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Abstract

The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched in Febru-
ary 2001, observes thermal emissions of stratospheric nitric acid (HNO3) originating
from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements
of the global distribution of nitric acid in the stratosphere between ~18-45km (~1.5—
60 hPa) were performed approximately on two observation days per week. An HNO4
climatology based on roughly 6 years of observations from August 2001 to December
2007 was created. The study highlights the spatial and seasonal variation of nitric acid
in the stratosphere, characterised by a pronounced seasonal cycle at middle and high
latitudes with maxima during late fall and minima during spring, strong denitrification
in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible
removal of NO, by the sedimentation of cloud particles containing HNOj3), as well as
high quantities of HNO4 formed every winter at high-latitudes in the middle and upper
stratosphere. A strong inter-annual variability is observed in particular at high latitudes.
A comparison with a stratospheric HNOj climatology based on UARS/MLS measure-
ments from the 1990s shows a good consistency and agreement of the main mor-
phological features in the potential temperature range ~465 to ~960K, if the different
characteristics of the data sets such as altitude range and resolution are considered.

1 Introduction

Nitric acid (HNO3) is an important chemical constituent in the stratosphere. It is
one of the most abundant species of the NOy family (NOy=HNO3, NO,, NO, N,Og,
CIONO,, ...) and thus a major reservoir of active odd nitrogen (NO,=NO+NO,) which
is responsible for the main catalytic ozone loss cycle in the middle stratosphere. The
main chemical source of nitric acid is the three-body gas-phase reaction

OH + NO, + M — HNO3 + M, (R1)
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major sinks are photolysis

HNO3; + hv — OH + NO, (R2)
and the reaction

(e.g. Austin et al., 1986; Brasseur et al.,, 1999). The molecule can additionally be
formed during midwinter in the polar middle and upper stratosphere from the down-
ward flux of mesospheric NO, (e.g. Seppala et al., 2004; Rinsland et al., 2005; Funke
etal., 2005; Randall et al., 2006; Hauchecorne et al., 2007) through a height-dependent
combination of water-ion cluster chemistry and heterogeneous conversion on sulfate
aerosols involving the night-time reservoir N,O5 (e.g. de Zafra and Smyshlyaev, 2001;
Orsolini et al., 2005; Stiller et al., 2005). Nitric acid is also known to play an important
role for processes related to ozone depletion in the polar lower stratosphere. Hetero-
geneous chemical processes involving HNO; on the surfaces of polar stratospheric
cloud (PSC) particles lead to the activation of chlorine (CIO,=CI+CIO) from its reser-
voir gases in the cold polar vortices during winter and to ozone loss when sunlight
returns in late winter and spring. Denitrification, the irreversible removal of NO, by
sedimentation of PSC particles containing HNOg, delays chlorine deactivation through
reformation of the chlorine reservoir CIONO, during spring and may therefore lead to
prolonged ozone loss (e.g. Tabazadeh et al., 2000, 2001).

Stratospheric nitric acid has been measured from the ground and from space by
a variety of passive sensors operating at infrared and millimetre wavelengths. The
longest data set so far is based on measurements made between 1991 and 1998
by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite
(UARS) (Santee et al., 2004).

Here we present a global climatology of stratospheric nitric acid retrieved from recent
observations of the Sub-Millimetre Radiometer (SMR) on the Odin satellite spanning
the 6-year period from August 2001 to December 2007. In Sect. 2 we describe the char-
acteristics of the Odin/SMR measurements and provide an overview of the observed
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global distribution and the spatial and temporal variability of HNO4 in the stratosphere.
In Sect. 3, the climatological data sets obtained with Odin/SMR and UARS/MLS are
compared and differences are discussed.

2 Odin HNO; climatology
2.1 Measurements

The Odin Sub-Millimetre Radiometer (SMR) (Frisk et al., 2003), launched in 2001,
measures thermal emissions of nitric acid in a band centred at 544.6 GHz. Global
fields of HNO,; were measured between ~83° N and ~83° S on roughly one day out of
three until April 2007 and on every second day since May 2007, based on 14—15 orbits
per observation day and about 60 limb scans per orbit.

HNO5 volume mixing ratios are retrieved in the stratosphere above 17-18 km (at
high latitudes) with a single profile precision of about 1 ppbv (10-15 % below 30 km)
and a resolution in altitude of 1.5-2 km, degrading with increasing altitude (e.g. ~3 km
at 35km) (e.g. Urban et al., 2007b). On four orbits per day, when the ground station
is not available for data down-link, limitations of the spectrometer read-out data rate
apply, constrained by the satellite’s on-board memory, and the vertical resolution is
limited to 3km. The horizontal resolution of the limb measurements is of the order of
300 km, determined by the limb path in the tangent-layer. The satellite motion of 7 km/s
leads to an additional uncertainty of the mean profile position of similar magnitude.

The systematical error derived from known instrumental and spectroscopic uncer-
tainties has been estimated to be better than 0.7 ppbv (Urban et al., 2005c). Com-
parisons with measurements of other space-borne sensors such as the Michelson In-
terferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat satellite, the
Microwave Limb Sounder (MLS) on Aura, as well as the Atmospheric Chemistry Ex-
periment Fourier Transform Spectrometer (ACE-FTS) on SCISAT-1 however indicate
a larger positive bias of the order of 2-3 ppbv (~20%) around the profile peak in the
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current Chalmers version-2.0 retrievals and a small negative bias of roughly 0.5 ppbv
in the range 35-45km (Urban et al., 2006; Wang et al., 2007a,b; Santee et al., 20073;
Wolff et al., 2008). Different approaches to correct for the evident bias in the Chalmers-
v2.0 HNO; retrievals have been explored: \Wang et al. (2007a) suggested to simply
correct for an average altitude offset of 1.5km in order to improve agreement with
MIPAS HNO; retrievals, Urban et al. (2006) published a linear fit to operational MIPAS
and Odin retrievals (VMRy;pag=0.77039x VMR 4, +0.48e-9) and Brohede et al. (2008)
used a quadratic fit to HNO5; measurements from ACE and Odin after applying a shift
of 1 km for deriving a correction term (VMR pcg=1.11 xVMROdin—O.026e9xVMRédin). In
this study, we decided to shift the profiles upward by 1 km to eliminate the altitude offset
and to apply the simple linear correction suggested by Urban et al. (2006). This cor-
rection leads globally to an excellent agreement with ACE-FTS measurements within
0.5 ppbv in the 19-35 km range or better 10% between 19 and 30 km, comparable with
the results obtained by Brohede et al. (2008) (not shown).

Only Odin/SMR level-2 profiles with good quality (assigned quality flag: QUALITY=0)
were used. The measurement response, provided in the level-2 files for each retrieval
level, was required to be larger than 0.67 in order to exclude altitude ranges where
a priori information, used by the “Optimal Estimation” type retrieval algorithm for sta-
bilisation, dominates the retrieved mixing ratios (see Urban et al., 2005¢c, 2007b, for
details).

2.2 Global distribution

The seasonal evolution of the global distribution of HNO3 observed by Odin/SMR is
shown in Fig. 1 for 6 years of observations between 2001 and 2007 and selected levels
of potential temperature in the stratosphere. Individual profile measurements were
linearly interpolated on potential temperature levels before being averaged in 10° wide
equivalent latitude bands on each observation day. Equivalent latitude is the latitude of
a given potential vorticity contour if it was centred around the pole enclosing the same
area as the original contour. Equivalent latitudes thus provide a coordinate system
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relative to the polar vortices, the latter being characterised by high values of potential
vorticity and consequently high equivalent latitudes. We used potential vorticity data
obtained from the European Centre for Medium-range Weather Forecast (ECMWF),
scaled according to Lait (1994), to derive equivalent latitudes.

In the lower stratosphere at the potential temperature level of 520K (just above
~20km or 50hPa), the measurements show an increase of the mixing ratios from
low to high equivalent latitudes and a strong seasonal cycle at high latitudes with build-
up of HNO; during fall and decrease during late winter and spring, as expected from
gas-phase chemistry (e.g. Austin et al., 1986; Santee et al., 2004). In the Southern
hemisphere, the cycle is interrupted inside the Antarctic vortex by a strong depletion of
HNO; during June which is completed in July and can be associated with cold temper-
atures and the formation of polar stratospheric clouds implying removal of HNO; from
the gas-phase. At the same time, a collar of HNOj rich air is observed at and around
the vortex edge. Whilst relatively low values of HNO4 inside the Antarctic vortex persist
until the vortex break-up, thus indicating denitrification, this effect is not observed in the
Northern hemisphere where notably low values of HNO; were only measured at this
level on a few occasions and during relatively short periods, e.g. in December 2002,
December 2004—-January 2005 (see also Urban et al., 2006), and February 2007 dur-
ing relatively cold Arctic winters.

In the middle stratosphere on the 1200K level (~36—38 km), the observed global
HNQO; field is characterised by maxima occurring with considerable inter-annual vari-
ability inside the winter polar vortices mainly during July—August in the Southern hemi-
sphere and during December—January in the Northern hemisphere, and elsewhere by
low mixing ratios below the noise level of about £0.5 ppbv in the daily averages at this
level.

Further down, on the 840K level of potential temperature corresponding to approx-
imately 30 km, the HNO; fields inside the polar vortices show first minima during late
fall and early winter, caused by subsidence of HNO5 poor air from higher levels, and
then maxima similar to those seen on the 1200 K level, but slightly delayed in time. In

9574

ACPD
8, 9569-9590, 2008

Stratospheric HNO,
climatology

J. Urban et al.

: “““ I““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9569/2008/acpd-8-9569-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9569/2008/acpd-8-9569-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the northern hemisphere the enhancements are not necessarily confined to the polar
vortex and high latitudes. Mixing ratios outside the vortices are higher at mid-latitudes
than in the tropics. At middle and low latitudes the HNO; field shows a time-varying
asymmetry with respect to the equator which might be attributed to a modulation due
to tropical oscillations such as the semi-annual (SAO) and quasi-biennal oscillations
(QBO), as suggested earlier by Kumer et al. (1996) who noted a hemispheric asym-
metry in measurements of the Cryogenic Limb Array Etalon Spectrometer (CLAES)
onboard the UARS satellite.

2.3 High equivalent latitudes

The vertical structure and seasonal evolution of the observed nitric acid fields at high
equivalent latitudes (larger than 70°) is presented in Fig. 2 for the Southern hemisphere
and in Fig. 3 for the Northern hemisphere. The measurements show clearly: (1) a
main layer of HNO3 between roughly 10-15 and 50 hPa (~20-30 km or ~500-800 K)
with a maximum around 25-30 hPa (23-25km or ~600K); (2) a strong seasonal cy-
cle with maxima during late fall/early winter, with the southern maximum in May being
slightly larger than the northern maximum in December; (3) a considerable depletion
of HNOj in the Antarctic from June to October—November in the lower stratosphere
below ~15hPa (or 650-700K); (4) middle and upper stratospheric HNO5 enhance-
ments forming above ~10hPa (~30km or ~800K) typically in July—August (SH) and
December—January (NH), characterised by a considerable inter-annual variability; and
(5) a gradual descent of the high altitude HNO5 enhancements during winter, joining
the main layer in the periods August—-October (SH) and February—March (NH). The bot-
tom plots in Figs. 2 and 3, representing the differences from the average profile, nicely
show the alternation of downward transport of HNO3 poor air through the middle strato-
sphere in the beginning of the winter and of HNO; rich air after chemical formation: a
“reversed tape-recorder effect”, with downward transported air carrying the signature
of middle stratospheric HNO5; formed above 10 hPa during a short mid-winter period,
thus contributing to the NO,, budget of the lower stratosphere with a delay determined
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by the vertical transport rates. For a more detailed discussion of the Odin observa-
tions of enhanced HNOj in the middle and upper stratosphere and the connection to
the variability of solar activity and meteorological conditions, the reader is referred to
Orsolini et al. (2008).

3 Inter-annual variability and comparison with UARS/MLS climatology

The seasonal cycle and inter-annual variability of the Odin measurements of nitric
acid in the Northern and Southern hemisphere are presented for potential tempera-
ture levels in the lower stratosphere (520 K), and in the middle stratosphere (960 K) in
Figs. 4 and 5.

The Odin climatology is compared to a global climatology of nitric acid inferred from
measurements of the UARS/MLS experiment between 1991 and 1998. The MLS ver-
sion6 HNO4 profiles, retrieved from limb observations of a small spectral feature at
205 GHz, are characterised by a horizontal resolution typical for limb sounding of the
order of 400 km, a vertical resolution ranging from 4.5 to 10.5km within the pressure
range 100—4.6 hPa (~16-36 km), a single-profile precision between 1 and 1.5 ppbv,
and an estimated accuracy around 2-3 ppbv. Frequent 180° yaw manoeuvres of the
UARS satellite, about 10 times per year, allowed to alternately cover high latitudes of
both hemispheres (~80° S to ~80° N) despite the inclination of 57° of the UARS orbit
(Livesey et al., 2003; Santee et al., 2004).

Figure 4 shows the seasonal cycle of HNOj in the lower stratosphere (520 K) for
the different years of Odin observations compared to the 7-year record from MLS,
represented by its +10 standard deviation. In the tropics (equivalent latitudes lower
than 20°), mixing ratios are low (<5 ppbv) with the corrected Odin measurements be-
ing slightly higher than MLS measurements by 1-2 ppbv. At mid-latitudes between
~20-60° the agreement between the two data sets is excellent. The amplitude of the
seasonal cycle increases towards high latitudes with the southern high latitude max-
imum in May being slightly higher than the northern maximum in December. At high
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equivalent latitudes (>60°), a considerable inter-annual variability is found in the Odin
measurements in both hemispheres during winter and spring (SH: June—November;
NH: December—March). In the Southern hemisphere, the inter-annual variability ob-
served by Odin is more pronounced than in the MLS observations during the periods
when HNO3; mixing ratios are particularly low, both in the onset phase of denitrifica-
tion during June and in the recovery phase from August to November. Moreover, Odin
data show slightly larger minimum values of HNO3 during July than MLS. The seasonal
HNO3; maximum in April-May observed by Odin is on the other hand slightly lower than
the MLS maximum. In the Northern hemisphere, mid-winter values observed by Odin
are systematically slightly lower by 2-3 ppbv than the range indicated by the MLS cli-
matology. In the vortex edge regions (equivalent latitudes of 60°-70°), the agreement
between the climatologies in terms of variability is very good in both hemispheres,
with Odin values being slightly lower in the Northern hemisphere. Besides consider-
ing the estimated overall accuracy of the MLS and (bias-corrected) Odin climatological
data sets of 2-3 ppbv and 0.5—-1 ppbv, respectively, the observed differences might also
partly be attributed to the better vertical resolution of the Odin/SMR measurement of
1.5-2 km compared to the coarser ~6 km for UARS/MLS at 520 K, which might lead to
inclusion of nitric acid rich or poor air from lower or higher levels into the retrieved mix-
ing ratios. This effect is most critical in the presence of strong vertical profile gradients,
namely for the pronounced HNO3 main layer at high latitudes.

At 960K, the highest level of the MLS climatology, the Odin measurements agree
generally well with the MLS climatology showing no or only a very small positive bias,
except for the highest equivalent latitudes where Odin data seem to be slightly lower
than MLS data during early winter. Particular enhancements in the Odin HNO; data
at this level were frequently observed, namely during July—August 2003 and 2005 in
the Southern hemisphere and during December—January in the Northern hemisphere
with the winters 2001-2002 and 2003—2004 being most significant. In contrast, the
MLS 7-year climatology from the 1990s does not show a significant enhancement or
increase of variability during these periods on the 960 K level, which might be attributed
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to the degrading vertical resolution and sensitivity of the UARS/MLS measurements in
the middle stratosphere.

The annual variability of stratospheric HNO; at high equivalent latitudes (70-90°) in
both hemispheres is shown for various levels between 420 and 1600K in Fig. 6.

On the lowest levels (420 and 465 K) Odin data are relatively sparse, since these
levels are very close to the instruments lower measurement limit for HNOg, with most
data obtained inside the Antarctic polar vortex. The agreement between Odin and MLS
is here fairly good during June/July to September with very low mixing ratios below
5 ppbv every year, compared to up to ~13 ppbv measured by MLS during May on the
465K level. Odin mixing ratios in the lower stratosphere are larger than MLS values
during October with the agreement becoming better in November due to increasing
MLS mixing ratios. At northern high equivalent latitudes, low values of nitric acid are
mainly found in the winters 2004-2005 and 2006-2007, whilst the available data do
not indicate a significant depletion of HNO; in the other years.

The depletion of HNO3 in the Antarctic vortex during winter and spring (June—
November) can also be seen on the 520 and 585K levels. Above, on the 655K and
740K levels, Odin measurements show a less pronounced seasonal cycle compared to
MLS measurements, which is most likely caused by the limited altitude resolution of the
MLS measurements. The latter show the signature of denitrification up to 740-840K,
whilst Odin observations contain this signal up to maximal 655 K. In the Northern hemi-
sphere, mid-winter maxima between 465 and 655K are systematically lower than the
range indicated by the MLS climatology, whilst the agreement appears to be generally
excellent during summer (April-October).

Finally, at the highest levels, shown here between 960 and 1600 K, particular en-
hancements in the Odin HNO3; data were frequently observed during July—August in
the Southern hemisphere and during December—January in the Northern hemisphere.
The signal might be followed down to the 655 to 740K levels (before it joins the main
HNOj layer) and contributes there to the observed range of variability.
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4 Summary and conclusions

Measurements of the Odin satellite provide a quasi-continuous 6-year climatological
data set of nitric acid in the stratosphere from August 2001 to December 2007. Obser-
vations are still ongoing at the time of writing. We have presented an overview of the
global distribution and temporal evolution of stratospheric HNO3, based on corrected
version 2.0 level-2 data.

HNO; increases from the tropics towards the poles, where it shows a pronounced
seasonal cycle with maxima in late fall/early winter. Particular morphological features
of the spatio-temporal distribution are the strong depletion from June to October—
November in the lower stratosphere of the Antarctic polar vortex as well as the high
nitric acid mixing ratios found in the middle and upper stratosphere during mid-winter
due to downward transport and heterogeneous conversion of NO, rich mesospheric air
(de Zafra and Smyshlyaev, 2001).

A comparison with a climatology derived from UARS/MLS measurements in the
1990s (Santee et al., 2004) results in a fairly good agreement if systematic differences
of the measurements are considered, in particular the considerably better altitude res-
olution of Odin/SMR as well as the slightly different altitude ranges of both instruments,
with Odin reaching higher up and MLS lower down in the stratosphere.
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of 70°S as a function of potential temperature. Top: HNOj; volume mixing ratio. Bottom:
Absolute deviation from the mean profile. Crosses at the top of the plots indicate observation
days. Pressure and temperature (from ECMWF), averaged corresponding to the Odin/SMR

measurements, are superimposed using grey and white contour lines.
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Fig. 4. Inter-annual variability of Odin/SMR daily zonal mean HNO; interpolated on the 520 K
level, compared to a climatology based on measurements by the MLS instrument on UARS
in the 1990s. The different years of Odin measurements are colour coded (see legend). The
black lines represent the +1¢ standard deviation of the UARS climatology and gaps at high
equivalent latitudes are due to frequent 180° yaw manoeuvres of UARS (Santee et al., 2004).
Note that the x-axis range was chosen that the winter solstices are in the centre of the plots for
both hemispheres.
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Fig. 5. Same as Fig. 4, but for the 960 K level in the middle stratosphere.

9589

ACPD
8, 9569-9590, 2008

Stratospheric HNO,
climatology

J. Urban et al.

1] i


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9569/2008/acpd-8-9569-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9569/2008/acpd-8-9569-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

[ppbv]

[ppbv]

[ppbv]

[ppbv]

[ppbv]

[ppbv]

[ppbv]

[ppbVv]

[ppbv]

[ppbv]

[ppbv]

- Southern Hemisphere —

— Northern Hemisphere -

1600 K cot:90s=70S

eql < 70N - 96N

e L T

15 |- 90S - 70S
f 655 K 29R0s-

10 i
¥

5

eql 70N - 90N

eql-90S - 705

840K

t eql: 70N~ 90N

585 f%;f’“s

2 ,AOS‘ 70S :
m{ 520K ﬁ%
Sfﬁﬁ% :
0 i 2 fuialcan
15 90S - 70S
465K 2%
10 / = e
7 “\\

o T e | =
15 eql-90S - 70S eql: 70N - 90N
10 420K/ PP oy ke
o, g kvqﬁgmﬁgﬁ el D

J FM A M J J A S ONTD JAS ONDUJFMAMI

SH: 2001 2002 2003
NH:

2004
2001-2002 2002-2003 2003-2004

2006
2005-2006 2007-2008

9590

Fig. 6. As Fig. 4, but for various
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but provides only limited infor-
mation below ~500 K.
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