plume ST DEV 0.95 0.70 0.12 0.26 0.10 0.21 1.42 1.9 2.4 110 38 8910 0.1 0.08 0.02

& The ratio of the particle number concentration for D, >3 nm (UFCPC 3025) to that for D,>10nm (CPC 3010).
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Table 2. DASH-SP hygroscopicity and dry particle refractive index data categorized by the
time of flight as shown in Fig. 1. Data at RH=85% are not available for flight A.
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GF (74%) GF (85%) GF (92%) Dry Refractive Index
Flight A Valley transit 1.10+0.05 1.64+0.17 1.52+0.08
Circle above plume source 1.16+0.12 1.79+0.22 1.48+0.08
First set of transects (1-4) 1.07+0.03 1.55+0.19 1.52+0.06
Transect 1 (plume age=0.3 h) 1.04+0.03 1.59+0.17 1.54+0.04
Transect 2 (plume age=0.5 h) 1.05+0.03 1.51+0.22 1.56+0.05
Transect 3 (plume age=1.1 h) 1.08+0.03 1.70+0.18 1.48+0.05
Transect 4 (plume age=1.5 h) 1.06+0.01 1.74+0.08 1.51+£0.01
Spiral up to 600 m 1.07+0.05 1.47+0.15 1.53+0.10
Second set of transects (5-7) 1.09+0.04 1.61+0.13 1.54+0.05
Transect 5 (plume age=1.2 h) 1.06+0.01 1.68+0.06 1.54+0.05
Transect 6 (plume age=1.3 h) 1.12+0.05 1.60+0.08 1.54+0.05
Transect 7 (plume age=0.8 h) 1.12+0.01 1.69+0.16 1.54+0.09
Spiral down above plume source 1.33+£0.30 1.80+0.19 1.40+0.10
Valley transit 1.06+0.02 1.53+0.15 1.56+0.05
Flight B Valley transit 1.03+£0.04 1.35+0.06 1.49+0.07 1.55+0.04
Circle above plume source 1.10£0.07 1.50+0.10 1.88+0.22 1.51+£0.01
First set of transects (plume age<0.9 h) 1.12£0.05 1.39+0.08 1.65+0.20 1.52+0.01
Directly in plume (plume age<0.9 h) 1.15+0.06 1.44+0.06 1.86+0.14 1.52+0.01
Spiral up to 400 m 1.07+0.04 1.37+0.06 1.57+0.07 1.52+0.01
Second set of transects (plume age<0.9 h) 1.08+0.04 1.39+0.06 1.65+0.17 1.563+0.03
Directly in plume (plume age<0.9 h) 1.09+0.05 1.40+0.09 1.65+0.16 1.51+£0.02
Valley transit 1.11£0.04 1.39+0.08 1.55+0.11 1.563+0.05
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Table 3. Summary of CCN data for flights A and B.
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CCN  Activated CCN  Activated CCN  Activated CCN  Activated CCN  Activated
(#/cma) fraction (#/cms) fraction (#/cma) fraction (#/cms) fraction (#/cmS) fraction
SS~0.1% SS~0.2% SS~0.3% SS~0.4-0.45% SS~0.5%
Flight A In plume AVE 92 0.01 329 0.02 1114 0.06 1882 0.08 2265 0.08
ST DEV 123 0.01 354 0.02 628 0.05 526 0.04 478 0.02
Out of plume AVE 141 0.01 252 0.01 1124 0.05 1641 0.06 1966 0.08
ST DEV 218 0.01 295 0.01 561 0.03 484 0.02 478 0.02
SS~0.2% SS~0.25-0.35% SS~0.4-045% SS~0.6%
Flight B In plume AVE 855 0.05 1246 0.07 2027 0.11 2436 0.15
ST DEV 584 0.03 713 0.04 523 0.03 834 0.05
Out of plume AVE 707 0.04 1073 0.06 1796 0.08 4168 0.14
STDEV 596 0.03 770 0.05 768 0.03 2052 0.04
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Table 4. Summary of k values (Petters and Kreidenweis, 2007) derived from subsaturated
hygroscopic growth factor data at RHs of 85% and 92%. Data at RH=85% are not available for
flight A.

In plume Out of plume
Flight A Flight B Flight A Flight B
K (85%) NA 0.40+0.12 NA 0.33+0.09

K (92%) 0.36+0.12 0.44+0.19 0.29+0.12 0.28+0.10
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Fig. 1. (A) Complete flight tracks for the two flights in the San Joaquin Valley of California. The
shaded mountain areas are meant to provide a relative view of how the San Joaquin Valley is
bordered by major topographical features. (B/C) Detailed tracks for flights A (12 July 2007) and
B (30 July 2007) with a step-by-step description of the aircraft maneuvers. Plume ages were
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Fig. 2. (Upper panel) Time series of particle number concentration and meteorological data
for flight A. (Lower panel) Time series of aerosol size distribution. The number labels at the top
of each shaded block correspond to the respective flight segment listed in Fig. 1.
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Fig. 3. (Upper panel) Time series of particle number concentration and meteorological data
for flight B. (Lower panel) Time series of aerosol size distribution. The number labels at the top
of each shaded block correspond to the respective flight segment listed in Fig. 1.
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Altitude (m)

:

Fig. 4. Vertical profiles of particle number concentration and meteorological data for flights A
(upper panel) and B (lower panel). For the submicrometer particle concentration data (CPC
3010), it should be noted that the absolute concentrations are not accurate due to electrical
saturation of the instrument; these data are plotted because of the 1s time resolution of the
data. The DMA and CPC 3010 number concentrations were proportional throughout both
flights, therefore, the CPC 3010 values are useful for qualitative purposes to identify the mixing
layer height. DMA number concentrations indicated are accurate.
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Fig. 5. HYSPLIT five-day backward trajectory analysis for flights A (panel a) and B (panel b).

Six hours of time separate each marker on the trajectories.
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Fig. 6. Time series of PILS water-soluble aerosol composition and cToF-AMS composition for flights A (upper panel)
and B (lower panel). The number labels for each shaded box correspond to the portion of each flight represented in
Fig. 1. The shaded areas representing the plume are characterized by significant increases in organics, ammonium,
nitrate, and amines. The ammonium-to-sulfate molar ratio exceeds 2.0 in the plume, allowing nitrate to partition into
the aerosol phase. The multiple cToF-AMS spikes in the species concentrations cannot be resolved by the PILS since
the 5-min time intervals for sample collection average out the quick plume passes with the longer legs outside of the
plume. Agreement between the PILS and cToF-AMS is most evident for sulfate, since this species was relatively level
in concentration during the flights.
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Fig. 7. Spatial distribution of various aerosol species during flight A. (a) Nitrate and diethy-
lamine; (b) Excess nitrate remaining after both sulfate and nitrate have been neutralized by
ammonium (see Sect. 2.2 for further explanation); (c¢) ammonium; (c) organics. The PILS
markers are spatially placed wherever the aircraft was at the midpoint of the time when a par-
ticular sample was collected (after being corrected for liquid residence time in the instrument);
therefore the amine markers are spatially distinct from the core of the plume (especially the two
markers representing the highest plume ages).
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Fig. 8. Spatial distribution of various aerosol species during flight B. (a) Nitrate and diethy-
lamine; (b) Excess nitrate remaining after both sulfate and nitrate have been neutralized by
ammonium (see Sect. 2.2 for further explanation); (¢) ammonium; (d) organics. The PILS
markers are spatially placed wherever the aircraft was at the midpoint of the time when a par-
ticular sample was collected (after being corrected for liquid residence time in the instrument).
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Fig. 9. \Vertical distribution of total submicrometer particulate mass and species concentrations from both the
PILS and cToF-AMS, for flights A (upper panel) and B (lower panel). The cToF-AMS marker sizes for “Total mass”
are proportional to the organic:inorganic ratio. Marker sizes for the individual cToF-AMS species are proportional to
the respective mass fraction of that species. Marker sizes for PILS “Organic acids” are proportional to the relative
contribution by oxalate. Marker sizes for PILS ammonium are proportional to the ammonium-to-sulfate molar ratio.
Total mass, nitrate, ammonium, and organics increase in concentration with increasing altitude up to ~250-300m,
before decreasing in both flights. cToF-AMS concentrations exceed those of the PILS for commonly detected species
in the plume, especially nitrate and ammonium, since the PILS averages 5-min worth of aerosol composition whereas
the cToF-AMS has a time resolution of ~20-30s. Total PILS mass includes inorganics and organic acids, whereas
total cToF-AMS mass includes inorganics and nonrefractory organic mass.
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Fig. 10. Aerosol mass spectra from the cToF-AMS in the background aerosol and in the plume
at various downwind distances from the feedlot for flight B. There is no significant difference in
the chemical signature of the aerosol in the three categories shown, with the notable exception
of an enhancement in the m/z 30 peak, a common amine marker, at the closest point to the
source. The flight A spectra are similar to those presented here.
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A comparison of the plume organic mass spectra versus the background aerosol organic mass spectra
for flights A (upper panel) and b (lower panel). All non-organic contributions to the mass spectra have been removed
by fragmentation calculations described in Sect. 3.3.3. This means that the signal at m/z 30 represents a fragment of
organics, including amines. The data on the y-axis were generated by taking the difference in the organic spectra in
the plume and out of the plume. The organic aerosol appears to be very similar except this plot shows that there is an
increase in peak intensities at m/z 30, 56, 74 and 86, common amine peaks, in the plume. The peak intensity at m/z
44 (and 29 in flight A) are greater in the background aerosol spectra indicating increased oxidation out of the plume as
compared to inside the plume.
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Fig. 12. Speciated size distributions as determined by the cToF-AMS for flights A (panel a) and
B (panel b). The x-axis is the vacuum aerodynamic diameter. There is evidence of externally
mixed aerosols, evident by the independent shifts of various species as a function of increasing
plume age. This is clearest in flight B where nitrate is shown to grow in size with plume age
with less growth for organics and no growth for sulfate.
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Fig. 17. Normalized CCN activation ratio, (CCN/CN)measured:(CCN/CN)ammonium sulfate,
as a function of hygroscopic growth factors for flight B. The effects of size distribution and
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