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Abstract

The effect of reaction temperature and how water vapour influences the formation

of secondary organic aerosol (SOA) in ozonolysis of limonene, ∆
3
-carene and α-

pinene, both regarding number and mass of particles, has been investigated by us-

ing a laminar flow reactor G-FROST. Experiments with cyclohexane and 2-butanol5

(∼3.5×10
14

molecules cm
−3

) as OH scavengers were compared to experiments without

any scavenger. The reactions were conducted in the temperature range between 298

and 243 K, and at relative humidities between <10 and 80%. Results showed that there

is still a scavenger effect on number and mass concentrations at low temperatures be-

tween experiments with and without OH scavenger. This shows that the OH chemistry10

is influencing the SOA formation also at these temperatures. The overall tempera-

ture dependence on SOA formation is not as strong as expected from the partitioning

theory. In some cases there is even a positive temperature dependence that must

be related to changes in the chemical mechanism and/or reduced rates of secondary

chemistry at low temperatures. The water effect at low temperature could be explained15

by physical uptake and cluster stabilisation. At higher temperatures, only a physical

explanation is not sufficient and the observations are in line with water changing the

chemical mechanism or reaction rates. The data presented adds to the understanding

of SOA contribution to atmospheric aerosol composition, new particle formation and

atmospheric degradation mechanisms.20

1 Introduction

Vegetation emits a vast number of biogenic volatile organic compounds (BVOC), where

isoprene and the monoterpenes are the non methane BVOC that dominate on the

global scale (Guenther, 2002). In the atmosphere they undergo oxidation, forming com-

pounds with low volatility that can end up in the condensed phase by gas-to-particle25

conversion (Griffin et al., 1999; Yokouchi and Ambe, 1985). It has long been known
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that oxidation of biogenic organic compounds can form aerosol particles (Went, 1960).

However, the actual formation mechanism behind these compounds of low volatility,

their identity and their properties are still unresolved issues (Goldstein and Galbally,

2007). Even more so, the secondary organic aerosol (SOA) formation from BVOC at

temperatures below room temperatures is not well documented (Pathak et al., 2007b;5

Saathoff et al., 2008
1
; Jang and Kamens, 1999). This includes how temperature affects

gas-to-particle partitioning, the oxidation mechanism and the influence of trace gases

such as water and NOx. Indeed, further investigations of the temperature dependence

of SOA formation from BVOC oxidation are important, especially in order to provide a

proper description of SOA in climate models (Kanakidou et al., 2005; Tsigaridis and10

Kanakidou, 2003). An important oxidation route for unsaturated BVOC, such as the

monoterpenes (C10H16), is by reaction with ozone, i.e. ozonolysis. The other major

routes are reaction with OH and NO3 radicals. The ozone initiated degradation has

received considerable attention in numerous studies, as summarised by e.g. Calvert et

al. (2000), Atkinson and Arey (2003). A complication in the ozone degradation mech-15

anism is the production of OH radicals. This implies the need to either consider both

oxidants (O3 and OH) or suppress the OH chemistry by using a so called OH scavenger

in laboratory experiments. However, it has been shown that the use of OH scavengers

can influence the SOA formation (Keywood et al., 2004; Jonsson et al., 2008
2
). The

detailed temperature dependence of SOA formation and properties from ozonolysis of20

terpenes has been investigated in relatively few, recent studies (Burkholder et al., 2007;

Jonsson et al., 2007; Jang and Kamens, 1999; Pathak et al., 2007b; Jenkin, 2004).

1
Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, Å. M., Hallquist, M., Kiendler-Scharr,

A., Mentel, T. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of sec-
ondary organic aerosols from the ozonolysis of α-pinene and limonene, Atmos. Chem. Phys.
Discuss., to be submitted, 2008.

2
Jonsson, Å. M., Hallquist, M., and Ljungström, E.: Influence of OH scavenger on the water

effect on secondary organic aerosol formation from ozonolysis of limonene, ∆
3
-Carene and

α-Pinene, Environ. Sci. Technol., submitted, 2008.
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These investigations were based on smog chamber experiments and modelling. There

are different approaches when studying SOA formation and its temperature depen-

dence. One is to keep the reaction system at the temperature of interest followed by

monitoring the aerosol production with instrumentation at room temperature (Saathoff

et al., 2008
1
). Another is to maintain the analytical instrumentation at the same tem-5

perature as the reaction system (Takekawa et al., 2003; Jonsson et al., 2006). A

third method is to specifically investigate the gas-to-particle partitioning by making a

rapid change in temperature after producing the SOA at an initial temperature (Pathak

et al., 2007b). These different ways of conducting smog chamber studies give valu-

able information e.g. on the relationship between partitioning effects and changes in10

chemical kinetics and mechanisms due to temperature. A specific evaluation method

has evolved for smog chamber partitioning data, where the SOA yield, expressed as

mass of SOA per amount reacted organics, is related to the mass of organic material

allocated for gas-to-particle partitioning (Pankow, 1994b; Odum et al., 1996). This ap-

proach is based on the assumption that each compound is partitioning according to15

Raoult’s law, and an organic material partitioning coefficient, Kom,i , can be derived for

each compound (i ) according to Eq. (1).

Kom,i =
RT fom

MWomζip
o
i

(1)

Here fom is the fraction of the total suspended particulate concentration being organic

material (om). MW om is the average molecular mass of the condensed organic matter,20

T is temperature, R is the common gas constant, ζi is the activity coefficient and p
o
i

the vapour pressure of the pure compound i . The SOA formation in an experiment can

then be parameterised using the assumption of two fictional products contributing to

the produced aerosol, i.e. one semivolatile and one low volatility compound (Pankow,

1994a). Each compound is represented by a stoichiometric coefficient, αi , and a parti-25
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tioning coefficient, Kom,i . The resulting yield, Y , can be parameterised by using Eq. (2):

Y = M0

(

α1Kom,1

1 + Kom,1M0

+
α2Kom,2

1 + Kom,2M0

)

(2)

However, it has proven to be a delicate matter to compare the parameterisation be-

tween different studies (Pathak et al., 2007a). As an alternative, Donahue et al. (2006)

recently presented a multi product basis set approach, which was applied e.g. by5

Pathak et al. (2007a) to parameterise α-pinene ozonolysis using smog chamber data

from selected studies. These achievements are promising in describing SOA mass

formation from ozonolysis of α-pinene for specific conditions.

Several studies have focused on developing a mechanistic understanding of ozonol-

ysis of terpenes by using rather complex chemical models (Jenkin, 2004; Camredon10

et al., 2007). However there is still a need for validation by using results from smog

chamber experiments and/or additional approaches e.g. flow reactor studies. In ad-

dition to chemical development, aerosol mass and new particle formation are targets

for proper model descriptions (Burkholder et al., 2007). New particle formation is de-

pendent on several aspects where the rate of production of low volatility material and15

reaching supersaturated conditions are central (Anttila et al., 2004).

In the present study, data are presented that can be used for all the three approaches

described above, i.e. SOA mass formation, evaluation of chemical mechanisms and

for comparison of nucleation efficiency. The laminar flow reactor method used here

is a complement to smog chamber experiments with uniqueness in several aspects20

(Jonsson et al., 2006, 2008
2
). In addition to investigation of α-pinene also limonene

and ∆
3
-carene were studied, all of which are important BVOC compounds in the at-

mosphere (Guenther et al., 1995). The present work includes investigations over an

extensive temperature range (243–298 K) and relative humidity range (10–80%) as

well as on the use of OH scavengers. Both new particle formation and SOA mass25

production were evaluated with respect to the chemical degradation mechanism.
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2 Experimental

2.1 The experimental setup

These experiments were conducted by using the G-FROST set-up (Göteborg-Flow

Reactor for Oxidation Studies at low Temperatures), which is a combination of a lami-

nar flow reactor and a Scanning Mobility Particle Sizer (SMPS, TSI Model 3936) sys-5

tem. The setup, procedure and analysis have been described in detail elsewhere

(Jonsson et al., 2006), and is only briefly presented here. The reactor is a vertically

positioned glass cylinder of 1.91 m length and 10 cm in diameter, housed in a tempera-

ture controlled chamber with an available working temperature range between 243 and

323 K. Ozone is added to the reactor separated from the flow containing the organic10

precursors through a movable injector. The addition of the terpenes and the OH scav-

enger is performed by flowing N2 through gas-wash bottles containing the substances

and the concentration is controlled by varying the temperature of the bottles. In order to

enable low concentrations of the terpenes, they are kept in diffusion limited containers

in the wash-bottles. The bulk flow is humidified by passing it trough a Gore-Tex tube15

submerged in de-ionised water and the humidity is set by changing the water temper-

ature. To prevent influence of the flow closest to the reactor wall, only the centre part

of the flow is sampled and conveyed via a sampling funnel positioned at the end of the

flow reactor. The terpene concentration was measured before and after an experiment

by sampling onto adsorbent tubes and subsequent two-step thermal desorption/GC20

analysis. The ozone concentration was measured by using an UV absorption analyser

(model 49C, Thermo Environmental Instruments Inc).

2.2 Experimental procedure

The experimental conditions are summarised in Table 1. In the experiments

2.6±0.2×10
11

molecules cm
−3

of the terpene (limonene, ∆
3
-carene and α-pinene)25

had reacted and the initial rate of reaction was 1.4±0.1×10
9

molecules cm
−3

s
−1

. To
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achieve this rate of reaction and consumption for all the terpenes the ozone concentra-

tion was set in relation to the rate coefficient for each system. For calculating the rate

of reaction and the consumption of the terpenes at 298 K, the rate coefficients used

were 200×10
−18

, 37×10
−18

, 86.6×10
−18

cm
3

molecule
−1

s
−1

for limonene, ∆
3
-carene

and α-pinene respectively (Atkinson, 1994). The temperature dependence of the rate5

coefficients were taken from (Atkinson et al., 2006; Khamaganov and Hites, 2001). No

temperature dependence of the rate coefficient for ∆
3
-carene is available in the liter-

ature. Motivated by the similarity in structure between α-pinene and ∆
3
-carene, the

temperature dependence of the rate coefficient for α-pinene was applied to extrapo-

late the value at 298 K to the low temperatures. The average reaction time was kept10

identical (242±2 s) in all experiments, by changing the total mass flow, i.e. the volume

flow in the reactor was at all times 1.64±0.01 LPM regardless of temperature. The flow

conveyed via the sampling funnel (1.08±0.04 LPM) was also adjusted in order to keep

the ratio between this flow and the total volume flow through the reactor constant in

all experiments. Total particle number, N, and total particle mass, M, were calculated15

by averaging five consecutive distributions 10–300 nm and assuming unit density. The

scan time used was 300 s (i.e. an up-scanning time of 240 s, a down-scanning time of

45 s and a delay time of 15 s).

In this study three sets of experiments were conducted at 298, 273 and 243 K for

limonene, ∆
3
-carene and α-pinene and each experimental set was further subdivided20

into three types of experiments: no OH scavenger or using 2-butanol or cyclohexane

as scavenger. In every experimental run, the relative humidity was changed step-wise.

3 Results and discussions

3.1 General observations

Figure 1 shows an overview of the results from all experiments both regarding number25

and mass of particles produced. At 298 K the ozonolysis of limonene was the most
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efficient in producing SOA and α-pinene the least, both regarding number and mass of

particles formed (Jonsson et al., 2006). This outcome was observed for all scavenger

situations. At 273 and 243 K, the same trend was observed for number of particles

formed, i.e. limonene > ∆
3
-carene > α-pinene. However, the highest particle mass for

experiments below room temperature was measured in the ozonolysis of ∆
3
-carene fol-5

lowed, in decreasing order, by limonene and finally α-pinene. This order was observed

for all scavenger conditions. For all three terpenes the reaction temperature affected

the amount of SOA formed, both in number and mass (Fig. 1). For ∆
3
-carene and

all three scavenger situations the highest number of particles was formed for a reac-

tion temperature of 243 K, followed by 273 and 298 K. However, the mass of particles10

produced decreased in the order 273>243≫298 K. The same trends were obtained

for α-pinene except for the 2-butanol condition where a slightly higher mass yield was

obtained at 243 K compared to 273 K. For limonene the condition with cyclohexane

followed the trend obtained for α-pinene and ∆
3
-carene, both regarding number and

mass. However, the trend for the limonene/2-butanol and without scavenger cases was15

different. The highest number of particles was formed at 273 K and the trend for mass

of particles formed was 273≥298>243 K.

3.2 SOA production and temperature-partitioning effects

In Fig. 2 the particle mass produced for each condition has been normalised to the cor-

responding aerosol production at 298 K, i.e. the ratio M(298 K)/M(T). As indicated by20

Eq. (1), the SOA produced will increase with decreasing temperature due to favoured

partitioning to the particulate phase at low temperatures. This means that if partitioning

was the sole process taking place, the mass of particles formed would be increased

by a decrease in reaction temperature. This has been observed in several studies as

summarised by Pathak et al. (2007b). However, recent results by Pathak et al. (2007b)25

illustrated that changes in chemical kinetics can offset this temperature dependence.

In their experiments with ozonolysis of α-pinene, the chemical part had a positive tem-

perature dependence in the range 288–313 K and the partitioning part showed, as
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Å. M. Jonsson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

expected, a negative dependence with temperature. As shown in the present results,

the highest mass yields were measured at 273 K, which suggests that the chemistry

and/or the kinetics are altered by a changing reaction temperature. An alteration in the

chemistry taking place at lower reaction temperatures is also supported by a change in

volatility properties with decreasing reaction temperature (Jonsson et al., 2007). Phys-5

ically, the greater mass of particles formed at 273 K compared to 243 K can be due

to more efficient nucleation at low temperatures (Fig. 1). Consequently, the mass at

243 K will be distributed onto many more particles than at 273 K, i.e. partitioning over

many smaller particles is favouring the gas phase due to the Kelvin effect. This could

explain the observations for α-pinene and ∆
3
-carene that produces the highest number10

of particles at 243 K and the highest mass at 273 K. For limonene this is not the case.

An explanation may be dissimilarities in structure, i.e. limonene has two double bonds,

one of which will be retained in the first generation of products, as discussed below for

the temperature effect on new particle formation.

3.3 SOA production and temperature-nucleation efficiency15

The increase in number of particles formed with decreasing temperature can be directly

related to the fact that the saturation vapour pressure of any product is decreased at

lower temperatures, hence increasing supersaturation and nucleation rate for the same

amount of products (Fig. 3). For each combination of scavenger and parent compound,

the temperature dependence on nucleation is primarily dependent on the product dis-20

tribution and each product’s vapour pressure. An explanation of the results shown in

Fig. 3 for the system without OH-scavenger can be that the products formed in the

limonene ozonolysis are efficient enough in producing particles at 298 K and there-

fore, a decrease in temperature does not significantly increase the nucleation (13%

enhancement at N(273 K) and a 26% reduction in N(243 K) compared to N(298 K))25

(Fig. 3a). For α-pinene and ∆
3
-carene the number of particles formed is enhanced

considerably between 298 K and 273 K. The enhancement is either due to products

not contributing to nucleation at 298 K, reaching high enough supersaturation to con-
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tribute at 273 K or to a change in product distribution caused by changes in kinetics

and mechanisms at low temperature. Also for the systems using scavengers there are

an increased nucleation when going from 298 K to 273 K. Further decrease in reaction

temperature is generally causing an enhancement in nucleation. However, in some

cases the nucleation efficiency is even lower at 243 K than at 273 K. One explana-5

tion for this temperature dependence could be the competition between nucleation and

condensation. The nucleation efficiency will be reduced if large aerosol surface is avail-

able and/or if the rate of producing the nucleating species is lower. For limonene, the

complex temperature behaviour can be directly related to the more complex oxidation

pathways, involving the oxidation of two double bonds. Zhang et al. (2006) indirectly10

showed that part of the limonene oxidation at low NOx conditions can be attributed to

heterogeneous oxidation of the second double bond (Zhang et al., 2006). The change

in temperature will then influence e.g. accommodation coefficients, liquid phase dif-

fusion and solubility of ozone and organic reactants. This could explain the complex

temperature effect on SOA mass, but how heterogeneous processing could influence15

the number of particles produced is not fully understood.

3.4 SOA and radical chemistry

All three terpenes investigated are known to have large OH yields: limonene 0.86
+0.43
−0.29

and 0.67±0.1; ∆
3
-Carene 1.06

+0.53
−0.36 and 0.86±0.1; α-pinene: 0.85

+0.43
−0.29, 0.76±0.11,

0.70±0.17, 0.83±0.21 and 0.91±0.23 (Atkinson and Arey, 2003). It was shown that20

adding an OH scavenger affected the SOA production significantly, both in mass and

number (Table 2). It was also shown that the use of 2-butanol or cyclohexane gave

different effect on the SOA formation, and where cyclohexane generally gave the least

amount of SOA. In previous studies this has been attributed to a change in the peroxy

radical chemistry (Keywood et al., 2004; Docherty et al., 2005). Table 2 is also showing25

the temperature effect on the scavenger-induced decrease in SOA formation caused by

adding either 2-butanol or cyclohexane compared to the no-scavenger case. At 273 K
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and 243 K limonene and ∆
3
-carene show the same pattern with mass and number: No

OH scavenger > 2-butanol > cyclohexane. However, for α-pinene the order is No OH

scavenger > cyclohexane ≥ 2-butanol. The difference in number of particles formed

with and without an OH scavenger is becoming smaller with decreasing temperature

(Table 2), suggesting less relative contribution of OH induced chemistry to particle5

formation at lower temperatures. As is seen in Table 2, for α-pinene/2-butanol systems,

the decrease is largest when going from 273 K to 243 K. This is also the case for the

α-pinene/cyclohexane systems at high relative humidity, whereas the decrease is more

notable in the 298 to 273 K range for dry conditions. In the limonene systems the effect

is largest between 298 and 273 K for both 2-butanol and cyclohexane. For the ∆
3
-10

carene systems, the effect is dependent on the relative humidity. At dry conditions the

change is largest in the range between 298 and 273 K whereas for humid conditions

the change is largest between 273 and 243 K.

When comparing the mass of particles formed with or without an OH scavenger

present, the results vary between the organic precursors (Table 2). The mass ratios15

for limonene experience small changes when the temperature is decreased. This is

in contrast to the large decrease in number ratios when going down in temperature,

which suggests different temperature dependence on the relative contribution of OH

chemistry to condensing and nucleating compounds. In the α-pinene systems the

largest difference in mass ratio is seen between 298 and 273 K. The very low mass ratio20

at 298 K (0.04–0.16) can be explained by the strong dependence of the partitioning on

the particulate mass for low M0. For ∆
3
-carene the ratio between mass of particles

produced without and with scavenger is largest at 273 K. When using cyclohexane

the ratio is changed the most in the temperature range 298–273 K, whereas in the

2-butanol case the change is very similar between the ranges.25

The mechanistic explanation for the observed temperature effect on OH scavenger

conditions is rather speculative. It has been suggested from room temperature studies

that the production of OH radicals in the ozonolysis of alkenes is either from the excited

Criegee Intermediate, CI
∗
, via the so called hydroperoxide channel (Calvert et al., 2000)
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or via the stabilised Criegee Intermediate, CI
s
, in its reaction with water (Anglada et

al., 2002). Obviously, the OH yield may change with temperature. If the OH is from a

decomposition process, and in competition with isomerisation or a bimolecular reaction

one may expect an increasing OH yield with increasing temperature. However, the

observations of changes in number and mass ratios with or without a scavenger for5

different temperatures can have other reasons than changes in OH yields. For example

the kinetics of the secondary chemistry, such as OH reacting with the scavenger, may

also be altered with temperature. From the present results it can thus be concluded

that the relative OH-induced SOA formation chemistry is changed while the reason is,

so far, not established. Furthermore it is clear that the OH chemistry is active also at10

low temperatures, i.e. OH radicals are produced at 243 K in the ozonolysis of limonene,

∆
3
-carene and α-pinene.

3.5 Water effect on SOA formation

As is seen in Table 3, water is influencing the formation of SOA, both regarding mass

and number. The use of an OH scavenger as well as the type of scavenger, was shown15

in a recent paper (Jonsson et al., 2008
2
) to influence the water dependence on number

and mass of particles formed in terpene ozonolysis. These results were confirmed in

this study. As is shown in Table 3, the impact of water is also dependent on the re-

action temperature. It should be noted that throughout this paper, relative humidity is

used as the measure of water content. The absolute water saturation vapour pressure20

is strongly dependent on temperature. That implies that the change in absolute water

concentration at 243 K is not as great as the absolute change at 298 K. The direction

and magnitude of the water effect is given in Table 3, where a positive sign implies more

SOA being produced at higher relative humidity. The classification is done by compar-

ing the lowest and highest relative humidity. However, in some cases the water depen-25

dence exhibits a local maximum or minimum at intermediate relative humidities. For

limonene when using an OH scavenger the same water effect is obtained at 298 and

273 K. There is an increase in particles formed when using 2-butanol and a decrease
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in the number concentration with cyclohexane in the system. Without scavenger water

had no impact on the number produced at 298 K whereas a positive effect was obtained

at 273 K. The negative effect of water when using cyclohexane was also found at 243 K,

however the water had no effect on number in the 2-butanol or no scavenger case. The

effect of water is negative at high and intermediate temperatures for α-pinene and5

∆
3
-carene when having no OH scavenger in the system, whereas there is a positive

effect at 243 K. At high temperature the water effect is positive for all terpene/2-butanol

systems. At intermediate temperature, 273 K, the water effect is negative in most α-

pinene and ∆
3
-carene systems, whereas there is generally a slight positive water effect

for these systems at 243 K. The water effect is very negative, a factor of two to three10

at 80% RH compared to dry for ∆
3
-carene and α-pinene in the cyclohexane systems

at 273 K. The effect of the water concentration on the mass of particles formed is gen-

erally positive, except for the ozonolysis of α-pinene/cyclohexane at 273 K, where the

mass of particles was indifferent to the concentration of water up to about 60% RH and

negative at higher RH.15

The main features of the water dependence presented in Table 2 are that cyclohex-

ane systems generally give a negative water dependence on particle number, while 2-

butanol systems show a positive water effect and the system without scavenger shows

a mixed behaviour depending on temperature and precursor. Concerning the mass

of SOA produced most systems exhibit a positive dependence, which can be due to20

a physical and/or a chemical effect. At high temperatures (298 and 273 K) the over-

all results demonstrated that there was not only a physical effect of water but also

an influence of water on the chemical mechanism. This is based on water causing a

larger increase in mass than expected from water uptake only, i.e. assuming a SOA

hygroscopic growth factor of 1.07–1.09 (Cocker et al., 2001; Virkkula et al., 1999). Ad-25

ditionally, the influence of water on the formation of new particles, with reservation for

cluster stabilisation, must be attributed to a change in rate of production or product dis-

tribution. The water effect is also dependent on the OH scavenger used, which again

points towards water influencing the chemical degradation mechanism. The water ef-
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fect at low temperature is much more homogeneous for the different situations and

the magnitude of the SOA mass increase corresponds to physical absorption of water,

i.e. less than a 30% mass increase. Consequently, the effect at 243 K could not exclude

physical effects only, e.g. water uptake in combination with cluster stabilisation.

4 Conclusions5

This paper extends earlier investigations on the ozonolysis of α-pinene, ∆
3
-carene and

limonene. The systems are now evaluated as a function of temperature and new in-

sights into the ozonolysis are presented. The major conclusions from the work are

outlined below. The water effect at low temperatures may be explained by physical

uptake and cluster stabilisation, while at higher temperatures a physical explanation10

can not account for the observations. Water must therefore also cause changes in

the chemical mechanism or rate of reactions. The differences concerning number and

mass of particles formed between no-scavenger and scavenger experiments are gen-

erally reduced at low temperatures, especially when it comes to nucleation efficiency.

However, these differences still exist at low temperatures, demonstrating that the OH15

chemistry is influencing the SOA formation also at these temperatures.

The overall temperature dependence of SOA formation is not as strong as expected

from the partitioning theory. In some cases there is even a positive dependence that

must be related to changes in chemical mechanism and/or reaction rates at low temper-

atures. This is in line with previous studies on changes in chemical composition when20

going down in temperatures and findings from dedicated partitioning studies (Pathak

et al., 2007b; Jonsson et al., 2007; Saathoff et al., 2008
1
). As far as atmospheric impli-

cations are concerned, the results are related to the radical chemistry using 2-butanol

as scavenger where the HO2 will have a dominant role i.e. in rural atmospheres at low

NOx conditions. Further experiments are needed to constrain the chemistry occurring25

at high NO conditions when any produced peroxy radical (RO2) will be converted via

its NO reaction to alkoxy radicals (RO) or organic nitrates. The results obtained should
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be evaluated in relation to other methods, e.g. smog chamber experiments, and used

for evaluation of chemical mechanisms and for increased understanding of SOA mass

and new particle formation.
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Table 1. Experimental Conditions. [Terpene]0 and [O3]0 are initial concentrations. The RH
was varied between the given limits in up to four steps. Stated errors are at the statistical 95%
confidence level. A possible systematic error for [Terpene]0 and [O3]0 is about 20%.

Exp Organic OH Temperature [Terpene]0 [O3]0 RH

Precursor Scavenger (K) 10
11

molecules cm
−3

10
13

molecules cm
−3

(%)

1 Limonene 2-butanol 298.3±0.1 6.56±0.23 1.27±0.01 12.1–75.9
2 Limonene cyclohexane 298.3±0.1 6.56±0.23 1.27±0.01 11.8–75.6
3 Limonene None 298.2±0.1 6.56±0.23 1.27±0.01 9.5–69.3
4 Limonene 2-butanol 272.3±0.1 6.22±0.22 1.48±0.01 20.9–79.6
5 Limonene cyclohexane 272.3±0.1 6.22±0.22 1.48±0.01 20.2–86.5
6 Limonene None 272.3±0.1 6.22±0.22 1.48±0.01 21.4–83.6
7 Limonene 2-butanol 243.6±0.3 5.91±0.21 1.74±0.01 49.3–67.4
8 Limonene cyclohexane 244.2±0.3 5.91±0.21 1.74±0.01 47.5–∼70
9 Limonene None 243.0±0.4 5.91±0.21 1.74±0.01 42.4–72.3

10 ∆
3
-Carene 2-butanol 298.0±0.1 6.10±0.28 6.81±0.01 9.5–74.2

11 ∆
3
-Carene cyclohexane 298.0±0.1 6.10±0.28 6.81±0.01 10.5–75.8

12 ∆
3
-Carene None 298.0±0.1 6.10±0.28 6.81±0.01 10.3–76.2

13 ∆
3
-Carene 2-butanol 272.3±0.1 5.94±0.28 7.21±0.01 23.8–94.7

14 ∆
3
-Carene cyclohexane 272.3±0.1 5.94±0.28 7.21±0.01 21.0–87.8

15 ∆
3
-Carene None 272.3±0.1 5.94±0.28 7.21±0.01 22.3–88.6

16 ∆
3
-Carene 2-butanol 243.5±0.1 5.82±0.27 7.37±0.01 ∼43–∼79

17 ∆
3
-Carene cyclohexane 243.7±0.3 5.82±0.27 7.37±0.01 42.9–78.8

18 ∆
3
-Carene None 243.5±0.1 5.82±0.27 7.37±0.01 42.9–78.4

19 α-Pinene 2-butanol 298.0±0.1 5.74±0.25 2.91±0.01 10.0–73.6
20 α-Pinene cyclohexane 298.0±0.1 5.74±0.25 2.91±0.01 12.4–79.3
21 α-Pinene None 298.0±0.1 5.74±0.25 2.91±0.01 19.6–73.7
22 α-Pinene 2-butanol 272.5±0.1 6.58±0.29 3.01±0.01 19.1–84.6
23 α-Pinene cyclohexane 272.5±0.1 6.58±0.29 3.01±0.01 18.4–85.9
24 α-Pinene None 272.6±0.1 6.58±0.29 3.01±0.01 10.4–76.6
25 α-Pinene 2-butanol 245.0±0.1 5.69±0.25 3.57±0.01 37.4–85.7
26 α-Pinene cyclohexane 245.3±0.1 5.69±0.25 3.57±0.01 39.3–85.9
27 α-Pinene None 244.9±0.2 5.69±0.25 3.57±0.01 38.6–82.9
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Table 2. Number (N) and mass (M) fractions of using 2-butanol and cyclohexane compared to
no use of OH scavenger at the reaction temperatures 298, 273 and 243 K and at a RH range
of 10–80%.

Limonene Temp (K)
N(OH-s)/N(No OH-s); M(OH-s)/M(No OH-s)

dry 40% 60% 80%

298 0.13; 0.78 0.14; 0.72 0.14; 0.66 0.15; 0.65
2-butanol 273 0.61; 0.87 0.60; 0.84 0.58; 0.77 0.58; 0.78

243 0.71; 0.73 0.74; 0.75
298 0.06; 0.40 0.05; 0.33 0.05; 0.32 0.06; 0.36

cyclohexane 273 0.34; 0.58 0.33; 0.59 0.27; 0.55 0.25; 0.58
243 0.62; 0.59 0.56; 0.59

∆
3
-Carene dry 40% 60% 80%

298 0.16; 0.63 0.19; 0.68 0.21; 0.74 0.24; 0.77
2-butanol 273 0.32; 0.88 0.33; 0.92 0.31; 0.89 0.27; 0.89

243 0.37; 0.69 0.40; 0.66
298 0.07; 0.20 0.06; 0.18 0.06; 0.19 0.07;0.21

cyclohexane 273 0.19; 0.77 0.18; 0.80 0.10; 0.72 0.13; 0.65
243 0.36; 0.56 0.38; 0.56

α-Pinene dry 40% 60% 80%

298 0.07; 0.07 0.11; 0.11 0.15; 0.16 0.15; 0.16
2-butanol 273 0.11; 0.35 0.14, 0.38 0.15; 0.38 0.14; 0.40

243 0.39; 0.73 0.36; 0.68
298 0.04; 0.04 0.04; 0.05 0.05; 0.06 0.05; 0.06

cyclohexane 273 0.25; 0.46 0.18; 0.44 0.17; 0.40 0.12; 0.37
243 0.46; 0.55 0.35; 0.49
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Table 3. Effect of relative humidity on number, N, and mass, M, of particles formed in different
scavenger systems. An increase is indicated with +, a decrease with − and no change is
noted with 0. Double symbols denote a change larger than 30%. Local maxima or minima are
denoted with ∧∨, respectively.

N
No OH-s 2-Butanol Cyclohexane

Temp

298 K Limonene 0 + −

∆
3
-Carene − ++ ∨

α-Pinene − ++ ++

273 K Limonene + + −

∆
3
-Carene − − −−

α-Pinene − ∧ −−

243 K Limonene 0 0 −

∆
3
-Carene + + +

α-Pinene + + 0

M
No OH-s 2-Butanol Cyclohexane

Temp

298 K Limonene ++ + +

∆
3
-Carene ++ ++ ++

α-Pinene + ++ ++

273 K Limonene + + +

∆
3
-Carene ++ ++ +

α-Pinene + + 0<60%>−

243 K Limonene + + +

∆
3
-Carene + + +

α-Pinene + + +
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Fig. 1. (a) Particle number and (b) mass concentration of particles formed for all conducted ex-
periments at 298 K, 273 K and 243 K, and for a RH range from dry to 80%. L is the abbreviation

for limonene, AP for α-pinene, 3C for ∆
3
-carene, OH-s for OH scavenger, 2B for 2-butanol and

CH for cyclohexane.
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Fig. 2. Particle mass ratios normalised to 298 K. The ratios at 298 K are per definition 1 and are
indicated with a cross. Red circles: no OH scavenger (No OH-s), black diamonds: 2-butanol

(2B), (3.4×10
14

molecules cm
−3

) and white triangles: cyclohexane (CH), (3.5×10
14

molecules

cm
−3

).
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Fig. 3. Particle number ratios normalised to 298 K. The ratios at 298 K are per definition 1 and
are indicated with a cross. Red circles: no OH scavenger (No OH-s), black diamonds: 2-butanol

(2B), (3.4×10
14

molecules cm
−3

) and white triangles: cyclohexane (CH), (3.5×10
14

molecules

cm
−3

).
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