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Abstract

Observations of the Saharan boundary layer, made during the GERBILS field cam-

paign, show that mesoscale land surface temperature variations (which were related to

albedo variations) induced mesoscale circulations, and that mesoscale and boundary-

layer circulations affected dust uplift and transport. These processes are unrepre-5

sented in many climate models, but may have significant impacts on the vertical trans-

port and uplift of desert dust. Mesoscale effects in particular tend to be difficult to

parameterise.

With weak winds along the aircraft track, land surface temperature anomalies with

scales of greater than 10 km are shown to significantly affect boundary-layer temper-10

atures and winds. Such anomalies are expected to affect the vertical mixing of the

dusty and weakly stratified Saharan Air Layer (SAL). Mesoscale variations in winds are

also shown to affect dust loadings in the boundary-layer. In a region of local uplift, with

strong along-track winds, boundary-layer rolls are shown to lead to warm moist dusty

updraughts in the boundary layer. Large eddy model (LEM) simulations suggest that15

these rolls increased uplift by approximately 30%. The modelled effects of boundary-

layer convection on uplift is shown to be larger when the boundary-layer wind is de-

creased, and most significant when the mean wind is below the threshold for dust uplift

and the boundary-layer convection leads to uplift which would not otherwise occur.

1 Introduction20

Mineral dust uplifted from deserts is an important component of Earth’s climate system.

The dust has a direct effect on the radiation budget (e.g. Haywood et al., 2005), and this

affects atmospheric dynamics (Tompkins et al., 2005; Jones et al., 2004; Perez et al.,

2006). Dust provides nuclei for ice formation in clouds (Field et al., 2006), can affect

cloud organisation (Stephens et al., 2004), and provides iron essential for phytoplank-25

ton (Mahowald et al., 2005). Efforts to model the transport of desert dust in regional
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and global models are, however, still in their infancy (Woodward, 2001; Cakmur et al.,

2006; Mahowald et al., 2006; Zakey et al., 2006).

The Sahara desert is the largest source of mineral dust in the atmosphere (approx-

imately 60%, Tanaka and Chiba, 2006), but is a very poorly observed region. Over

the Sahara, large surface sensible heat fluxes and deep dry convection can result in a5

summertime boundary layer that is up to 6 km deep (Gammo, 1996). However, profiles

from the Sahara in summer typically show a shallower active boundary layer, with the

near neutrally stratified Saharan air layer (SAL) between this and a strong inversion

at approximately 5.5 km. As discussed by (Parker et al., 2005), the SAL itself often

contains distinct layers with different water vapour contents. The deep dry SAL layer10

allows much of the Saharan dust plume to avoid rain-out over the Atlantic, allowing the

dust to be transported globally.

Figure 1 shows an example of the stratification of the SAL. The profile shows five

distinct layers below the lid at 520 hPa, each essentially internally well mixed with a

different water vapour mixing ratio (WVMR). Layers are separated by inversions, many15

of which are very weak (less than 1 K), and the strongest of which is 3 K (at ≃650 hPa).

This weak stratification of the SAL means that even small anomalies in the surface

heating may significantly affect the growth of the active boundary layer into the SAL.

We expect land surface variations in desert regions to affect surface fluxes and induce

mesoscale circulations (Segal and Arritt, 1992). These may therefore affect the vertical20

transport, and perhaps uplift, of desert dust.

Observations of convective plumes and vortices from Arizona, USA (Koch and

Renno, 2005) and large eddy modelling of the Gobi desert (Takemi et al., 2006)

suggest that boundary-layer convection uplifts significant quantities of desert dust.

Washington et al. (2006) also showed that during the morning in the Bodele depres-25

sion boundary-layer convection mixes momentum from the nocturnal jet downwards,

which results in dust uplift. Cakmur et al. (2004) showed that allowing the sub-grid fluc-

tuations in the boundary layer implicit in a global model to affect dust uplift improved

the modelled dust distribution and using Meteosat Second Generation observations
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Chaboureau et al. (2007) observed a diurnal cycle in dust coverage over the Sahara,

with its maximum at 15:00 UTC, which they linked to boundary-layer activity. These re-

sults all show that small scale variations in boundary-layer winds are important for dust

uplift and transport. However, such mesoscale and boundary-layer processes are not

resolved, and often not represented, in climate models. In addition, there are very few5

published observations of these processes, and perhaps none in the western Sahara.

The GERBILS (GERB Intercomparison of Longwave and Shortwave radiation) field

campaign, which took place in June 2007, aimed to understand the differences

between modelled and observed outgoing radiative fluxes in the western Sahara

(Haywood et al., 2005). Seven flights took place between Niamey (Niger) and Nouak-10

chott (Mauretania), providing significant amounts of data, from this poorly observed

region. Stratifications in dust loadings in the SAL (similar to the stratification in WVMR

shown in Fig. 1) were often observed during the campaign.

Two flights from GERBILS provided long legs within the Saharan boundary layer;

these were on the 27th and 28th June 2007 (B301 and B302). The objective of this15

paper is to show the impacts of land surface variations on the boundary layer and

boundary-layer convection on dust loadings, which were observed during these flights.

Section 2 describes the data, models and methods used and Sects. 3.1 and 3.2 de-

scribe the observations from B302 and B301 respectively.

2 Data, model and methods used20

2.1 Observations

A large array of instruments was present on the FAAM BAe146 aircraft during GER-

BILS. In addition to standard meteorological parameters of temperature, humidity and

winds, this paper makes use of measurements of: (i) downwelling and upwelling solar

radiation (allowing solar albedo to be calculated), (ii) nephelometer scattering, and (iii)25

upwelling infrared radiation measured using a broadband Heimann radiometer. Neph-
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elometer scattering was dominated by dust, and was observed at red, green and blue

wavelengths. In this paper the nephelometer data are used as an indicator of dust

loadings, and only blue data are shown, since differences between the three chan-

nels were small. The nephelometer measures aerosol scattering coefficient, i.e. the

scattering cross-sectional area of the aerosols per unit volume of air.5

All the Heimann radiometer data discussed in this paper were from low-level flights

at constant altitudes, where variations in atmospheric absorption are expected to have

small effects, and be slowly varying. The remaining variations in brightness temper-

atures (BTs) from the Heimann radiometer are from variations in land surface tem-

peratures (LSTs) and emissivities. Heimann BTs were significantly anticorrelated with10

albedo (Sect. 3.1). This shows that a significant component of the BT signal is from

variability in LSTs (since in the cloud-free conditions discusssed darker surfaces are

expected to lead to increased LSTs). Furthermore, in this paper boundary-layer virtual

potential temperatures are shown to be coherently related to Heimann BTs. Any vari-

ations in land emissivity will have tended to mask rather than generate this coherency,15

so in such cases the Heimann BTs are assumed to relate to LSTs.

Low level legs during GERBILS were flown at constant pressure levels. The low level

leg from B302 was at 600 to 700 m above mean sea level (MSL), or 300 to 500 m above

the ground level (AGL). Aircraft profiles and the COSMO simulations showed that the

top of the boundary layer was between 900 and 1400 m above MSL, so the flight was20

in the lower half of the boundary layer. Therefore we expect to observe convergence

in the boundary-layer winds over warm surface anomalies. The low level leg from

B301 was near the top of the boundary-layer; the flight was 950 m above MSL and the

COSMO model showed the top of the boundary layer at approximately 1200 m (aircraft

profiles on this day were affected by either the monsoon or the cold pool outflows).25

2.2 The COSMO and LEM models

Version 3.19 of the COSMO (Consortium for Small-scale Modeling) model (Doms and

Schättler, 2002), from the Deutscher Wetterdienst (DWD), was run over a domain ex-
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tending from 17
◦
W to 2

◦
E and 13

◦
N to 23

◦
N. COSMO is a non-hydrostatic model, and

the model equations for fully compressible flow in a moist atmosphere are formulated in

rotated geographical coordinates and a generalised terrain following height coordinate.

The horizontal grid-spacing was 0.0625
◦

(approximately 7 km) and 35 levels were used

in the vertical (grid-spacing of approximately 10 m at the lowest model levels). Land5

use data, from DWD, were on the same 0.0625
◦

grid as the model. The model was

initialised using operational analyses from the ECMWF (European Centre for Medium

Range Weather Forecasts) global model, which has a 0.25
◦

horizontal grid-spacing,

and lateral boundaries were taken 3 hourly from the ECMWF operational forecasts.

Version 2.4 of the Met Office large eddy model (LEM, Gray et al., 2001) was used to10

simulate the convection within the Saharan boundary layer for B301. Since in the region

of interest the aircraft was at low-level no observed profiles were available, and the LEM

was initialised with a profile from the COSMO simulation (12:00 UTC, 18
◦
N 7.5

◦
W).

Small perturbations were added to the model to allow boundary-layer convection to

develop, surface fluxes from the COSMO model were applied, and the mean wind15

profile was relaxed towards the profile from the COSMO model (to account for large

scale forcings). A three-dimensional 20 km by 20 km by 20 km domain was used with

horizontal grid-spacings of 200 m, and vertical grid-spacings of 50 m in the boundary-

layer. Gravity wave damping was applied above 13 km and the model uses a rigid base

and lid and periodic lateral boundary conditions.20

2.3 Cospectral analysis

The significance of the coherences between observed variables was determined as

a function of spatial scale using spectral analysis (e.g. Matthews and Madden, 2000;

Taylor et al., 2007). The coherency between two Fourier transforms can be described

as a spectral version of the correlation function, and is based on the product of one25

spectrum with the complex conjugate of the other. In order to infer significance, it is

necessary to smooth this product over a range of wavenumbers (the bandwidth); here a

running mean has been employed. A larger bandwidth increases the spectral sampling
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but reduces the resolution at which wavenumber-dependent effects can be identified.

The result is normalised by the smoothed amplitudes of the original spectra to deduce

the coherency, which takes values between zero (not coherent) and one (coherent).

Statistical significance can be inferred from the coherency by considering the expected

coherency of white-noise signals as a simple function of bandwidth (Julian, 1975). The5

technique also allows the phase difference for this coherency to be determined, as well

as the “gain” i.e. the variation in one variable as a function of variations in another with

which it is coherently related.

3 Results

Figure 2 shows the power spectra of variables observed during B301 and B302. These10

are plotted as kE (k), where k is the wavenumber, so that the area under the curve is

proportional to the variance and a peak in the curve shows a significant contribution

to the variance at that wavenumber (Jonker et al., 1999). For B302 the main peak in

the power spectrum of vertical winds occurs at a scale of approximately 2 km, which,

as expected, is of the order of the boundary-layer depth. Variations in virtual potential15

temperature (θv ) and WVMR are dominated by larger scale contributions, particularly

for WVMRs. For these variables the contributions on the scales of boundary-layer

processes are still significant however, and a spectral-gap (Van der Hoven, 1957) is

observed at approximately 20 km, between these boundary-layer scales and the larger

scales.20

The spectra for B301 are similar to those from B302, except that there are much more

significant mesoscale contributions to the power spectrum of vertical winds (there are

peaks at approximately 2, 3.5 and 9 km), and the boundary-layer scale contributions

to variance in WVMR are much more significant (the peak at 9 km is also clear in

the WVMR spectrum). As discussed in Sect. 3, this greater contribution for B301 at25

scales between 1000 m and 20 km is thought to be due to the flight-path being oriented

approximately along the axes of boundary-layer rolls.
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3.1 Flight B302, 28th June 2007

Figure 3a shows the low level transect of B302 and surface albedo derived from MODIS

satellite data (Gao et al., 2005 and Houldcroft et al., 2008
1
). This shows that the flight

crossed an area with a variety of albedo features, which is typical of the western Sa-

hara. One particular albedo feature, at 8
◦
W, stands out in the aircraft data (Fig. 4a,5

green line). This can be seen in the MODIS data (Fig. 3a) and was from a rocky val-

ley and escarpment, with a minimum albedo of approximately 0.2, compared with the

surrounding sandy desert with an albedo of 0.45 (Fig. 4a, green line). An increase in

brightness temperature (BT) measured by the Heimann radiometer was also observed

at 8
◦
W (Fig. 4a, black line). This can be assumed to correspond to an increase in land10

surface temperature (LST), which is consistent with the albedo anomaly. This high LST

appears to have locally increased the potential temperature of the boundary layer at

this location by approximately 2 K (Figs. 4a, b and c, red lines).

This 2 K perturbation in boundary-layer potential temperature has the potential to

significantly affect the vertical mixing of the SAL, since the SAL is weakly stratified15

(e.g. Fig. 1). Other similar, but smaller, albedo features can also be seen in Fig. 4a,

for example at 6.7, 7.7 and 9.2
◦
W. For these features there is some evidence of con-

vergence in the along track winds (Fig. 4c, blue line). The effects of these land surface

variations on the boundary layer are investigated more quantitatively using spectral

analysis (below).20

West of 9.5
◦
W the air is moist and dusty (Figs. 4a and b, purple and blue lines).

Simulations performed using the COSMO model showed this was from the monsoon

flow (Fig. 3b). Between 6
◦

and 9
◦
W the nephelometer data (Fig. 4b, blue line) shows

an area of increased dust loadings. This peak in low-level dust loadings is east of the

position of the local maximum in windspeed. The maximum low-level winds upstream25

1
Houldcroft, C. J., Grey, W. M. F., Barnsley, M. J., Taylor, C. M., and Los, S. O.: “New

Vegetation Albedo Parameters and Global Fields of background Albedo derived from MODIS

for use in a climate model”, submitted, J. Hydromet., 2008.
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of the flight track lie to the east of the maximum at the latitude of the flight track (Fig. 3b).

This suggests that the dust observed is a result of these high windspeeds upstream.

However, there appears to be some correlation between observed peaks in windspeed

and observed peaks in dust loadings, for example at 8.5, 7.9, 7.7 and 6.7
◦
W (Fig. 4b).

This suggests the possibility of significant dust uplift occurring close to the flight track,5

which is again investigated using spectral analysis.

In order to investigate the effects of the land-atmosphere coupling in the Sahara, data

from west of 9.5
◦
W were rejected, since they were affected by the monsoon flow. For

the remaining data cospectral analysis showed that there was a significant relationship

between albedo and LST for all scales discussed (i.e. greater than 2.5 km, not shown).10

Figure 5 shows that at scales greater than approximately 10 km (k<0.1 km
−1

) there

is a significant relationship between LST and boundary-layer virtual potential tempera-

ture (θv ), with the LST anomalies approximately 20
◦

out of phase with the θv , which is

consistent with the along-track winds (≃4 ms
−1

) resulting in the high buoyancy air being

located downstream of the high LSTs. Figure 5 also shows that there is also a coher-15

ent relationship between along-track winds and θv at these scales, with convergence

towards regions of high θv (a phase difference of approximately 90
◦
). Analysis also

showed a similar coherent relationship between along-track winds and LSTs at these

scales (not shown). The derived gains showed LST anomalies affecting along-track

winds by 0.25 to 0.5 ms
−1

K
−1

(not shown).20

Figure 5 shows that on these scales (greater than 10 km) the high θv regions are

dry. This may be from increased entrainment of dry air in such regions, or an increased

Bowen ratio, or both. Windspeeds were also coherently related to θv on scales greater

than 10 km, with their maximum downstream of the θv maximum (approximately −45
◦

out of phase); across-track winds were greater than the along-track winds, so it is25

possible for the phase of the along-track winds and windspeed to be of opposite signs.

The analysis was then restricted to west of 6
◦
W, restricting the track analysed to the

data in the dust plume where local windspeeds were greater than 6 ms
−1

and where

local uplift is likely to be more significant. Figure 8 shows that for this region mesoscale
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variations in dust loadings depended on mesoscale variations in windspeed, for scales

greater than 10 km (k<0.1 km
−1

). If data from 5
◦

to 6
◦
W were included then this rela-

tionship was still significant, but less clear. Restricting the analysis to west of 6
◦
W also

showed that on scales of greater than 20 km regions of increased θv were also less

dusty (not shown), possibly from entrainment of less dusty drier air in these regions, or5

from reduced dust uplift over darker rockier surfaces. It was not possible to unambigu-

ously relate dust and LSTs, however; this is unsurprising given that the maximum dust

uplift occurred upstream of the flight track, and the effects of land-surface itself on the

potential for dust uplift.

3.2 Flight B301, 27th June 200710

B301 provided another long leg through the Saharan boundary layer, following a very

similar path to B302 (Fig. 3), but the monsoon affected regions east of 6.6
◦
W and

west of 9.5
◦
W. Along-track winds were higher during B301 than B302 (approximately

10 ms
−1

compared with 4 ms
−1

) and this is expected to decrease the effects of LST

anomalies on boundary-layer temperatures and winds (Segal and Arritt, 1992).15

Figure 7 shows windspeeds (which are dominated by the along-track winds) increas-

ing from west to east, which is consistent with the COSMO simulation (Fig. 3c). Dust

loadings west of 8.8
◦
W were low, but are observed to increase towards the east with

the increasing windspeeds (Fig. 7b). Since windspeeds upstream were lower than

those at the point of observation, the observed dust must be from local uplift. The low20

albedo escarpment at 8.0
◦
W again led to an increased Heimann BT (Fig. 7a), and ef-

fects on the BT from low albedo features can be seen at 8.7 and 7.0
◦
W. Figure 8 shows

the details of the observations from 8.0
◦
W. A region of high buoyancy (θv , red line) is

observed downstream of the LST anomaly (this is further downstream than shown for

B302 due to the larger along-track winds, Figs. 4 and 8). This corresponds to a region25

of divergence in along-track winds (Fig. 8c, expected since the flight was near the top

of the boundary layer). The magnitude of the perturbation to the boundary-layer po-

tential temperature (≃0.5 K) again has the potential to significantly affect the vertical
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mixing of the weakly stratified SAL (Fig. 1), but is smaller than observed during B302

(as expected from the greater along-track winds on this day).

Although for B301 there was some statistical significance to the coherency between

LSTs, θv and along-track winds in the boundary layer (not shown) this effect was much

less distinct than for B302, as expected from the faster along-track winds. Figure 95

does show divergence in the along-track winds associated with high values of θv on

scales larger than 20 km however (B301 was near the top of the boundary layer).

There is a significant relationship between dust and θv on scales larger than ap-

proximately 4 km (k<0.25 km
−1

), with dust between ±60
◦

out of phase (Fig. 9). WVMR

is also related to θv on scales greater than 5 km, and in phase with θv (and vertical10

winds are significantly related and in phase with θv on all scales). Therefore, Fig. 9

shows moist dusty buoyant updrafts on scales larger than 4 km, which includes the

scales of boundary-layer eddies as well as the meoscale (Fig. 2). Given the strong

along-track winds and the significant mesoscale contribution to the power spectrum of

vertical winds on this day this is suggestive of boundary-layer rolls.15

Figure 10 shows results for the LEM simulation for this day, and confirms that we ex-

pect linear boundary-layer structures (i.e. rolls) to form in this strongly sheared bound-

ary layer. The roll-spacing of approximately 2.5 km is well resolved by the LEM grid-

spacing of 200 m. The rolls are relatively disorganised, but are aligned approximately

west-east, approximately along the mean boundary-layer wind, and also along the flight20

track. If the horizontal mean of the LEM potential temperature profile was relaxed

towards that of the COSMO model these rolls became much more linear, but their

alignment was unchanged. These rolls explain the significant mesoscale (≃10 km)

contributions to the power spectrum of vertical winds for B301 (Fig. 2).

Due to the latent heat fluxes moistening the boundary layer at the surface and drying25

it at its top, updrafts in such rolls are moist (Fig. 10a). The data also show that the

updrafts are dusty (Fig. 9), consistent with dust uplift at the surface and entrainment of

cleaner air above the boundary layer (the Met Office dust forecast model (Woodward,

2001) showed dust loadings decreasing above the boundary layer, and aircraft profiles
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also showed this, although they were affected by cold-pools or the monsoon flow).

During B302 boundary-layer winds were more north-westerly, so the flight would have

been across any rolls, and the uplift was more upstream than local (peak windspeeds

in the COSMO simulation were upstream); these two factors are expected to make the

detection of any roll effects in data from B302 more difficult.5

Variations in windspeed in the LEM were very similar to those observed (Fig. 10b),

with a standard deviation of 0.97 ms
−1

for LEM and 0.87 ms
−1

for the observations. At

13:00 UTC the windspeeds at the lowest level in the LEM (33 m a.g.l.) varied from

5.4 to 15.8 ms
−1

, with a mean of 9.9 ms
−1

. Dust uplift (F) can be parameterised as a

function of friction velocity (u∗) cubed with a threshold friction velocity (u∗T ). Marticorena10

and Bergametti (1997) Eq. (5) gives,

F α u∗3(1 − R)(1 + R2), (1)

where R=u∗T/u
∗
. Cakmur et al. (2004) uses the simpler formula,

F α u∗2(u∗ − u∗
T
), (2)

for u∗ ≥ u∗T . In the LEM, for a convective boundary layer,15

u∗ = k.u1/(log(z/z0) − ψ)), (3)

where u1 is the wind velocity at the lowest model level (z1), z0 is the roughness length

of the surface, k is the von Karman constant, and ψ accounts for the stability (Gray

et al., 2001). Therefore, for a constant surface roughness, neglecting effects from any

spatial variations in the stability (which are expected to be significantly smaller than20

the effects from the spatial variations in the wind) u∗ is proportional to u1 (as used by

Cakmur et al., 2004). We can therefore obtain an estimate of the effects of the roll

circulations on dust uplift by comparing the rates calculated using the LEM winds from

the lowest model level, and rates calculated from the windspeed derived from the mean

wind velocities in the lowest model level (using Eqs. 1 and 2).25

Cakmur et al. (2004) suggests that 10 m windspeed thresholds for dust uplift in

the Sahara are typically 8 to 10 ms
−1

. For B301, Fig. 11a shows that the modelled
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boundary-layer rolls increase dust uplift by approximately 14% for a zero threshold and

this increases as the threshold increases, with the details depending on whether the

uplift parametrisation of Marticorena and Bergametti (1997) or Cakmur et al. (2004) is

used. An uplift threshold of 8 ms
−1

(Cakmur et al., 2004) results in an enhancement of

30%. The enhancement of uplift is greatest when the mean wind is just less than the5

threshold and the rolls give significant uplift that would not otherwise occur. If the mean

horizontal winds in the LEM are decreased by a factor of two, the uplift enhancement

is increased, with a minimum enhancement of 70% (Fig. 11b). This occurs since the

windspeed variations from boundary-layer convection become more significant as the

speed of the mean boundary-layer wind is decreased. These effects of boundary-layer10

circulations on dust uplift are not included in any global model where modelled dust

uplift is a function of u∗, and u∗ depends on the resolved wind so that u∗ tends to zero

as the resolved wind tends to zero.

It is not clear to what extent parametrisations and thresholds used by Cakmur et al.

(2004) and Marticorena and Bergametti (1997) are applicable on the small spatial and15

temporal scales resolved by the LEM. Therefore the quantitative details of the enhance-

ment discussed above remain somewhat uncertain. In addition, scales smaller than

those by the LEM may be significant for dust uplift. However, despite these uncer-

tainties, the observations of moist dusty updraughts in boundary-layer rolls, and the

estimated enhancement of uplift, support the other existing evidence that boundary-20

layer convection plays a significant role in driving dust uplift (Cakmur et al., 2004; Koch

and Renno, 2005; Takemi et al., 2006).

4 Conclusions

Results from low level flights made during the GERBILS field campaign have been used

to demonstrate the effects of: (i) mesoscale land surface temperature (LST) anomalies25

(which were related to albedo anomalies) on the virtual potential temperatures and

winds in the boundary layer, (ii) mesoscale wind variations on dust loadings, and (iii)
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boundary-layer circulations (linear rolls) on dust uplift and transport. Figure 12 shows

a schematic of the mesoscale processes observed.

These boundary-layer and mesoscale processes are unrepresented in many climate

models, but are expected to have significant impacts on the uplift and vertical transport

of desert dust. Mesoscale effects in particular are difficult to parametrise such models5

(for example, Zheng and Pielke, 1995).

On a day with high windspeeds (≃10 ms
−1

), but relatively weak along-track winds

(≃4 ms
−1

), land surface albedo and temperature anomalies of scales greater than

10 km generated significant perturbations in buoyancy in the boundary layer (up to ap-

proximately 2 K). These anomalies were shown to lead to convergence in the boundary-10

layer winds on these scales, and are expected to affect vertical mixing of the SAL,

and so dust transport. This is consistent with the observed anti-correlation between

WVMRs and θv on these scales, which may be from increased entrainment drying

of the boundary layer, or an increased Bowen ratio of the land surface. Mesoscale

(greater than 10 km) variations in boundary-layer dust loadings were also shown to15

depend on variations in windspeed on these scales. This was most significant where

observed windspeeds exceeded 6 ms
−1

, which presumably allowed dust uplift to occur

locally.

On a day with greater along-track windspeeds (≃10 ms
−1

) and more local dust uplift,

the effects of LST anomalies were not as significant. LEM simulations showed that we20

expect the flight track on this day to have been almost along the axes of boundary-

layer rolls, and power spectra of observed vertical winds showed significant mesoscale

scale contributions (at approximately 10 km scales) consistent with this. Observations

showed warm moist dusty updraughts occurring on scales between 4 and 50 km on

this day i.e. on boundary-layer as well as meso-scales. Therefore, these observations25

show vertical transport of dust by rolls. Assuming an uplift threshold of 8 ms
−1

, the

LEM results showed that the the rolls are expected to have increased dust uplift by

approximately 30%, compared with uplift calculated using the mean wind. This en-

hancement of uplift by boundary-layer convection is larger for lower boundary-layer
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windspeeds, and most significant when the mean wind is below the threshold for dust

uplift and the convection leads to uplift that would not otherwise occur. The applica-

bilities of dust uplift parametrisations and thresholds in the literature to small spatial

and temporal scales are not clear, which increases the uncertainty in the details of

these enhancement effects. We recommend that the range of the applicability of such5

parametrisations should be investigated.

Dust loadings in the Saharan Air Layer (SAL) have important effects on climate.

For dust to get into the SAL it must be uplifted from the surface and then transported

vertically out of the boundary layer. The SAL is only weakly stratified however, so even

small (≃1 K) perturbations to boundary-layer temperatures may significantly affect the10

vertical mixing. These observations show that such variations can be induced by land

surface anomalies, but any effects within the SAL could not be evaluated due to an

absence of suitable data from between 1 km and the top of the SAL. In addition, no

observations were available from days with light winds, when we expect the effects of

the mesoscale (Segal and Arritt, 1992) and boundary-layer circulations to be increased.15

We therefore suggest that the impacts of these processes on dust uplift and transport

are investigated using numerical modelling, or using observational data not available

to us.
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� �

Fig. 1. Tephigram plot of a dropsonde profile from the Sahara (18
◦
N, 8.25

◦
W) taken during the

GERBILS field campaign (12:39 UTC on the 24th June 2007).
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Fig. 2. Power spectra of vertical winds (w, left), virtual potential temperature (θv , middle) and

water vapour mixing ratio (WVMR, right), from B302 (top) and B301 (bottom).
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Fig. 3. Flight tracks of: (a) B302 (west to east) and albedo derived from MODIS satellite data,

(b) B302 (west to east) and low-level winds from the COSMO simulation, (c) B301 (east to

west) and low-level winds from the COSMO simulation. Flights were between Niamey (13.5
◦
N

and 2.1
◦
E, not shown) and Nouakchott (18

◦
N and 16

◦
W). White lines show low-level legs.
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Fig. 4. Time smoothed data from the low-level transect of B302. “Albedo” was derived from

observed upwelling and downwelling solar radiances. “Aerosol scattering” shows the aerosol

scattering coefficient from the nephelometer in the blue channel. “Convergence” was calculated

along the aircraft track. “Orog.” shows the height of the orography, derived from the aircraft GPS

and radar altitudes, “Alt.” shows the aircraft GPS altitude.
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Fig. 5. The coherence and phase of relationships of Heimann BT (red line), along-track wind

(black line), windspeed (green line), WVMR (pale blue dashed line) with θv for B302. Horizontal

black dashed lines show 80, 90 and 95% significance thresholds respectively.
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Fig. 6. As Fig. 5 but the relationship of dust (blue dash-dot line) with windspeed west of 6
◦
W.
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Fig. 7. As Fig. 4, but for B301, for the portion of the low level flight unaffected by convectively

generated cold pools or the monsoon flow.
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Fig. 8. As Fig. 7 but showing details of the effects of the rocky escarpment at 8.0
◦
W on the

boundary-layer.
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Fig. 9. As Figs. 5 and 6, but for B301 and showing relationships of dust (dark blue, dash-dot

line) and WVMR (pale blue, dashed line) with θv .
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Fig. 10. Results from LEM simulations of the B301 boundary layer at 13:00 UTC from 627 m

above the ground: (a) WVMR (greyscaled) and vertical velocities (line contours at ±1 ms
−1

,

dashed are negative). (b) Probability density functions of windspeed from the LEM (dashed

line), and observations from 7.65±0.1
◦
W (solid line).
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Fig. 11. Dust “uplift rates” (actually windspeeds cubed) from Eqs. (1) (“MB97”, thick lines)

and (2) (“C04”, dashed lines) using the LEM winds (blue lines, “resolved” winds) and the mean

wind in the LEM (green lines, “unresolved” wind). “Enhancement” factors i.e. the fractional

increases in uplift from using the “resolved” winds are also shown (red lines). (a) Results from

the standard LEM run. (b) Results from an LEM run with the mean wind in the model reduced

by a factor of two.
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Fig. 12. Schematic of the effects of an albedo anomaly on the boundary layer. Note that

observations show statistically significant links between: (i) mesoscale variations in LSTs, θv
and winds and (ii) windspeeds and dust, but do not show significant links between LSTs and

dust.
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