
HAL Id: hal-00304209
https://hal.science/hal-00304209

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relating CCN activity, volatility, and droplet growth
kinetics of ?-caryophyllene secondary organic aerosol

A. Asa-Awuku, G. J. Engelhart, B. H. Lee, S. N. Pandis, A. Nenes

To cite this version:
A. Asa-Awuku, G. J. Engelhart, B. H. Lee, S. N. Pandis, A. Nenes. Relating CCN activity, volatility,
and droplet growth kinetics of ?-caryophyllene secondary organic aerosol. Atmospheric Chemistry and
Physics Discussions, 2008, 8 (3), pp.10105-10151. �hal-00304209�

https://hal.science/hal-00304209
https://hal.archives-ouvertes.fr


ACPD

8, 10105–10151, 2008

β-caryophyllene CCN

A. Asa-Awuku et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 8, 10105–10151, 2008

www.atmos-chem-phys-discuss.net/8/10105/2008/

© Author(s) 2008. This work is distributed under

the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

Relating CCN activity, volatility, and

droplet growth kinetics of

β-caryophyllene secondary organic

aerosol

A. Asa-Awuku
1
, G. J. Engelhart

2
, B. H. Lee

2
, S. N. Pandis

2,3
, and A. Nenes

1,4

1
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta,

Georgia, USA
2
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA
3
Department of Chemical Engineering, University of Patras, Patra, Greece

4
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta,

Georgia, USA

Received: 15 April 2008 – Accepted: 28 April 2008 – Published: 30 May 2008

Correspondence to: A. Nenes (nenes@eas.gatech.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

10105

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/10105/2008/acpd-8-10105-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/10105/2008/acpd-8-10105-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 10105–10151, 2008

β-caryophyllene CCN

A. Asa-Awuku et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

This study investigates the droplet formation characteristics of secondary organic

aerosol (SOA) formed during the ozonolysis of sesquiterpene β-caryophyllene (with

and without hydroxyl radicals present). Emphasis is placed on understanding the role

of semi-volatile material on Cloud Condensation Nucleus (CCN) activity and droplet5

growth kinetics. Aging of β-caryophyllene SOA significantly affects all CCN-relevant

properties measured throughout the experiments. Using a thermodenuder and two

CCN instruments, we find that CCN activity is a strong function of temperature (activa-

tion diameter at ∼0.6% supersaturation: 100±10 nm at 20
◦
C and 130±10 nm at 35

◦
C),

suggesting that the hygroscopic fraction of the SOA is volatile. The water-soluble or-10

ganic carbon (WSOC) is extracted from the SOA and characterized with Köhler The-

ory Analysis (KTA); the results suggest that the WSOC is composed of low molecular

weight (<200 g mol
−1

) slightly surface-active material that constitute 5–15% of the SOA

mass. These properties are similar to the water-soluble fraction of monoterpene SOA,

suggesting that predictive understanding of SOA CCN activity requires knowledge of15

the WSOC fraction but not its exact speciation. Droplet growth kinetics of the CCN are

found to be strongly anticorrelated with WSOC fraction, suggesting that the insoluble

material in the SOA forms a kinetic barrier that delays droplet growth. These results

have important implications for the droplet formation characteristics of SOA, and the at-

mospheric relevance of CCN measurements carried out at temperatures different from20

ambient.

1 Introduction

Secondary organic aerosol (SOA) particles have the potential to impact climate and

the hydrological cycle (the so-called aerosol indirect effect) through their ability to act

as cloud condensation nuclei (CCN). Carbonaceous material can comprise up to 90%25

of the aerosol mass (Andreae and Crutzen, 1997; Cachier et al., 1995; Yamasoe et al.,
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2000), a significant fraction of which may dissolve in water (water-soluble organic car-

bon; WSOC) (Kanakidou et al., 2005; Sullivan et al., 2004; Decesari et al., 2000; Zap-

poli et al., 1999). Studies have shown that WSOC can influence hygroscopicity, surface

tension, and possibly, droplet growth kinetics (e.g., Decesari et al., 2003; Saxena et al.,

1995; Shulman et al., 1996) and must be characterized to quantify the impact of aerosol5

on cloud droplet formation and reduce uncertainties associated with the aerosol indi-

rect effect.

The WSOC fraction of CCN may originate from primary emissions or form during the

oxidation of volatile organic compounds (VOC) (Kanakidou et al., 2005; Robinson et al.,

2007; Saxena and Hildemann, 1996). Natural VOC emissions (e.g., monoterpernes10

and sesquiterpenes) are estimated to be on the order of 1150 Tg yr
−1

(Guenther et al.,

1995), and are thought to dominate anthropogenic emissions (Guenther et al., 1999,

2000; Kanakidou et al., 2005). The resulting SOA can contribute significantly to the

atmospheric organic particulate mass (Donahue et al., 2005; Kanakidou et al., 2005;

Odum et al., 1996; Pathak et al., 2007; Robinson et al., 2007; Seinfeld and Pankow,15

2003; Stanier et al., 2007; Volkamer et al., 2006; Zhang et al., 2007) and become

more hygroscopic during the aging process (Kanakidou et al., 2005; Rudich, 2003)

hence contributing significant amounts of WSOC. However relatively little is known

about the chemical composition of SOA (Rogge et al., 1993; Seinfeld and Pandis, 1998;

Kalberer, 2006) and as a consequence, the CCN-relevant thermodynamic properties20

(solubility, molecular weight, surfactant characteristics) and droplet growth kinetics of

organic aerosol have remained elusive (Kanakidou et al., 2005).

The hygroscopicity of SOA has been studied for a series of parent hydrocarbons

and oxidation conditions (e.g, Varutbangkul et al., 2006, and references therein). SOA

produced from seedless monoterpene ozonolysis, such as α-pinene, has been the25

focus of numerous studies (Engelhart et al., 2008; Huff-Hartz et al., 2005; Saathoff

et al., 2003; Prenni et al., 2007; VanReken et al., 2005; Virkkula et al., 1999); most find

that the SOA is hygrosocopic and CCN active, but less than (NH4)2SO4. VanReken

et al. (2005) showed CCN activity dependence on the monoterpene SOA precursor,
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whereas Prenni et al. (2007) and Engelhart et al. (2008) do not; in fact, the latter

two studies show that a rather wide variety of monoterpene SOA exhibit very similar

CCN properties. Aging of aerosol is often associated with an increase in hygroscop-

icity (CCN activity), although this may not always be the case (Varutbangkul et al.,

2006; VanReken et al., 2005). Decreases in hygroscopicity are often attributed to the5

formation of oligomers that deplete the SOA from soluble monomers (Varutbangkul

et al., 2006; VanReken et al., 2005). Polymeric (i.e., high molecular weight) mate-

rial tends to be less-hygroscopic and nonvolatile (Baltensperger et al., 2005; Kalberer

et al., 2004; Reynolds et al., 2006) and often exhibits characteristics similar to HULIS

(Baltensperger et al., 2005).10

Though not studied to the same extent as monoterpenes, sesquiterpenes are an im-

portant class of parent hydrocarbons because of their high aerosol yields (Griffin et al.,

1999a,b) and widespread emission from more than forty vegetation species in abun-

dance (Arey et al., 1995; Hansen and Seufert, 2003; Helmig et al., 2007; Hoffmann,

1995; Konig et al., 1995; Zhang et al., 1999). β−caryophyllene is one of the most reac-15

tive and abundant sesquiterpenes (Ciccioli et al., 1999; Goldstein and Galbally, 2007;

Hansen and Seufert, 2003; Helmig et al., 2007; Jaoui et al., 2007; Grosjean et al., 1993;

Shu and Atkinson, 1994; Kanawati et al., 2008). Due to the high molecular weight (low

volatility) of its oxidation products, β-caryophyllene produces high aerosol yields in

SOA chamber experiments, as large as 70% (Lee et al., 2006), and can be an impor-20

tant PM2.5 contributor in the Southeastern United States (Jaoui et al., 2007; Kleindienst

et al., 2007) and in boreal forests (Parshintsev et al., 2008). The main aerosol phase

products of dark seedless β-caryophyllene ozonolysis are two semi-volatile ketoalde-

hydes; 3,3-dimethyl-y-methylene-2-(3-oxo-butyl)-cyclobutanebutanal (β-caryophyllone

aldehyde, 236 g mol
−1

) and 3,3-dimethyl-y-oxo-2- (3-oxobutyl)-cyclobutanebutanal (β-25

nocaryophyllone aldehyde, 238 g mol
−1

; Calogirou et al. (1997); Jaoui et al. (2003)).

These compounds exhibit low volatility and can readily form aerosol. Jaoui et al. (2003)

presented the most comprehensive β-caryophyllene ozonolysis speciation so far, iden-

tifying 17 compounds in both the gas and aerosol phases for a combined carbon yield
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of 65%; based on these studies, the mass-average molecular weight of the SOA is

estimated to be 250 g mol
−1

(Huff-Hartz et al., 2005).

The aerosol formed during β-caryophyllene ozonolysis can act as CCN (Donahue

et al., 2005; Huff-Hartz et al., 2005; Varutbangkul et al., 2006) yet SOA from sesquiter-

penes are less hygroscopic and CCN-active than monoterpene SOA (Huff-Hartz et al.,5

2005; Varutbangkul et al., 2006). Varutbangkul et al. (2006) observed the hygroscop-

icity of β-caryophyllene SOA to decrease with aging. Predicting the CCN activity of

the SOA requires assumptions for its solubility and surfactant characteristics. Huff-

Hartz et al. (2005) used an “effective solubility” (i.e., one common solubility for all com-

pounds present in the SOA), which ranges around 0.10 g g
−1

H2O for monoterpene and10

sesquiterpene SOA; other studies assume complete solubility of the SOA (e.g., Prenni

et al. (2007)). Surface tension at the point of activation is often assumed to be equal

to that of water, although recent studies relax this assumption (Cai and Griffin, 2005;

Engelhart et al., 2008; Shilling et al., 2007; Asa-Awuku et al., 2007). Even if the usage

of simplifying assumptions for thermodynamic properties (e.g., complete solubility and15

constant surface tension) reproduce the measured CCN activity, this does not imply

that they reflect the true nature of the aerosol (Engelhart et al., 2008).

There is currently little work on the link between SOA volatility and CCN activity

and the potential effect of semi-volatile organic compounds on aerosol hygroscopicity

and CCN properties (An et al., 2007; Baltensperger et al., 2005; Jonsson et al., 2007;20

Kanakidou et al., 2005). The volatility of VOC oxidation products largely control their

gas-to-particle partitioning (Pankow, 1994), and if water-soluble, also their CCN activity.

Chamber and ambient studies have measured the volatility for aging SOA (e.g., An

et al., 2007; Baltensperger et al., 2005; Grieshop et al., 2007; Kalberer et al., 2004),

coupled with hygroscopicity measurements (Fletcher et al., 2007; Johnson et al., 2005;25

Jonsson et al., 2007; Tomlinson et al., 2007). Results suggest that SOA formed by OH

oxidation is more volatile than the SOA formed during reactions with other oxidants

(e.g., O3) (Jonsson et al., 2007). Although the hygroscopic water uptake measured

for SOA below water saturation may not accurately reflect their CCN activity (Prenni
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et al., 2007), the hygroscopicity of the organic material may resemble that of (NH4)2SO4

(Fletcher et al., 2007).

An important aspect of droplet formation that is largely unconstrained is the effect

of composition on droplet growth kinetics. Complex growth kinetics can arise from

numerous mechanisms, such as incomplete solubility (Shulman et al., 1996; Shantz5

et al., 2003), slow dissolution kinetics of solute (Asa-Awuku and Nenes, 2007), and

organic films, all of which can decrease droplet growth rates. Such effects can be

parameterized in terms of an “effective” water vapor accommodation coefficient, α,

which is used to determine the mass transfer coefficient of water vapor to the growing

droplets (Fountoukis and Nenes, 2005). Values of α∼0.042 were used in early cloud10

modeling studies for inorganic aerosol (see review in Lance et al. (2004)), while recent

aerosol-cloud droplet closure studies show a range of α from 0.04 to 1 (McFiggins

et al., 2006). Conant et al. (2004), Meskhidze et al. (2005), and Fountoukis et al. (2007)

conducted aerosol-cloud droplet closure using in-situ observations of cumuliform and

stratiform clouds formed in polluted and clean air masses; all achieved closure for α15

between 0.03 and 1.0, with optimum estimates (i.e., where average droplet closure

error and standard deviation thereof lie within measurement uncertainty) between 0.03

and 0.06. Stroud et al. (2007), using a static diffusion chamber combined with a model

of the instrument, estimated α=0.07 for ambient biogenic CCN sampled during the

CELTIC experiment. Ruehl et al. (2007), using a continuous flow thermal gradient20

CCN chamber (Roberts and Nenes, 2005) coupled with a model of the instrument,

also infer a wide range of growth kinetics for ambient aerosol sampled in sites across

the Northern Unites States.

In this study we investigate the droplet formation characteristics of aging β-

caryophyllene SOA generated via seedless dark ozonolysis. Employing two different25

CCN counters, we comprehensively characterize the CCN activity and droplet kinet-

ics of the SOA, and explore the role of its volatile fraction on droplet formation. From

filter samples of SOA obtained during these experiments, surfactant characteristics,

average molar volume and droplet growth kinetics of the water-soluble component are
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determined with Köhler Theory Analysis (KTA) (Asa-Awuku et al., 2007, 2008; Padró

et al., 2007). SOA and WSOC measurements are then combined to infer the soluble

fraction of SOA, as well as the impacts of chemical aging thereon. Finally, we ex-

plore the impact of composition (i.e., insoluble fraction) on droplet growth kinetics, by

combining the CCN activation measurements with comprehensive models of the CCN5

instrumentation.

2 Experimental methods

2.1 SOA formation and online measurements

Experiments in this study were conducted in the Carnegie Mellon University 12 m
3

Teflon SOA chamber (Welch Fluorocarbon), suspended inside a temperature-10

controlled room (Fig. 1). Details of the smog chamber and its operation are reported

elsewhere (Presto et al., 2005a,b; Stanier et al., 2007). As shown in Fig. 1, the aerosol

from the chamber inlet is classified by a scanning mobility particle sizer (SMPS 3080)

and differential mobility analyzer (DMA 3081). The total aerosol concentration (CN) of

the monodisperse particles is counted by a condensation particle counter (TSI CPC15

3010) and the CCN concentration is measured by a DH Associates-M1 Static Diffusion

(SD) CCN Counter and a DMT Continuous-Flow Streamwise Thermal Gradient CCN

Counter (CFSTGC) (Lance et al., 2006; Roberts and Nenes, 2005). The SOA was

formed in unseeded dark ozonolysis of β-caryophyllene (Fluka >+98.5%). For each

dry chamber experiment, oxidation occurred at 22
◦
C at low relative humidity (3–8%);20

aerosol measurements commenced after the injection of sesquiterpene and lasted up

to 11 h. Table 1 summarizes the initial ozone and sesquiterpene concentrations for

particle nucleation in our experiments. 0.5 ml of 2-butanol was used as hydroxyl radical

(OH) scavenger so oxidation could occur in the presence and absence of OH (Table 1).

Experiment 2 (Table 1) focused largely on the relationship between volatility and25

CCN activity. The SOA was at times passed through a thermodenuder (TD) at 35
◦
C
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for ∼15 seconds before introduction to aerosol classification and CCN measurements.

The temporal conditions in the thermodenuder simulate and closely resemble those in

the CFSTGC.

The SD CCN counter requires 7.5 min per datum (∼0.002 Hz); to capture the impacts

of aging on CCN activity, the SD is operated at 0.60%±0.02% supersaturation in Ex-5

periments 1 and 2, and is supplied with 100 nm diameter classified aerosol. Additional

Experiments (4 and 5) were performed with the SD counter to estimate the activation

diameter, d , (i.e., the dry diameter of the aerosol particle with critical supersaturation,

sc). For these experiments, a similar analysis and set-up (not shown here) to that pre-

sented in Cruz and Pandis (1997) are used. Two classifying systems are employed;10

the first DMA selects a monodiserpse aerosol, and the second DMA scans several

sizes and measures the distrbution of particles. The method uses the activated frac-

tion (CCN/CN) to determine the fraction of particles in each distribution with a diameter

greater than d .

The CFSTGC is considerably faster (∼1 Hz) than the SD counter, allowing for a com-15

prehensive characterization of size resolved CCN activity using Scanning Mobility CCN

Analysis (SMCA) (Nenes et al., in review 2008
1

which couples the CFSTGC CCN

counter with a SMPS. By keeping the CFSTGC supersaturation, s, constant during

the scanning cycle of the SMPS, we obtain the time series of CN and CCN counts;

an inversion procedure then leads to the CCN/CN ratio as a function of dry mobil-20

ity diameter Nenes et al., in review 2008
1
. This procedure is repeated over multiple

supersaturations, giving a characterization of the size-resolved CCN properties for a

range of supersaturations every 2.25 min. SMCA has been evaluated for calibration,

laboratory and ambient aerosol, SOA filter samples, biomass burning aerosol (Asa-

Awuku et al., 2007; Asa-Awuku et al., 2008; Nenes et al., in review 2008
1
; Padró et al.,25

2007) and monoterpene SOA (Engelhart et al., 2008).

SMCA also provides size-resolved droplet growth measurements as the DMT CCN

1
Nenes, A. and Medina, J.: Scanning Mobility CCN Analysis – A method for fast measure-

ments of size resolved CCN activity and growth kinetics, Aerosol Sci. Technol., in review, 2008.

10112

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/10105/2008/acpd-8-10105-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/10105/2008/acpd-8-10105-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 10105–10151, 2008

β-caryophyllene CCN

A. Asa-Awuku et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

counter measures, through its optical particle counter (OPC), the droplet size distri-

bution of activated CCN. Aerosol particles, when exposed to the same s profile, will

grow to approximately the same wet diameter, Dp, provided that the mass transfer co-

efficient of the water vapor to the growing droplet and the critical supersaturation is

the same (Nenes et al., 2001). The dependence of droplet size on the supersatura-5

tion profile and particle size can then be used to study the impact of organics on the

droplet growth kinetics (Asa-Awuku et al., 2007; Engelhart et al., 2008; Lance et al.,

2006; Moore et al., 2008; Ruehl et al., 2007). In this study, we focus on droplet sizes of

activated SOA particles with sc equal to the instrument supersaturation, as such CCN

tend to have the smallest droplet size, hence are most sensitive to kinetic limitations.10

Changes in growth kinetics are quantified by (i) comparison against the droplet size

attained by CCN composed of pure (NH4)2SO4, and, (ii) using comprehensive models

of the instruments to infer growth kinetic parameters of the SOA.

2.2 Characterizing the water-soluble fraction of SOA

β−caryophyllene SOA oxidized in the presence of OH and O3 (Table 1) was collected15

on a Teflon filter and subsequently used to characterize the properties of its water-

soluble organic carbon (WSOC) fraction. The WSOC in the filter samples was ex-

tracted with 20 ml of ultra-pure water (18 Mohms) during a 1.5 h sonication process

with heat (bath water temperature ∼60
◦
C; Asa-Awuku et al., 2007, 2008; Sullivan and

Weber, 2006). The WSOC concentration was measured with a Total Organic Car-20

bon (TOC) Turbo Siever analyzer (Sullivan and Weber, 2006) and found to be 10.8µg

C mL
−1

. The extracted sample is subsequently atomized, dried, size selected, and

characterized for its CCN activity (following the procedure of Asa-Awuku et al. (2007))

using SMCA between 0.2 and 1.4% supersaturation. This procedure is repeated for

pure WSOC and mixtures with (NH4)2SO4, the composition of which is verified with25

ion chromatography (IC) analysis. Köhler Theory Analysis (KTA), combined with the

CCN activity measurements, are used to infer the molecular weight, surface tension

(Asa-Awuku et al., 2007; Padró et al., 2007; Moore et al., 2008), and droplet growth
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kinetic characteristics (Asa-Awuku et al., 2007).

The concentration of WSOC extracted from filter samples is often too low (∼100 mg

C L
−1

) to have a measurable impact on surface tension; σ measurements relevant for

CCN activation need to be obtained at much higher WSOC concentrations (>500 mg

C L
−1

) (Asa-Awuku et al., 2007). Although concentrating these solutions is possible,5

obtaining the required volume of organic sample is often impractical (Asa-Awuku et al.,

2007). It is possible, however, to infer the surfactant characteristics of the SOA from

the CCN activity of pure WSOC and mixtures with (NH4)2SO4, following the procedure

of Asa-Awuku et al. (2007) and Moore et al. (2008).

3 Data analysis10

3.1 Köhler theory analysis of WSOC

Köhler Theory Analysis (KTA), (method b1) (Asa-Awuku et al., 2008; Padró et al., 2007)

is used to infer the average molar volume (molecular weight, Mo, over density, ρo) of

the water-soluble organic fraction. KTA, when applied to organic aerosol of known

composition, has been shown to yield organic molar volumes to within 20% (Padró15

et al., 2007). KTA has also been applied to biomass burning aerosol (Asa-Awuku et al.,

2008), WSOC from alkene ozonolysis (Asa-Awuku et al., 2007) and marine organic

matter (Moore et al., 2008), where inferred σ was in agreement with direct measure-

ments using the pendant drop technique. KTA has also been used to infer the soluble

fraction and the molecular weights of water-soluble components of monoterpene SOA20

(Engelhart et al., 2008).

KTA employs measurements of the activation diameter, d , for a range of sc to obtain

a Fitted CCN Activity (FCA) factor, ω, as sc=ωd−3/2
. If the organic particle is assumed

to be composed of a soluble and insoluble fraction, FCA can be used to infer the
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average organic molar volume, Mo/ρo, as

Mo

ρo

=
ενo

256
27

(

Mw

ρw

)2
(

1
RT

)3
σ3ω−2

(1)

where R is the universal gas constant, T is the measurement temperature, Mw and ρw

are the molecular weight and density of water, respectively, ε is the soluble fraction,

and σ is the surface tension of the droplet at the point of activation (Sect. 3.2). For5

aerosol composed solely of WSOC, we assume that ε=1, and the organic effective

van’t Hoff factor, νo=1.

Mo/ρo is computed for each sc, d point and an average value is obtained. The

average molecular weight, Mo, is then computed by assuming a density of 1500 kg m
−3

(Kostenidou et al., 2007). For consistency, the standard deviation in inferred Mo/ρo10

is compared against the estimated molar volume uncertainty, ∆
(

Mo

ρo

)

=

√

∑

x
(Φx∆x)

2,

where ∆x is the uncertainty of each of the measured parameters x, (i.e., any of σ, ω,

and ν) and Φx is the sensitivity of molar volume to x, Φx=
∂
∂x

(

Mo

ρo

)

(Table 2; Padró

et al., 2007; Asa-Awuku et al., 2007, 2008).

3.2 Inferring surface tension15

If CCN activity data is available for mixtures of WSOC and a salt (e.g., (NH4)2SO4), KTA

can be used to concurrently infer Mo/ρo and σ (as a function of WSOC concentration)

using an iterative procedure (Moore et al., 2008). However, if enough salt is present

in the sample, the contribution of organic solute is negligible; the effect of the organic

on CCN activity amounts to its impact on surface tension, and can be inferred as (Asa-20

Awuku et al., 2007),

σ = σw

(

sc

s∗c

)2/3

(2)
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where sc is the measured critical supersaturation, and s∗c is the predicted value (from

Köhler theory), assuming σ=σw , the surface tension of pure water computed at the

average CFSTGC column temperature (Asa-Awuku et al., 2007),

s∗c =
2

3

(

4Mwσw

RTρw

)1.5
(

3εiνiρiMwd
3

Miρw

)

−0.5

(3)

where the subscript i denotes the inorganic salt properties. In this study, both the5

methods of Asa-Awuku et al. (2007) and Moore et al. (2008) are applied to infer σ as a

function of carbon concentration.

3.3 Inferring the WSOC fraction in the SOA

The SOA formed during the ozonolysis can be described as a mixture of a water-

soluble and insoluble fractions. Assuming the extracted WSOC is similar to the soluble10

fraction of SOA, we can use the Mo and σ of the WSOC estimated by KTA (Sects. 3.1

and 3.2) to infer the ε for the SOA. This is done by solving Eq. (1) for ε,

ε =
256

27

(

Mw

ρwRT

)3 (Mo

ρo

)(

ρw

Mw

)

σ3ω−2

νo
(4)

3.4 Quantifying the droplet growth kinetics

The extent to which droplets grow in each instrument depends on the supersatura-15

tion profile, residence time, droplet growth kinetic behavior, and to a lesser degree, dry

particle size (Nenes et al., 2001). We quantitatively describe the growth of SOA by sim-

ulating the process of droplet formation within each CCN counter using comprehensive

computational fluid dynamic models: the SD chamber model of Nenes et al. (2001),

and, the DMT CFSTGC model of Lance et al. (2006). Each of these models numeri-20

cally simulates the temporal and spatial distributions of velocity, pressure, temperature

and water vapor concentration throughout the growth chamber of each instrument (the
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particle and gas phases are coupled through release of latent heat and condensational

loss of water vapor); the fields are then used to drive the condensation growth of a

population of aerosol as it flows through the instrument. The kinetic model includes

aerosol with size-dependant composition; condensation growth of aerosol is computed

based on a size-dependant mass transfer coefficient (Nenes et al., 2001) multiplied5

by the difference between gas-phase and equilibrium water vapor pressure. The latter

is calculated with a comprehensive implementation of Köhler theory that accounts for

multicomponent aerosol consisting of soluble, partially soluble and insoluble material.

Organic surfactants can be present in any of these fractions.

The CCN models were initialized using the appropriate geometric dimensions and10

operating conditions of each CCN instrument (Sect. 2.1). A computational grid of 200

cells in the radial and 200 cells in the axial direction was used in each simulation;

condensational growth and gravitational settling in the SD simulations commences af-

ter steady state is established for all gas-phase profiles. In CFSTGC simulations, the

droplet diameter at the exit of the flow chamber is then compared against the measured15

size distribution, following the binning scheme used in the optical detection of the in-

strument (Lance et al., 2006). Particles with diameter larger than 2µm are counted as

droplets in the SD simulations. Organics are allowed to affect the growth kinetics of

CCN by modifying surface tension, equilibrium vapor pressure and the water uptake

coefficient used to compute the water-vapor mass transfer coefficient (Nenes et al.,20

2001; Lance et al., 2006).

4 Results and discussion

4.1 The diversity of observed CCN activity

Figure 2 presents the CCN activity of 100 nm SOA particles (formed with and without

OH in Experiments 1 and 2), concurrently measured by the SD and CFSTGC at ap-25

proximately the same (0.6%) supersaturation (Table 1). CCN activity is presented in
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terms of an activated fraction, the ratio of CCN/CN. The gradual increase in CCN ac-

tivity suggests active chemical aging of the aerosol; this is in agreement with Donahue

et al. (2005), although it is unclear if it is from oxidation in the gas or aerosol phase. Al-

though both CCN instruments show an increase of activity with aging, the magnitudes

and trends of the activated fractions are remarkably different. First, SOA formed in Ex-5

periment 1 without OH appears more CCN active in the SD counter than SOA formed

with OH oxidation (Experiment 2), whereas the CFSTGC measurements show the op-

posite. Secondly, SOA in the SD counter ages more rapidly (i.e., CCN/CN has a larger

slope) than in the CFSTGC; the SD aerosol ages at a rate of 0.10 and 0.07 CCN/CN

hr
−1

for SOA formed without and in the presence of OH, respectively. Aging in the10

CFSTGC counter commences at 0.02 and 0.04 CCN/CN hr
−1

for SOA formed without

and in the presence of OH, respectively. Finally, CCN are immediately measured in

the SD, while up to 6 h are required to register the first CCN counts in the CFSTGC

(Figs. 2 and 3). The discrepancy in measured CCN activity is most likely not an ex-

perimental artifact, as both instruments agree very well for calibration (NH4)2SO4 and15

monoterpene SOA (Engelhart et al., 2008). We postulate that β-caryophyllene SOA

(at least the hygroscopic component) partially evaporates in the CFSTGC, given that

it is operated at ∼10
◦
C above the chamber temperature. Conversely, vapors may con-

dense onto the CCN in the SD given that particles are exposed to supersaturation at

roughly 1
◦
C below the chamber temperature (though significant composition changes20

due to this minor difference in temperature are unlikely). Changes in instrument opera-

tion conditions can thus affect the measured CCN properties of the aerosol. If true, this

suggests that the hygroscopic fraction from the β-caryophyllene SOA formed during

the reaction with O3 tends to be more volatile than the hygroscopic SOA formed during

the reaction with OH. The SD counter results in Experiments 1 and 2 also suggest that25

the ozonolysis products are better CCN than the products of OH reaction.

Similar behavior is also seen at higher supersaturations (Fig. 3). Consistently with

Fig. 2, the SOA age significantly over time. SOA formed in the absence of OH requires

a very long time (≃4 h) before any CCN counts are registered by the CFSTGC; SOA
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formed in the presence of OH form CCN almost immediately. The CCN/CN tends to

exhibit a sigmoidal shape with time, unlike the data in Fig. 2 where trends exhibit a

more linear dependence with time.

4.1.1 Understanding the CCN activity

To characterize the time-dependant CCN behavior, SMCA is applied to SOA formed5

in the presence and absence of OH (Fig. 4). In these measurements, CCN activity is

quantified by the activation diameter, d , defined as the size of particles with sc equal

to the instrument supersaturation; this is determined by the dry aerosol diameter for

which CCN/CN=0.5. d is determined for measurements with the SD in Experiments 4

and 5 using the methods of Cruz and Pandis (1997) (Sect. 2.1).10

In the absence of OH, the SD counter initially measures d≃102 nm at s=0.6% and

decreases gradually with time at a rate of around –1 nm hr
−1

(Fig. 4a). In the absence

of OH and at s=1.09%, the CFSTGC cannot determine d within the first five hours

due to insufficient CCN counts (<10 CCN cm
−3

). Compared to the SD, the slope of

d with time in the CFSTGC is three times larger, suggesting that the volatility of the15

hygroscopic material in Experiments 1 and 2 may change with time. Beyond the sixth

hour, the CCN activity of CFSTGC measurements (i.e., d ) for both types of SOA (with

and without OH oxidation in Experiment 1 and 2) and supersaturations considered

agree to within 5%, suggesting that the oxidized products of both SOA types become

similar (Fig. 3).20

To verify that aerosol volatility accounts for the differences seen in the CCN activ-

ity between instruments, we pass the most volatile SOA (i.e., formed with OH absent)

through a thermodenuder before introduction into the CFSTGC. SMCA is applied to

measurements at 0.65% and 1.09% supersaturation; however, the lack of CCN counts

at the lower supersaturation prohibits the determination of d for the whole experiment.25

For similar reasons, the CCN activity of thermodenuded SOA at 1.09% can not be de-

termined during the first six hours of the experiment (Fig. 4b). When CCN counts are

possible, d significantly increases (∼25%) when the SOA is passed through the ther-
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modenuder. This suggests that the non-volatile aerosol exiting the thermodenuder is

less CCN-active than the semi-volatile material, and that the latter is primarily respon-

sible for the observed CCN activity of freshly formed SOA.

Since the CFSTGC is operated at conditions similar to the thermodenuder, some

of the soluble material will evaporate in the CCN instrument and exhibit reduced CCN5

activity. In the SD instrument however, particles are exposed to supersaturation at

one degree below chamber temperature (because the temperature difference between

plates is ∼2
◦
C, and smax in the instrument is located halfway between plates). It is

therefore expected that the SD measurements reflect the CCN activity of the particles

in the smog chamber, and any additional condensation of SOA in the SD chamber10

(because of the 1 degree difference) will have a minor impact on composition and CCN

activity.

A decrease in CCN activity could also be a result of kinetic limitations, when the

droplets are not allowed enough time to grow to detectable sizes (Lance et al., 2006).

In the CFSTGC, CCN are allowed to grow for 10–30 s; if the SOA are kinetically limited,15

activation in the SD should require about the same time. This is however not true, as

droplets in the SD form in less than 5 s (Sect. 4.4). Hence, the reduced CCN activity is

not from kinetic limitations and reflects changes in the aerosol hygroscopicity.

The SOA, when activated close to the chamber temperature (i.e., in the SD) seems

to contain more hygroscopic material, compared to when it is activated in the CFSTGC20

(Fig. 4). Minor differences in CCN activity are also seen between SOA formed from

O3 and O3+OH oxidation, reflected in the SD measurements as a small difference in

CCN activity between the two SOA types (Fig. 2). After sufficient aging has occurred,

the volatility of organic components may decrease enough for CCN activity measure-

ments from the SD and CFSTGC to converge; this was not seen however in any of the25

experiments conducted in this study.
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4.2 Characterization of the hygroscopic fraction

Figure 5 displays the sc vs. d for β-caryophyllene SOA and the WSOC extracted from

it. For comparison, we also present data for WSOC extracted from monoterpene SOA

(Engelhart et al., 2008) and (NH4)2SO4. The results show that aerosol generated

from β-caryophyllene WSOC are more CCN-active than the original SOA, but less5

CCN active than (NH4)2SO4. Surprisingly, the CCN activity of WSOC from oxidation of

monoterpenes and β-caryophyllene is remarkably similar. Gas Chromatography- Mass

Spectrometry (GC-MS) analysis of the β-caryophyllene sample exclude the presence

of monoterpenes; hence similarity of WSOC properties is most likely an inherent prop-

erty of the WSOC. Despite this, the CCN activity of monoterpene and β-caryophyllene10

SOA is substantially different (the latter being less hygroscopic, Huff-Hartz et al. (2005);

Engelhart et al. (2008), Fig. 5) suggesting that the amount of WSOC in sesquiterpene

SOA is much less than in monoterpene SOA.

The molecular weight of the WSOC fraction is summarized in Table 3, along with

the relevant KTA parameters. The average molecular weight of the WSOC was found15

to be 156±44 g mol
−1

(Table 3). This level of CCN activity is similar to low molecu-

lar weight organic species (<200 g mol
−1

) that are moderately surface active (Henning

et al., 2005; Padró et al., 2007; Raymond and Pandis, 2002). The molar volume uncer-

tainty is estimated to be ∼25% (Table 3) and is consistent with the observed variability

in the inferred Mo/ρohere and in previous KTA studies (e.g., Padró et al., 2007).20

Low molecular weight species consistent with the KTA estimates have been identi-

fied in β-caryophyllene SOA. Jaoui et al. (2003) identify 3,3-dimethyl-2-(3-oxobutyl)-

cyclobutane-methanal and 3,3-dimethyl-2-ethanal-cyclobutane, of molecular weight

192 and 154 g mol
−1

, respectively in the aerosol phase. Lee et al. (2006) using

proton transfer reaction mass spectrometry (PTR-MS) measured several unknown25

compounds of mass charge ratio (m/z)<250. In particular, Lee et al. (2006) iden-

tified a compound with m/z=159 in the ambient and laboratory experiments of β-

caryophyllene.
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Addition of (NH4)2SO4 to the WSOC mixture could produce better CCN than us-

ing pure (NH4)2SO4 alone, if the organics depress surface tension. This is indeed

the case, and shown in Fig. 5b; the activation curve of the aerosol composed of 92%

sulfate should lie notably to the right of the pure (NH4)2SO4. Instead, the organics

(present in ∼10%) depress surface tension (by ∼5%) so that the mixture behaves5

like pure (NH4)2SO4. Similar CCN enhancement from surface tension depression is

also seen in monoterpene and marine WSOC (Engelhart et al., 2008; Moore et al.,

2008), suggesting that this level of surface tension depression, with the exception of

HULIS (Asa-Awuku et al., 2008), may be a robust characteristic of CCN containing

water-soluble organics. The inferred σ values from the salted WSOC samples find the10

organics to depress surface tension at the droplet layer to 65.6±2.1 mN m
−1

.

4.3 Estimating SOA soluble fraction

Once the surface tension and average molar volume of the WSOC is determined, its

volume fraction, ε, in the SOA can be inferred by applying Eq. (4) to the online CCN

activation data. The result of this calculation is shown in Fig. 6a, where ε is plotted15

against time for all the experimental data of Fig. 4. CCN activity is only observed when

sufficient amounts (ε>0.03) of soluble non-volatile material exist in the aerosol phase

(Figs. 4 and 6). Figure 6a suggests that ε is minimum for aerosol processed in the

thermodenuder, since that is when d is maximum (Fig. 4), and is consistent with the

hypothesis of WSOC volatility.20

Analyzing the temporal trend of inferred ε (Fig. 6a) yields some very interesting as-

pects of the SOA aging process. Early on in the experiment (0–5 h), the ε inferred from

the CFSTGC 0.65% and 1.09% datasets is almost identical; this is consistent with the

SOA being initially of uniform composition (and also confirms that the method to infer ε
gives consistent results across a wide range of operation conditions and experiments).25

Later on in the experiment (5–11 h), ε between the two supersaturations diverge; the

1.09% dataset tends to infer a larger ε than for the 0.65%. This is consistent with size-

dependant processing of the aerosol in the chamber; smaller particles (i.e., those with
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sc=1.09%), because of differences in their surface-to-volume ratio, would tend to age

more quickly than larger particles (i.e., those with sc=0.65%). It is unclear however if

this aging is from the condensation of gas-phase species, or chemical aging of material

within the aerosol volume.

Figure 6b presents the sensitivity of ε to the value of Mo/ρo and σ used in Eq. (4);5

despite the large variations considered, ε does not change by more than a factor of

1.5 and does not exceed 30%. This finding is consistent with the hypothesis that the

soluble (hygroscopic) material is present in small amounts in the aerosol; because of

this, volatilization of small amounts of the soluble fraction will strongly impact CCN

activity.10

4.4 Composition and droplet growth kinetics

Figure 7 shows that more than six hours of aging are required before the SOA with

sc=1.09% can grow to droplet sizes similar to those of (NH4)2SO4; even more time is

required for particles with sc=0.65%. The range of observed growth kinetics is much

larger than shifts in the particle equilibrium vapor pressure can account for, and are15

attributed to changes in the water vapor mass transfer coefficient. Combining the data

in Figs. 6 and 7 indicate that the SOA droplet growth kinetics accelerate as ε increases;

this suggests that (i) the insoluble material may somehow form surface films that can

delay growth, and, (ii) the chemical aging of the aerosol (expressed as an increase in

ε) eventually diminishes the extent of this delay.20

Figure 8 presents droplet sizes of WSOC (pure and mixed with (NH4)2SO4) as a

function of sc. For comparison, droplet sizes for pure (NH4)2SO4 and SOA CCN are

presented. The WSOC (pure and salted) behave much like (NH4)2SO4, as the wet di-

ameters for all samples are within one size bin (0.5µm) of the OPC sizing. This, com-

bined with the marked delay in growth of SOA CCN (Figs. 7 and 8) strongly suggests25

that the source of kinetic limitations in the latter arises from the “insoluble” component

of the SOA.

To compare the observed droplet growth kinetics in both CCN counters, we derive
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the α from the simulations of CCN activation in each instrument. Figure 9 shows the

simulated normalized droplet concentration in the view volume of the SD (used for de-

termining the CCN concentration), as a function of time and α. The simulations suggest

that α strongly influences the timing, but not the value, of peak droplet concentration;

we therefore use the timing where the peak concentration is obtained to constrain α5

in the SD CCN measurements. The droplet formation timescale in the view volume

was measured 4 h (3.70±0.60 s) and 8 h (3.32±0.50 s) into Experiment 4, and are

shown as dashed lines in Fig. 9; simulations suggest that the SOA water vapor uptake

coefficient is low early on (α∼0.03) and increases to values consistent with (NH4)2SO4

(2.23±0.19 s) and hydrophilic (monoterpene) SOA. Although the variability in activa-10

tion timescale is large, these shifts are statistically significant; values of α below 0.03

are highly unlikely, since the timing difference in the peak concentration becomes very

large (Fig. 9).

Figure 10a shows the simulated droplet size at the exit of the CFSTGC column as

a function of α for CCN with sc=1.09% (blue) and 0.65% (magenta). The size of acti-15

vated calibration (NH4)2SO4 with corresponding critical supersaturations is also shown;

simulations suggest that the α for (NH4)2SO4 particles ranges between 0.04 and 0.06,

which is consistent with expectations and the SD simulations. The agreement in in-

ferred α between instruments confirms that the CFSTGC and SD models are a consis-

tent representation of the growth kinetics in each instrument.20

The simulations of Fig. 10a can be combined with the droplet size data of Fig. 7

to infer the water vapor uptake coefficient for the activated SOA in the CFSTGC, and

is shown in Fig. 10b. Compared to the SD, growth kinetics in the CFSTGC are sub-

stantially slower, with the following characteristics: (i) aerosol thermally treated in the

thermodenuder exhibits the slowest behavior, with 4 times lower α than (NH4)2SO4, (ii)25

aerosol that is not pretreated in the thermodenuder exhibits slow growth kinetics early

on in the experiment. Aging gradually accelerates growth, until it reaches the levels of

ammonium sulfate (after 10 h of aging), and, (iii) the growth at sc=0.65% is slower than

particles with sc=1.09% particles and takes longer to reach “sulfate rates”.
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The diverse range of uptake coefficients inferred for CCN in both instruments may

at first seem counterintuitive, but is consistent with thermal processing of the SOA in

the CFSTGC and thermodenuder. Modification of CCN can happen in many ways; for

example, evaporation of hygroscopic volatile compounds, preferentially from the sur-

face layers of the aerosol, and, redistribution of insoluble “waxy” material to the CCN5

surface, especially if the viscosity changes substantially in the 25–35
◦
C range (i.e., it

partially melts). In both cases, a “barrier” of insoluble and hydrophobic material could

form between the hygroscopic fraction of the SOA, which would then decrease the

growth rates of the activated CCN. The available data seems to support the thermal

modification hypothesis because (i) α is strongly anticorrelated with the residence time10

at elevated temperatures, since CCN processed in the thermodenuder exhibits the

slowest growth, followed by the CFSTGC data (with non-denuded aerosol) and the SD,

(ii) CCN with sc=1.09% grow more quickly in the CFSTGC than those with sc=0.65%,

because the WSOC fraction in the former is higher, and, (iii) given that particles with

sc=1.09% have a smaller dry diameter than those with sc=0.65%, the amount of in-15

soluble material (hence the kinetic barrier) is much less; this explains why the aerosol

establishes “rapid growth” kinetics towards the end of the experiment.

Other mechanisms can limit the growth rate of CCN, but may not be active in β-

caryophyllene SOA. For example, finite dissolution rate of the soluble material in the

CCN (Asa-Awuku and Nenes, 2007) is unlikely, given that solute diffusivity (hence20

growth kinetics) should be faster at higher temperatures, contrary to what is seen in our

experiments. Condensation/dissolution of material from the gas phase is also possible,

but also unlikely, as the thermodenuded aerosol should then exhibit faster growth kinet-

ics (because of higher mass transfer rates of soluble material to the CCN). Chemical

reactions are also a possibility, but cannot be explored using the information available.25

If volatilization of hygroscopic material (or melting of insolubles) is responsible for

the variability seen in droplet growth kinetics, a common scaling law could be derived

between α and the amount of insoluble material in the particle (i.e., ε). Indeed, this is

the case (Fig. 11); the correlation between the quantities is quite striking, as it shows
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an explicit relationship between composition and growth kinetics which to first order

applies for all the experiments and CCN instruments used in the study.

5 Implications-conclusions

A combination of modeling with measurements of CCN activity, droplet growth kinet-

ics and volatility provides a unique insight on the droplet formation characteristics of5

β-caryophyllene SOA. We find that the particles contain small amounts of hygroscopic

material; hence, even if sesquiterpenes have higher aerosol yields than monoterpenes,

they are less CCN-active. From our KTA estimates, the WSOC constitute 5–10% of the

SOA mass, moderately depresss surface tension and is composed (on average) of low

molecular weight compounds (<250 g mol
−1

). Remarkably, these properties are sim-10

ilar to water-soluble organic carbon extracted from monoterpene oxidation (although

the soluble volume fraction is much higher, between 70% and 100%, Engelhart et al.

(2008)). This suggests that WSOC in biogenic SOA may have similar CCN proper-

ties (solubility, molecular weight and surfactant characteristics), and that differences

in the CCN activity of SOA from different parent hydrocarbons may be primarily arise15

from the WSOC mass fraction; if true, this can constitute the basis for a simple and

mechanistically-based approach to represent the CCN activity of SOA as a function of

atmospheric age (as one needs to only simulate the WSOC fraction of the SOA).

A major finding of this study is that the hygroscopic material in β-caryophyllene SOA

is semivolatile. The implications for CCN measurements are very important; the tem-20

perature at which CCN measurements are carried out, if the aerosol is volatile and

composed of a low fraction of soluble material, may strongly bias the observed CCN

activity. In our study, this bias shifted measured activation diameters between 25 and

30% and prevented CCN detection during the first half of the experiments. However,

the bias can be identified and quantified if the aerosol is periodically passed through25

a thermodenuder, or, if CCN measurements are undertaken at different temperatures.

The volatility of WSOC carries important implications for atmospheric processes; since
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the temperature range in our measurements is typical of diurnal variations found during

summertime conditions (where biogenic emissions and photochemical activity, hence

SOA production, are maximum), volatilization of small amounts of aerosol may induce

an unanticipated diurnal cycle of CCN activity.

Another major finding of this study is that the less volatile material in sesquiterpene5

SOA is not very hygroscopic, but can impact droplet growth kinetics. The degree of

kinetic limitations depend on the volume fraction of insoluble material in the SOA, as

heating of the aerosol tends to decrease the droplet growth rates of the CCN. We

postulate this to be the result of soluble material evaporating from the surface of the

SOA, potentially combined with redistribution (by melting) of “waxy” material to the10

CCN surface; both mechanisms would create a kinetic barrier that partially impedes

water vapor condensation. An explicit relationship between the water vapor uptake

coefficient (used here to represent variations in droplet growth kinetics) and WSOC

fraction implies that one mechanism (that scales inversely with soluble volume fraction)

is likely responsible for the observed growth delay, and, that it is from the presence of15

insoluble material. The implications of these findings for cloud droplet formation are

many: (i) similar to CCN activity, a diurnal cycle of growth kinetics for biogenic aerosol

may exist, with profound impacts on the droplet size distribution and aerosol-cloud

interactions, (ii) the concept of “external mixing” may not be only important for CCN

activity (i.e., sc), but also for droplet growth kinetics, (iii) evaporation of SOA in the dry,20

free troposphere could form particles that are kinetically limited, and, (iv) SOA with high

soluble fractions (e.g., monoterpene SOA) may grow as quickly as inorganic salt CCN

(e.g., (NH4)2SO4) (which is consistent with the limited data available to date, Engelhart

et al., 2008). Whether a simple relationship between α and ε exists in other SOA

systems still remains to be found, but the approach outlined in this study could be used25

to unravel and parameterize the complex relationship between volatility, CCN activity,

growth kinetics and composition.
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Table 1. Experimental conditions.

Experiment β-caryophyllene O3 Concentration 2–Butanol Oxidizing TD Peak SOA Mass CCN

Number, Name Concentration (ppb) (ppb) Present?
a

Agent Used? (µg cm
−3

) Counter

1 22 300 Yes O3 No 27 SD, CFSTGC

2 28 300 No O3 + OH Yes 31.8 SD, CFSTGC

3
b

28 300 Yes O3 No 49.8 CFSTGC

4 22 300 Yes O3 No – SD

5 32 300 Yes O3 No – SD

a
There is no OH when 2–Butanol is present, and vice versa.

b
Filter collection experiment.
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Table 2. Formulae for the sensitivity of Mo/ρo to the dependant parameters, when applied the

WSOC fraction of the SOA.

Property x Sensitivity, Φx =
∂
∂x

(

Mo

ρo

)

σ Φσ =

(

3×256
27

(

Mw

ρw

)2
(

1
RT

)3 σ2ω−2

υo

)

(

Mo

ρo

)2

ω Φω =

(

2×256
27

(

Mw

ρw

)2
(

1
RT

)3 σ3ω−3

υo

)

(

Mo

ρo

)2

νo Φυo
=

256
27

(

Mw

ρw

)2
(

1
RT

)3
(

Mo

ρo

)2

σ−3ω−2ν−2
o
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Table 3. Köhler Theory Analysis parameters, molar volume results and uncertainty analysis for

the water-soluble fraction of β-caryophyllene SOA.

Property x Average Uncertainty Sensitivity, Φx Mo/ρo uncertainty
(units) Value of x ∆x (m

3
mol

−1 x−1
) contribution(%)

FCA, ω (m
1.5

) 6.86 × 10
−14

1.01 × 10
−15

3.21 × 10
9

3.4

σ (N m
−1

) 6.56 × 10
−2

1.32 × 10
−3

4.62 × 10
−3

7.0

νo 1 0.20
a

1.02 × 10
−4

23.4

Mo/ρo (m
3

mol
−1

) 1.04 × 10
−4

24.8 % – –

Mo (g mol
−1

)
b

156 44 – –
a

based on up to 20% disassociation observed for HULIS (Dinar et al., 2006).
b ρs= 1500 kg m

−3
(Kostenidou et al., 2007).
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Fig. 1. Experimental set-up for SOA generation and online analysis.
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Fig. 2. CCN activity (at ∼0.6% supersaturation) of 100 nm β-caryophyllene SOA formed in the

presence of OH (circles) and without OH (triangles). Data from the CFSTGC and SD CCN

counters are presented from Experiments 1 and 2.
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Fig. 3. CCN activity of 100 nm β-caryophyllene SOA formed in the presence of OH (circles)

and without OH (triangles). Measurements are obtained with the CFSTGC at 1.09% supersat-

uration from Experiments 1 and 2.
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Fig. 4. Activation diameter as a function of time. (a) SOA formed without OH in Experiments 1

(CFSTGC at sc=0.65%: grey squares; sc=1.09%: green circles), 4 and 5 (SD at sc=0.6%: blue

triangles). (b) SOA formed with OH in Experiment 2. CFSTGC measurements at sc=0.65%

(grey squares), and sc=1.09% (green circles) are shown. Open red circles correspond to

aerosol passed through the thermodenuder prior to exposure to 1.09% supersaturation in the

CFSTGC.
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Fig. 5. CCN Activity of WSOC from β-caryophyllene SOA collected in Experiment 3. (a) SOA

and (NH4)2SO4 data are presented for comparison. WSOC from mixed monoterpene and

α-pinene hydrocarbon pre-cursors (Engelhart et al., 2008) are also shown. (b) WSOC from

β-caryophyllene SOA, mixed with (NH4)2SO4.
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Fig. 10. CFSTGC growth kinetics simulations for data collected during Experiments 1 and 2.

(a) Simulated droplet wet diameter at the exit of the CFSTGC as a function of α for CCN with

sc=1.09% (blue) and 0.65% (magenta). The size of activated calibration (NH4)2SO4 is also

shown for comparison. (b) Inferred water vapor uptake coefficient for the growth kinetic data

of Fig. 8. For comparison, the range of inferred α for (NH4)2SO4 is shown in the blue shaded

area.
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