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Abstract

We present measurement results of trace gaseous pollutants obtained at the Shang-

dianzi (SDZ) Global Atmosphere Watch (GAW) regional station in Northern China,

from September 2003 to December 2006. The gases include ozone (O3), nitrogen

oxide(s) (NOx=NO+NO2), sulfur dioxide (SO2), and carbon monoxide (CO). During5

the study period, the mean annual O3 concentrations were 30.1±21.0, 32.8±19.1

and 30.9±19.8 ppbv in 2004, 2005 and 2006. The corresponding NOx values were

14.5±14.0, 11.0±11.3 and 12.7±11.8 ppbv, respectively. The mean annual SO2 con-

centrations were 5.9±10.0, 6.1±9.9 and 7.6±10.2 ppbv in 2004, 2005 and 2006, while

the mean CO levels were 586±415 and 742±558 ppbv in 2005 and 2006. The data10

obtained at SDZ station are compared with the results measured at other background

sites in China as well as abroad. The concentrations of O3, NOx, SO2, and CO at the

SDZ background station are found to have clear seasonal and diurnal variations. The

impacts of local and remote pollution sources on the regional air quality are assessed

using trace gases concentration roses and 3-day back trajectories of air masses arriv-15

ing at the SDZ station.

1 Introduction

Human activities have been shown to have major impacts on the global environment.

Anthropogenic emissions of gaseous and particulate matter can alter the energy bal-

ance of the atmosphere, and consequently affect interactions between the atmosphere,20

hydrosphere, and biosphere. Observation of the changes in background atmospheric

composition is an essential way to understand the influence of human activities on the

atmospheric environment and global change (Fischer et al., 2003; Jaffe et al., 2003;

Jaffe and Ray, 2007; Meng et al., 2007; Tang et al., 2007; Yan et al., 2008). Inten-

sive studies have been carried out in the Yangtze Delta and Pearl River Delta, China25

(Wang et al., 2001a, b, 2003a, b; Xu et al., 2008), showing significant impacts of human
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activities on the regional air quality.

Large increases in anthropogenic emissions of the photochemical precursors, NOx

in particular, have caused substantial increases in the global background O3 mixing

ratios over the past century (Jaffe et al., 2003; Marenco et al., 1994). Acid rain has al-

ready been recognized as a regional-scale environment problem in China, and SO2 is5

the most important precursor (Wang and Wang, 1995; Wang et al., 2001a; Zhao et al.,

1988). CO has an effect on the oxidization of the atmosphere through interaction with

hydroxyl radical (OH), which also reacts with methane, halocarbons and tropospheric

ozone. The studies of these major gaseous pollutants in Northern China have received

intensive attentions (Ding et al., 2002; Hao et al., 2005; Ma et al., 2004, 2006; Meng et10

al., 2002, 2008; Wang et al., 2006; Xie et al., 2005; Xu et al., 2005). So far, field mea-

surements of key air pollutants in rural locations in Northern China are comparatively

spare. The primary objectives of our study are to characterize the levels and variations

of trace gases in the background area of Northern China, and to analyze the sources

and factors affecting these trace gases concentrations. The data of this study are also15

compared with the results measured at other sites in China as well as abroad.

2 Description of experiment

2.1 Measurement site and general weather conditions

The Shangdianzi station (SDZ, 40
◦
39

′
N, 117

◦
07

′
E, 293.3 m above sea level) is located

in the northeast of Beijing, with a distance about 150 km. Beijing is located on the20

northern edge of the North China Plains, which is one of the most populated regions

in China. Miyun, a town of Beijing with a population of 426 000, is 55 km southwest

away from SDZ. There are only some small villages around SDZ with a low popula-

tion density and thus very sparse anthropogenic emission sources. The study site is

surrounded by fruit tree to the east and west, and with the cropland to the south. The25

grassy mountain is to the north, and residence to the southwest. The land-use pattern
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is typical of the rural part in Northern China.

Figure 1 shows the location of the Shangdianzi (SDZ), Linan (LA) and Longfen-

shan (LFS) regional background stations of China, as well as some cities in Northern

China. The major sources of pollution at SDZ are located predominantly in the west

to southeast of the site. The regions in the northern sector are much less inhabited,5

comprised of the vast grassland of Inner Mongolia and mountainous rural regions of

Hebei province, where the population is relatively sparse and the industrial activities

are less prevalent.

Founded by China Meteorological Administration (CMA) in 1981, the SDZ station

started operation with meteorological elements, PM10, atmospheric turbidity and pre-10

cipitation chemistry observation in 1982. In 2002, the station developed more programs

including trace gases, aerosols, precipitation, radiation and meteorology. The statistics

of meteorological data for the period of 1971–2000 showed that the annual average

temperature was 10.3
◦
, with annual precipitation 618.9 mm, annual mean wind speed

2.8 m s
−1

, prevail wind direction ENE, and annual sunshine duration 2733 h in the SDZ15

station. Linan station (30.18
◦
N, 119.44

◦
E, 138.6 m a.s.l.) and Longfengshan station

(44.73
◦
N, 127.60

◦
E, 310.0 m a.s.l.) are also regional background atmosphere moni-

toring stations in China.

2.2 Instrumental method

At the study site, the instruments were housed in a temperature-controlled room with20

ambient air being drawn through the sampling tube. The sampling tube inlet was lo-

cated 1.8 m above the rooftop of the room. Table 1 gives a list of the main instru-

ments equipped at the SDZ station. O3 was measured with a UV photometric analyzer

(Thermo Environmental Instruments (TEI), Inc., model 49C). NO, NO2 and NOx were

measured with a chemiluninescence analyzer (TEI, model 42CTL), and SO2 was mea-25

sured by using a pulsed UV fluorescence analyzer (TEI, model 43CTL) during Septem-

ber 2003 to December 2006. CO was measured with a gas filter correlation analyzer

(TEI, model 48C) during the periods of September to October 2003 and May 2005 to
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December 2006. Zero point of O3, NO and SO2 instruments were calibrated every-

day by zero air generators. The CO analyzer was zeroed every 4 h. The multi-point

calibrations were performed at approximately 3-month interval for all instruments using

Zero Air Supply (TEI, model 111), standard gases, Dynamic Gas Calibration System

(TEI model 146C), and O3 Primary Standard Calibrator (TEI 49CPS). A computer was5

used to control the above mentioned calibration and zeroing cycle. Five-minute aver-

age data were stored in the data logger and hourly averaged values are presented in

this paper. Valid data were reduced by removing unreliable recordings due to accidents

or instruments failure in the light of the operator’s recordings, and calibrated by zero

point calibration recordings and multi-point calibration curve. Meteorological parame-10

ters were also measured at the site, including wind, temperature, relative humidity, and

etc.

3 Results and discussions

3.1 Overall results and comparisons with the measurements made at other sites

The statistics of trace gases measured at the SDZ site are shown in Table 2. Dur-15

ing September to December 2003, the average concentration in ppbv is 26.8±13.9

for O3, 0.7±1.8 for NO, 10.1±7.9 for NO2, 10.8±8.8 for NOx, 2.2±3.6 for SO2 and

505±335 for CO. The mean annual O3 mixing ratios are in the same level in 2004

(30.1±21.0 ppbv) and 2006 (30.9±19.8 ppbv). Higher concentration of O3 is found in

2005, with an annual average of 32.8±19.1 ppbv. The mean annual NO levels are20

0.8±2.0 and 1.3±1.9 ppbv in 2004 and 2006, respectively, and show a increase to

2.5±1.7 ppbv in 2005. In contrast to NO, the mean annual NO2 concentrations are

13.8±13.1, 8.5±10.6 and 11.5±10.8 ppbv in 2004, 2005 and 2006, respectively, and

exhibited a decreasing trend in 2005 and 2006. Similar to NO2, the mean NOx con-

centrations are 14.5±14.0, 11.0±11.3 and 12.7±11.8 ppbv in 2004, 2005 and 2006,25

with a slight decrease in 2005 and 2006. The corresponding SO2 values are 5.9±10.0,
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6.1±9.9 and 7.6±10.2 ppbv in 2004, 2005 and 2006, respectively, showing an increas-

ing trend over the period from 2004 to 2006. The mean CO levels are 586±415 and

742±558 ppbv in 2005 and 2006, respectively.

The data from the SDZ station are compared with the measurements made at other

background sites in Table 3. The observation of trace gases in Linan and Longfeng-5

shan stations has been conducted since July 2005. As presented in Table 3, the

mean monthly O3 concentrations at SDZ are higher than those measured at Diabla

Gora, Poland (10.7–46.4 ppbv), but lower than those measured at Ryori, Janpan (23.1–

56.9 ppbv). These concentrations are comparable to those measured at Linan, China

(17.5–44.8 ppbv), Longfengshan, China (25.2–47.3 ppbv), Trinidad Head, USA (22.7–10

44.9 ppbv) and Pallas-Sammaltunturi, Finland (28.0–44.8 ppbv).

The mean monthly NO2 concentrations at SDZ are higher than those measured

at Longfengshan, China (0.9–8.8 ppbv), Diabla Gora, Poland (0.1–1.7 ppbv), Leba,

Poland (1.2–8.0 ppbv) and Pleven, Bulgaria (1.1–19.1 ppbv), but lower than those mea-

sured at Burgas, Bulgaria (1.6–43.0 ppbv) and Jakarta, Indonesia (3.0–65.8 ppbv).15

These concentrations are comparable to those observed at Linan, China (6.6–

24.0 ppbv).

The monthly mean SO2 concentrations at SDZ are higher than those measured

in Longfengshan, China (0.4–5.8 ppbv), Diabla Gora, Poland (0.1–2.7 ppbv), Leba,

Poland (0.4–6.1 ppbv), but lower than those measured at Linan, China (8.6–27.1 ppbv),20

Burgas, Bulgaria (0.4–19.5 ppbv) and Pleven, Bulgaria (0.4–37.4 ppbv). These concen-

trations are comparable to those observed in Jakarta, Indonesia (1.0–13.2 ppbv).

The mean monthly CO concentrations at SDZ are higher than those measured

at Longfengshan, China (169–591 ppbv), Ryori, Janpan (96–235 ppbv) and Pallas-

Sammaltunturi, Finland (98–192 ppbv), but lower than those measured at Linan, China25

(501–948 ppbv).

The Shangdianzi, Linan and Longfengshan stations are located in quite different

regions in China (Fig. 1). The Shangdianzi station represents Northern China with de-

veloped economics and high populations. The Linan station is situated on the southern
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edge of the Yangtze Delta Plain, which is a densely populated and fast developing re-

gion. Longfengshan is a remote site in China’s Northeast Plain, a sparsely populated

and underdeveloped region. As primary pollutants, SO2, NOx and CO concentrations

in Shangdianzi and Linan are higher than that in Longfengshan, reflecting the differ-

ence in the regional pollution (Ma et al., 2002a, b).5

3.2 Monthly and seasonal variations

Monthly variations in gas concentrations measured from September 2003 to Decem-

ber 2006 are showed in Fig. 2. Monthly mean O3 concentrations show a peak in June

(51.2 ppbv) 2004, and higher values in April (45.0 ppbv), May (45.1 ppbv) and June

(47.1 ppbv) 2005, respectively. The variation in monthly mean O3 in 2006 is different10

from that in 2004 and 2005, with an autumn maximum (43.2 ppbv in September 2006).

This difference may be due to year to year alternation in the meteorological conditions

(Wang et al., 2001b). There are relatively low monthly values of ozone in November

2004, December 2004, January 2006 and December 2006, with a minimal value in Jan-

uary 2004 (10.7 ppbv). This seasonal pattern reflects the contribution of photochemical15

generated O3 from anthropogenic and natural precursors with sunshine. Lower O3 con-

centrations were observed in July and August than in June. This is most likely due to

the seasonal rain front that usually occurs over the measurement site between July

and August.

The SDZ station is located at the rural area, with no heavy traffic and strong local20

emission sources. As primary pollutant, NO concentrations are very low at the SDZ

station, with the highest value of 4.5 ppbv in January 2004, and below the detection

limit in June and July 2004. Monthly mean NO2 concentrations range from 1.7 ppbv in

July 2006 to 27.5 ppbv in October 2004. The lower NO2 concentration is likely due to

the lower fuel combustion and greater photochemical reaction of NO2 in the summer25

months compared to the other months (Jo et al., 2005). Monthly mean NO
x

concentra-

tions range from 3.5 ppbv in August 2006 to 28.3 ppbv in October 2004. SO2 monthly

concentration has a maximal value of 15.2 ppbv in February 2006, and a minimal value
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of 0.1 ppbv in July 2004. NOx and SO2 concentrations are larger during the winter

months, gradually diminishing with the minimum concentrations found between June

and August, and then increasing again until the winter months. The seasonal pattern

of CO is different from those of NOx and SO2. Monthly mean CO concentrations range

from 430 ppbv in December 2005 to 923 ppbv in July 2006. There is more biofule com-5

bustion at SDZ during the summertime, thereby elevating the ambient air levels of CO

in this rural area.

The seasonal variations of major gaseous pollutants for the entire observational pe-

riod are presented in Table 4. We define the seasons as the three-month periods:

spring (March–May), summer (June–August), fall (September–November) and winter10

(December–February). It is found that the O3 concentration is higher in spring and

summer and lower in fall and winter with the highest in spring (38.8 ppbv) and the low-

est in winter (20.9 ppbv). NO have lower levels in spring, summer and fall than those in

winter (2.1 ppbv). NO2 and NOx exhibit the reverse seasonal variation to O3. NO2 and

NOx are elevated in fall and winter, with the highest values appearing in fall for NO215

(15.4 ppbv) and in winter for NOx (16.6 ppbv). The observed SO2 value is highest in

winter (10.7 ppbv) and lowest in summer (1.3 ppbv). More heating fuels are typically

consumed during the wintertime, thereby elevating ambient air levels of SO2. More-

over, the wind speed is lowest (2.2 m/s), and other meteorological parameters, such

as temperature, is also lowest (−4.5
◦
), implying poorer mixing during the wintertime20

(Table 4). CO concentrations are higher both in summer and winter. In summer, crop

residue burning after the harvest in this region may contribute significantly to higher

CO at the location. The combination of increased biomass combustion emissions and

transport leads to the higher concentrations of CO at the site.

In general, the following factors could affect the concentrations of gaseous pollutants25

during both the summer and winter: dilution, due to the increased mixing depth found

in summer; more rainy days in the summer, causing the trace gases to be washed out

in the atmosphere; and physical dispersion/transport, which could be the reason for

higher concentrations of NOx, SO2 and CO in winter. When the prevailing winds at SDZ
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are southwesterly, especially during wintertime, the transportation of pollutants from

Beijing and related area could be contributing to the levels observed at the background

site.

Figure 3 shows trace gaseous pollutant roses in different seasons during the study

period, which give certain insight into the distribution of local emission sources around5

the monitoring site. As shown by the O3 rose in Fig. 3, in spring, summer and fall, O3

concentrations in SW-WSW-W sectors are higher with the maximum value of 51.9 ppbv

in WSW, while the lowest one is in ENE sector. In winter, the highest O3 (25.9 ppbv)

appears in NNE-sector, and in spring, O3 has also higher concentrations in NNW-N-

NNE sectors. In spring the prevailing winds are northerly, relative humidity drops to 3710

%, and the wind speed is highest (Table 4), indicating downward transports of rich O3

air masses from the free troposphere.

The SO2 rose has a different situation. Figure 3 indicates that SO2 concentrations

are low in all sectors in summer, while in winter the SO2values are high in all sectors

especially in SSW-WSW-WNW sectors with highest value of 22.1 ppbv in WSW. In fall,15

SO2 concentrations in SW-WSW-W sectors are higher than those in spring, and the

concentrations are similar with that in other sectors in spring. Similar to SO2, the NOx

values were highest in SSW-WSW-WNW sectors in winter, while NOx concentrations

in fall in N-E-SSE sectors are comparable to those in winter. The higher levels of SO2

and NOx in SSW-SW-WSW-W sectors at SDZ may be attributed to the transport from20

the town of Miyun town and the urban area of Beijing Metropolis in its upper reaches.

Sources of atmospheric CO include fossil fuel combustion and biomass burning

along with the oxidization of both natural and anthropogenic methane and non-methane

hydrocarbons (NHHC). CO could be used as a tracer of anthropogenic pollution. CO

has higher concentrations in SSW-SW-WSW-W sectors for all the seasons. In summer,25

the increased biomass combustion emissions cause higher CO in S-SW-W at SDZ.
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3.3 Diurnal variations

Diurnal variation of atmospheric species gives insight into the interplay of emission and

chemical and physical processes operating on a diurnal cycle (Ma et al., 2002b). Ac-

cordingly, the current study analyzes the diurnal variations of the six target compounds

during the four different seasons over the 3-year study period. As shown in Fig. 4, the5

diurnal O3 patterns are similar for all four seasons. Minimum values of O3 appeared

in the early morning 06:00–08:00 BST (Beijing Standard Time), and the increases in

ozone concentrations were then observed. The highest levels occurred approximately

at 15:00–17:00 BST. Thereafter, ozone concentrations decreased steadily. This diur-

nal pattern is similar to that found in several rural sites in China and Spain (Garcı́a10

et al., 2005; Wang et al., 2001b, 2003b). An increase in ozone levels during the day

is attributed to photochemical processes of ozone production in the mixing layer and

transport from the upwind site and layer, both favored by solar radiation, and a de-

crease at night is due to in situ destruction of ozone by deposition and/or the reaction

between O3 and NO (Duenãs et al., 2002). It can be found that the daily amplitude15

of surface ozone is highest in summer and lowest in winter. Meanwhile, the maximum

hourly mean concentration was observed in the summer (56.0 ppbv, 17:00 BST), and

the minimum in the fall (14.0 ppbv, 06:00 BST).

After sunrise the NO concentration quickly increases to its peak value at 07:00–

10:00 BST and then started to decrease. Lower levels appear at night due to the20

titration of NO by ozone and cessation of photolysis of NO2 after sunset. The NO con-

centration is higher in winter (3.3 ppbv, 09:00 BST) than in fall (2.7 ppbv, 08:00 BST),

spring (2.0 ppbv, 08:00 BST) and summer (1.7 ppbv, 07:00 BST).

It is noted in Fig. 4 that NO2 concentrations are higher in the early morning and

evening and lower at 11:00–15:00 BST in fall and winter. In spring and summer, NO225

exhibit a gradual increase and reached a peak concentration round 06:00–07:00 BST.

The concentrations then fall to a shallow trough before increasing once more to give a

second peak concentration around 19:00. The daily amplitudes of NO2 are higher in
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fall and winter than in spring and summer. NO2 concentrations decrease during day-

time, owing to an enhanced dilution of the convective boundary layer. The maximum

concentration (20.3 ppbv) and the minimum concentration (9.4 ppbv) of NO2 in the fall

are similar to that in the winter, but higher than that in spring and summer.

Similar to NO2, the maximum concentration of NOx (21.4 ppbv) in the fall is similar to5

that in the winter (20.7 ppbv), and the minimum concentration in the winter (11.3 ppbv)

is higher than that in the fall (10.1 ppbv), spring (8.2 ppbv) and summer (5.0 ppbv).

The diurnal patterns of SO2 are different from those of NOx, and have the same

trend for all the seasons. SO2 appear to be minimum in the early morning 06:00–

07:00 BST, increase gradually to the highest approximately at 14:00–18:00 BST, and10

then decrease steadily in all the seasons except winter. The concentrations remain

almost steady from 18:00 to 24:00 BST in winter, which are believed to be due to a

higher energy demand for heating. The local higher values of SO2 in the afternoon

correspond with local emissions from human activities surrounding the site. Meanwhile,

this increase is registered during the hours of maximal boundary layer depth, and thus15

the sources of local and long-range transport must be significant as air pollutants are

well mixed in the afternoon.

In contrast to SO2, in the summer season, the diurnal patterns of CO do not show

any significant variability except a small evening peak, with a mean value in the range of

688–788 ppbv. The increased biomass combustion emissions have a strong influence20

on CO levels in summer at SDZ as mentioned earlier. This result is also consistent

with a previous rural study in China (Wang et al., 2006). While in other seasons,

the larger amplitudes in diurnal variations were obtained in contrast to the summer

season. The higher CO concentrations are found in the early morning and evening

presumably duo to the extended transportation, domestic use of fossil fuels and biofuel25

in the evening. The lower levels of CO were observed between 10:00 and 15:00 BST in

the spring (567 ppbv), fall (543 ppbv) and winter (504 ppbv) presumably due to chemical

conversion and vertical dilution after the breakup of the nocturnal boundary layer.
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3.4 Trace gases concentrations with different air mass back trajectories

The long-range transport of air pollution has been the topic of scientific research for

several decades, and the importance of long-range transport has been increasingly

recognized (Cape et al., 2000; Kim et al., 2005; Ma et al., 2002a, b; Meng et al., 2007;

Nolle et al., 2002; Pongkiatkul and Kim Oanh, 2007). To gain insights about the impact5

of long-range transport, air mass 3 day back trajectories were calculated and clus-

tered to analyze transport pathway of the air pollution to SDZ during 2006. Three day

back-trajectories were calculated by Hybrid Single-Particle Lagrangian Integrated Tra-

jectory (HYSPLIT 4.8) model with 6-hourly archived meteorological data provided from

the US National Centers for Environmental Prediction (NCEP) global data assimilation10

system (GDAS) which is called as the final run (FNL) data. HYSPLIT 4.8 Model was

provided from http://www.arl.noaa.gov/ready/hysplit4.html, NOAA Air Resources Lab-

oratory. The location of backward trajectory start was SDZ with the altitude of 100 m

above ground level (AGL). The trajectory computations were carried out four times a

day during 2006, with the start time of 00:00, 06:00, 12:00, and 18:00 UTC. Run time15

of every trajectory was 72 h (3 days).

The relationship between trace gases concentration and transport pattern was stud-

ied using the results of cluster analysis, together with the hourly concentrations of

gaseous pollutants. Figure 5 shows the clusters of back trajectories arrived at the

100 m a.g.l. of SDZ during 2006. The numbers (1–14) in Fig. 5 identify the fourteen20

different clusters of various back trajectories. The monthly occurrence frequency of

each category is presented in Table 5. Statistics of hourly average concentrations of

gaseous pollutants associated with each cluster of backward trajectories are shown in

Table 6. The results show that the average trace gases concentrations within clusters

from different directions are quite different.25

Cluster 1, 2 and 3 are from the west sector of the site, and these air masses pass

through Huhehaote, Zhangjiakou and so on, which are industrial cities in Northern

China. Cluster 1 has the second highest height and the lowest frequency of all air
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mass clusters (Table 5), indicating longer distance with more rapid transport. Cluster 2

is similar to cluster 1, passing through the populated areas. The air masses have a po-

tential to bring in the long-range transport air pollution to the site, for which the average

O3, NO, NO2, NOx, SO2 and CO levels are 18.1, 2.0, 20.5, 22.4, 12.5 and 815 ppbv,

respectively (Table 6). Furthermore, the cluster 2 has highest hourly averaged con-5

centrations of the primary pollutants (NOx and SO2), and lowest level of the secondary

pollutants (O3). Cluster 2 occurrs in January, February and December, giving rise to

the elevated concentrations of primary gaseous pollutants observed at the SDZ site.

Cluster 3 includes 183 members and contains 13% of the total available back trajecto-

ries (TABT), and it is the third most observed air mass cluster. Cluster 3 is observed10

mainly in the periods from January to April and October to December with the highest

frequency in November. As Table 6 illustrated, the cluster-averaged O3, NO, NO2, NOx,

SO2 and CO levelsare higher in cluster 3, with the mean values of 26.2 ppbv for O3,

2.0 ppbv for NO, 16.4 ppbv for NO2, 18.3 ppbv for NOx, 11.5 ppbv for SO2 and 810 ppbv

for CO, respectively.15

The mean trajectory of clusters 4–7 and 13 is from the northwest, and it mainly

reflects the clean air sectors of the site. The low cluster mean gaseous pollutants

are found in clusters 4–7. It is noted that cluster 13 origin is at the highest height

among the fourteen clusters. With its longer pathway, it is expected to bring in clean air

masses. Low NO, SO2 and CO concentrations (0.8, 0.9 and 185 ppbv) and higher O320

levels (35.1 ppbv) appear in cluster 13. This fact might reflect the substantial secondary

production during the long-range transport.

The cluster 8, which includes 152 members, contains 10% of the TABT (Table 5).

This cluster is similar to cluster 4, but with shorter pathways and lower height. It is

noted that the cluster mean levels of NO, NO2, NOx, SO2 and CO except O3 for cluster25

8 are approximately twice as high as those of cluster 4, which may be associated with

the case most frequently observed in January, April, August and October.

The mean trajectory of cluster 9 represents the second lowest height among the 14

clusters, coming from the north and then passing through more polluted regions such
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as the Tangshan city before arriving at site. The mean second highest CO level is

found in cluster 9. The mean trajectory of cluster 10 represents the short trajectories

that come from the south direction of SDZ with the air masses originated from the

more heavily polluted regions. Cluster 10 has the second highest frequency of all

clusters with 208 members, accounting for 14% of the TABT. The origins of cluster 105

are from Beijing, Shijiazhuang, Taiyuan and so on, occurring frequently from May to

October. In this case the site is influenced more by local sources and the accumulation

of pollutants. Cluster 10 has the second highest mean O3 level (35.8 ppbv) and the third

highest CO concentration (1010 ppbv). The origin of cluster 11 is at the lowest height

among the 14 clusters, and occurs with the highest frequently of all clusters in 2006,10

which includes 225 members and 15% of the TABT. This cluster is predominantly found

in the period from May to September, with the highest occurrence frequency in August.

Cluster 11 represents the short trajectories that come from the southeast directions

of SDZ. Cluster 11 passes through the big city Tianjin, which is located within 200 km

rang from the site. As a consequence, the average O3 and CO levels for cluster 11 are15

highest among all the clusters, with O3 of 38.6 ppbv and CO of 1032 ppbv, indicating

the local influence with a short pathway. The low wind speed would limit the horizontal

transport/dilution of locally emitted air pollution and enhance high air pollution build-up

levels.

Cluster 12 originates from the clean regions in the north. Based on its pathway and20

origin, this air mass is expected to bring in relatively clean air to the site. The cluster-

averaged NO, NO2 and NOx levels are lowest in cluster 12, while the O3 level by long

pathway transport is higher (32.2 ppbv). Cluster 14 originates from the clean regions

in the northeast, and is observed frequently in July, with the lower SO2 and NOx levels.

4 Conclusions25

In this paper we present measurements results of trace gaseous pollutants made

at Shangdianzi regional station in Northern China from September 2003 to Decem-
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ber 2006. The mean annual O3 concentrations were 30.1±21.0, 32.8±19.1 and

30.9±19.8 ppbv in 2004, 2005 and 2006. The corresponding NOx values were

14.5±14.0, 11.0±11.3 and 12.7±11.8 ppbv, respectively. The mean annual SO2 con-

centrations were 5.9±10.0, 6.1±9.9 and 7.6±10.2 ppbv in 2004, 2005 and 2006, while

the mean CO levels were 586±415 and 742±558 ppbv in 2005 and 2006. Monthly5

mean SO2, NO2 and CO concentrations at SDZ were higher than those measured at

the Longfengshan station, China, but were lower than or comparable to those mea-

sured at the Linan station, China. The mean monthly O3 concentrations are compa-

rable to those observed at the Linan and Longfengshan stations. These reflect the

difference in the regional pollution. It is shown that the concentrations of SO2, NOx, O310

and CO at the background station have clear seasonal variations. O3 rose shows that in

spring, summer and fall, the O3 concentrations in SW-WSW-W sectors are higher. SO2

and NOx roses show higher concentrations in the SSW-SW-WSW-W directions in win-

ter, full and spring, while CO has higher concentrations in all directions in summer. The

concentrations of O3, NOx, SO2 and CO at the background station have clear diurnal15

variation in different seasons. The back trajectory’s analysis suggests that the elevated

concentrations of O3 and CO are accompanied by the transport from the southeast

direction of SDZ during May to September. The highest SO2 and NOx levels are found

for clusters coming from west of the site in November, December and January, and the

lowest NOx, SO2 and CO levels for clusters coming from northwest. Analysis of the20

gaseous pollutants roses and air-mass back trajectories show that higher concentra-

tions of O3, CO, NOx and SO2 are influenced by both local and long-range transport to

the site.

Acknowledgements. This study was supported by National Basic Research Development Pro-

gram (2005CB422202). This research was also supported by the Ministry of Science and25

Technology of China (Project No. 2001DIA10009) and (Grant No. 2004DFA06100). We thank

the staffs of SDZ regional background station for their cooperative works during this study.

9419

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9405/2008/acpd-8-9405-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9405/2008/acpd-8-9405-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 9405–9433, 2008

Characteristics of

trace gaese in

Northern China

Z. Y. Meng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

References

Cape, J. N., Methven, J., and Hudson, L. E.: The use of trajectory cluster analysis to interpret

trace gas measurements at Mace Head, Ireland, Atmos. Environ., 34, 3651–3663, 2000.

Ding, G. A., Meng, Z. Y., Yu, H. Q., Wang, S. F., Wen, D. Y., Wang, and X. Y.: Measurement

and research on ABL air pollution in Beijing, J. Appl. Meteor. Sci., 13 (special), 82–93, 20025

(in Chinese with English abstract).
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Table 1. Instruments at the SDZ station, China.

Name Type Manufacturer Detection Limit

UV photometric Ozone Analyzer Model 49C Thermo Environmental Instruments Inc. USA 1.0 ppbv

Chemiluminescence NO-NO2-NOx Analyzer Model 42CTL Thermo Environmental Instruments Inc. USA 0.05 ppbv

Pulsed Fluorescence SO2 Analyzer Model 43CTL Thermo Environmental Instruments Inc. USA 0.1 ppbv

Gas Filter Corre CO Analyzer Model 48C Thermo Environmental Instruments Inc. USA 40 ppbv

O3 Primary Standard Calibrator Model 49CPS Thermo Environmental Instruments Inc. USA 1.0 ppbv

Dynamic Gas Calibration System Model 146C Thermo Environmental Instruments Inc. USA

Zero Air Supply Model 111 Thermo Environmental Instruments Inc. USA

Standard Gases Made by EPA of China
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Table 2. Statistics results of the measured trace gases concentrations (ppbv) at SDZ station,

China.

Time O3 NO NO2 NOx SO2 CO

Sep 2003–Dec 2003 Mean 26.8 0.7 10.1 10.8 2.2 505

Median 27.7 0.1 8.3 8.8 0.8 420

SD 13.9 1.8 7.9 8.8 3.6 335

Minimum 0.1 0.05 0.5 0.5 0.1 50

Maximum 99.9 27.7 53.0 57.0 27.4 1730

No. of points 1852 1858 1852 1858 1852 811

Jan 2004–Dec 2004 Mean 30.1 0.8 13.8 14.5 5.9

Median 26.7 0.05 9.5 10.1 1.5

SD 21.0 2.0 13.1 14.0 10.0

Minimum 1.0 0.05 0.05 0.1 0.1

Maximum 155.7 25.5 97.0 106.2 92.1

No. of points 8038 8244 8244 8245 8242

Jan 2005–Dec 2005 Mean 32.8 2.5 8.5 11.0 6.1 586

Median 30.4 2.8 5.3 7.4 2.3 495

SD 19.1 1.7 10.6 11.3 9.9 415

Minimum 0.1 0.05 0.05 1.0 0.1 50

Maximum 135.2 30.5 121.8 147.6 87.4 3123

No. of points 8648 8169 8169 8169 8672 5173

Jan 2006–Dec 2006 Mean 30.9 1.3 11.5 12.7 7.6 742

Median 29.3 1.1 8.1 9.0 3.3 612

SD 19.8 1.9 10.8 11.8 10.2 558

Minimum 0.1 0.05 0.05 0.1 0.1 50

Maximum 153.5 25.9 77.8 93.3 83.6 3920

No. of points 8593 8421 8421 8421 8469 8381

SD: standard deviation.
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Table 3. Comparison with the observations made at other sites (monthly value).

Station Location Period O3 NO2 SO2 CO

(ppbv) (ppbv) (ppbv) (ppbv)

Shangdianzi, China
a

40.39
◦

N, 117.07
◦

E, 293.3 m Sep 2003–Dec 2006 13.8–52.1 1.7–27.5 0.1–15.2 430–923

Linan, China
a

30.18
◦

N, 119.44
◦

E, 138.6 m Jul 2005–Nov 2006 17.5–44.8 6.6–24.0 8.6–27.1 501–948

Longfengshan,China
a

44.73
◦

N, 127.60
◦

E, 310.0 m Jul 2005–Nov 2006 25.2–47.3 0.9–8.8 0.4–5.8 169–591

Diabla Gora,Poland
b

54.15
◦

N, 22.07
◦

E, 157 m Jan 1990–Sep 2006 10.7–46.4 0.1–1.7 0.1–2.7

Leba,Poland
b

54.75
◦

N, 17.53
◦

E, 2 m Apr 1993–Sep 2006 1.2–8.0 0.4–6.1

Burgas,Bulgaria
b

42.48
◦

N, 27.48
◦

E, 16 m Jan 1990–May 2006 1.6–43.0 0.4–19.5

Pleven,Bulgaria
b

43.42
◦

N, 24.60
◦

E, 64 m Jan 1990–May 2006 1.1–19.1 0.4–37.4

Jakarta, Indonesia
b

6.18
◦

S, 106.83
◦

E, 7 m Oct 1994–Oct 2005 3.0–65.8 1.0–13.2

Ryori, Janpan
b

39.03
◦

N, 141.82
◦

E, 260 m Jan 1991–Sep 2006 23.1–56.9 96–235

Trinidad Head, USA
b

41.05
◦

N, 124.15
◦

W, 120 m Apr 2002–May 2005 22.7–44.9

Pallas-Sammaltunturi, Finland
b

67.97
◦

N, 24.02
◦

E, 565 m Dec 2001–May 2005 28.0–44.8 98–192

a
Our study.

b
WMO (2007)
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Table 4. The seasonal variations of trace gases and meteorological data (mean and standard

deviation) during the observational period at SDZ, China.

O3 ppbv NO ppbv NO2 ppbv NOx ppbv SO2 ppbv CO ppbv RH (%) Temperature (
◦

C) Wind speed (m/s)

Spring 38.8 (17.2) 1.6 (1.4) 8.5 (8.0) 10.1 (7.9) 6.7 (8.8) 648 (493) 37 (23) 12.0 (8.2) 3.3 (2.0)

Summer 36.9 (22.9) 1.1 (1.2) 5.8 (4.1) 7.0 (4.3) 1.3 (2.6) 731 (394) 71(20) 23.2 (4.5) 2.3 (1.4)

Fall 27.6 (19.8) 1.1 (1.9) 15.4 (12.9) 16.4 (13.5) 6.5 (9.6) 654 (527) 54 (24) 10.8 (8.2) 2.4 (1.5)

Winter 20.9 (11.6) 2.1 (2.9) 14.5 (14.9) 16.6 (16.6) 10.7 (13.0) 670 (615) 41 (20) −4.5 (5.0) 2.2 (1.5)
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Table 5. Monthly occurrence frequency of each type of air masses arriving at SDZ, China

during 2006.

Air mass type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total number %

Cluster 1 13 2 2 1 2 6 26 2

Cluster 2 21 13 4 6 4 4 7 17 76 5

Cluster 3 21 21 18 12 9 9 10 7 18 33 25 183 13

Cluster 4 7 4 15 11 13 9 5 5 11 13 7 10 110 8

Cluster 5 1 6 9 8 2 7 5 7 8 53 4

Cluster 6 4 10 10 10 4 5 18 4 65 4

Cluster 7 11 23 24 4 3 4 15 4 11 28 127 9

Cluster 8 19 4 7 22 14 7 9 20 14 15 12 9 152 10

Cluster 9 8 2 2 10 14 7 34 14 12 10 4 117 8

Cluster 10 17 13 6 6 21 23 15 26 31 29 11 10 208 14

Cluster 11 2 10 12 13 38 38 31 46 22 11 1 1 225 15

Cluster 12 2 13 7 6 3 6 37 3

Cluster 13 1 2 10 2 8 23 2

Cluster 14 2 6 8 5 20 3 13 1 58 4
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Table 6. Statistics of hourly average concentrations of gaseous pollutants based on corre-

sponding clusters of backward trajectories.

Air mass O3 NO NO2 NOx SO2 CO Average

type ppbv ppbv ppbv ppbv ppbv ppbv Height, m

Cluster 1 21.3 1.9 15.3 17.2 11.1 739 1202

Cluster 2 18.1 2.0 20.5 22.4 12.5 815 771

Cluster 3 26.2 2.0 16.4 18.3 11.5 810 474

Cluster 4 30.0 0.9 6.8 7.7 4.2 376 500

Cluster 5 28.8 1.0 3.8 4.6 1.9 231 878

Cluster 6 30.3 1.2 7.4 8.5 4.1 351 999

Cluster 7 27.9 1.0 9.0 9.9 5.4 387 836

Cluster 8 27.4 1.7 15.0 16.6 11.0 764 373

Cluster 9 30.6 1.1 10.8 11.7 6.5 1020 71

Cluster 10 35.8 1.5 14.3 15.6 9.4 1010 180

Cluster 11 38.6 0.9 10.5 11.4 7.1 1032 40

Cluster 12 32.2 0.8 3.1 3.6 1.8 218 751

Cluster 13 35.1 0.8 3.3 3.9 0.9 185 1853

Cluster 14 29.7 0.9 5.4 6.3 1.3 470 266
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Fig. 1. Location of the Shangdianzi, Linan and Longfenshan regional background stations of

China, as well as some cities in Northern China.
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Fig. 2. Monthly averaged concentrations of trace gases at SDZ during 2003–2006.
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Fig. 3. Trace gaseous pollutants roses during the four different seasons over the 3-year study period. 

Fig. 3. Trace gaseous pollutants roses during the four different seasons over the 3-year study

period.
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Fig.4. Averaged diurnal variations of trace gases for four seasons over the 3-year study period. 

Fig. 4. Averaged diurnal variations of trace gases for four seasons over the 3-year study period.
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Fig. 5. Air mass backward trajectories for 100 m during 2006 in SDZ, China.
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