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Abstract

The forecast model and three-dimensional variational data assimilation components of

the Navy Operational Global Atmospheric Prediction System (NOGAPS) have each

been extended into the upper stratosphere and mesosphere to form an Advanced

Level Physics High Altitude (ALPHA) version of NOGAPS extending to ∼100 km. This5

NOGAPS-ALPHA NWP prototype is used to assimilate stratospheric and mesospheric

temperature data from the Microwave Limb Sounder (MLS) and the Sounding of the

Atmosphere using Broadband Radiometry (SABER) instruments. A 60-day analysis

period in January and February, 2006, was chosen that includes a well documented

stratospheric sudden warming. SABER temperatures indicate that the SSW caused10

the polar winter stratopause at ∼40 km to disappear, then reform at ∼80 km altitude

and slowly descend during February. The NOGAPS-ALPHA analysis reproduces this

observed stratospheric and mesospheric temperature structure, as well as realistic

evolution of zonal winds, residual velocities, and Eliassen-Palm fluxes that aid inter-

pretation of the vertically deep circulation and eddy flux anomalies that developed in15

response to this wave-breaking event. The observation minus forecast (O-F) standard

deviations for MLS and SABER are ∼2 K in the mid-stratosphere and increase mono-

tonically to about 6 K in the upper mesosphere. Increasing O-F standard deviations in

the mesosphere are expected due to increasing instrument error and increasing geo-

physical variance at small spatial scales in the forecast model. In the mid/high latitude20

winter regions, 10-day forecast skill is improved throughout the upper stratosphere and

mesosphere when the model is initialized using the high-altitude analysis based on

assimilation of both SABER and MLS data.

1 Introduction

The extension of numerical weather prediction (NWP) models to higher altitudes has25

been motivated by both the desire to improve extended-range weather forecasts, and
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the goal of improving understanding of the middle atmosphere. Incorporating a real-

istic stratosphere has resulted in some gains in extended-range forecasts (Jung and

Leutbecher, 2007), is expected to benefit the assimilation of new microwave measure-

ments (Han et al., 2007), and has served as the basis for reanalysis (Uppala et al.,

2005) used for trend studies and transport calculations. Research NWP models such5

as the Canadian Middle Atmosphere Model (CMAM) have added a full mesosphere,

and have been used to characterize the impact of assimilation schemes on the model

mesosphere (Polavarapu et al., 2005; Sankey et al., 2007). In these studies the assim-

ilated measurements were confined to altitudes below ∼1 hPa, a limit defined by the

altitude range of the thermal channels of the Advanced Microwave Sounding Unit-A10

(AMSU-A) instrument (see Fig. 1).

In this paper, we report on the assimilation of stratospheric and mesospheric temper-

ature measurements from the Sounding of the Atmosphere using Broadband Emission

Radiometry (SABER) (Russell et al., 1999) and the Microwave Limb Sounder (MLS)

(Waters et al., 2006) instruments. These research limb-sounding instruments provide15

measurements at altitudes well above those currently available from sounders whose

data are assimilated operationally by NWP centers. The temperature retrievals from

MLS and SABER are only weakly dependent upon the assumed background state, al-

lowing the direct assimilation of temperature profiles rather than radiances, as opposed

to nadir-sounding instruments such as AMSU-A and the Special Sensor Microwave Im-20

ager and Sounder (SSMIS). Neither the SABER nor MLS instruments currently provide

data that meet operational time requirements, although the MLS team is working on

near-real-time retrieval algorithms (N. Livesey, personal communication).

The MLS and SABER data are assimilated into a high-altitude version of the Navy’s

Operational Global Atmospheric Prediction System (NOGAPS). NOGAPS consists of25

a global spectral forecast model (Hogan and Rosmond, 1991) plus the Naval Research

Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) (Daley

and Barker, 2001), and currently runs operationally from the ground up to ∼1 hPa. The

high-altitude extension of NOGAPS, which is designated NOGAPS-ALPHA (Advanced
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Level Physics-High Altitude), extends the top of the system from the mid stratosphere

up to ∼100 km altitude. The initial extension and performance of the forecast model

component of NOGAPS-ALPHA running without NAVDAS has been progressively doc-

umented in a number of recent studies (e.g., Eckermann et al., 2004; McCormack et

al., 2004; Coy et al., 2005; Allen et al., 2006; McCormack et al., 2006; Eckermann et5

al., 2007; Siskind et al., 2007). In this study we run NOGAPS-ALPHA for the first time

with NAVDAS to allow for the assimilation of higher altitude data provided by MLS and

SABER.

We will show the results of assimilating MLS and SABER temperatures into

NOGAPS-ALPHA up to 0.01 hPa during January–February 2006, a time period corre-10

sponding to a well documented stratospheric major warming. This time period exhibits

very strong vertical coupling between the troposphere, stratosphere and mesosphere

via gravity wave drag (Siskind et al., 2007) and illustrates the importance of having a

system which extends from the ground to the upper mesosphere. These results also

demonstrate the impact and challenges of assimilating upper stratospheric and meso-15

spheric temperatures in NWP models.

The paper is organized as follows. Section 2 presents an overview of the NOGAPS-

ALPHA forecast model component. Section 3 describes the new high-altitude version

of NAVDAS used in NOGAPS-ALPHA and the satellite data sets to be assimilated.

Section 4 describes results from the assimilation run for the January–February 200620

period. Section 5 summarizes these results and outlines future research directions.

2 NOGAPS-ALPHA global forecast model

The operational NOGAPS global forecast model is described in detail by Hogan and

Rosmond (1991) and Hogan et al. (1991). Briefly, the dynamical core is Eulerian, hy-

drostatic, spectral in the horizontal with an energy and angular-momentum conserving25

finite-difference formulation in the vertical based on a generalized vertical coordinate

(Simmons and Burridge, 1981). For the experiments reported here, the forecast model
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was run using a triangular spectral truncation at wavenumber 79 (T79), corresponding

to a grid point resolution on the quadratic Gaussian grid of 1.5
◦
. The model’s dynami-

cal variables are relative vorticity, divergence, virtual potential temperature, specific hu-

midity, and terrain (surface) pressure. The model is central in time with a semi-implicit

treatment of gravity wave propagation, implicit zonal advection of moisture and vortic-5

ity, and Robert (Asselin) time filtering (Simmons et al., 1978; Simmons and Jarraud,

1983). The operational model includes physical parameterizations of vertical diffusive

transport in the planetary boundary layer (Louis, 1979; Louis et al., 1982) coupled to

a land surface model (Hogan, 2007), orographic gravity-wave and flow-blocking drag

(Webster et al., 2003), shallow cumulus mixing (Tiedtke, 1984), deep cumulus convec-10

tion (Emanuel and Zivkovic-Rothman, 1999; Peng et al., 2004), convective, stratiform

and boundary layer clouds and precipitation (Slingo, 1987; Teixeira and Hogan, 2002),

and shortwave and longwave radiation (Harshvardhan et al., 1987). NOGAPS runs op-

erationally at T239L30 with only a few thick highly-diffused stratospheric levels above

∼25 hPa.15

While seeking to retain most of the features of the operational model, the ALPHA ver-

sion of the forecast model incorporates a number of additions and modifications. One

such addition is prognostic ozone with parameterized photochemistry (McCormack et

al., 2004, 2006; Coy et al., 2007). The most important model enhancements for this

study are described below.20

2.1 Vertical model levels

NOGAPS-ALPHA can be run with a variety of vertical level spacing and top bound-

ary levels. The NOGAPS-ALPHA forecast model also replaces the σ coordinate used

in NOGAPS (Hogan and Rosmond, 1991) with a hybrid σ−p coordinate that transi-

tions smoothly from terrain-following levels at the surface to isobaric levels in the lower25
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stratosphere and higher (Eckermann et al., 2004; Eckermann, 2008
1
). The version

used here contains 68 model layers (L68), with a model top at 0.0005 hPa (∼96 km).

The lowest levels are identical to the operational L30 setup, but then transition to iso-

baric layers at altitudes above ∼87 hPa, with a height thickness of ∆Z≈2 km throughout

the middle atmosphere. Isobaric models levels in the middle atmosphere should aid5

the assimilation of satellite temperature and constituent retrievals which are provided

on pressure levels (e.g., Simmons et al., 1989; Trenberth and Stepaniak, 2002).

2.2 Radiative heating and cooling rates

The Harshvardhan et al. (1987) radiation schemes used in the operational NOGAPS

have been replaced by the NASA CLIRAD (climate radiation) shortwave (SW) and10

longwave (LW) radiation parameterizations of Chou and Suarez (1999) and Chou et

al. (2001), respectively, which both extend through the stratosphere to ∼0.01 hPa. LW

cooling rates are also computed using the scheme of Fomichev et al. (1998) to account

for the effects of non-local thermodynamic equilibrium (non-LTE) on infrared (IR) CO2

emissions at higher altitudes. The final LW cooling rate profile blends CLIRAD cool-15

ing rates at lower altitudes with Fomichev et al. (1998) rates at high altitudes using a

ramped linear weighting centered at ∼75 km altitude (see Eckermann et al., 2008
2

for

details). CLIRAD also includes a heating rate contribution from near-IR CO2 absorp-

tion that becomes unrealistically large in this scheme near 0.01 hPa (see Eckermann et

al., 2007). These rates are overestimated at high altitudes due to omission of non-LTE20

effects, and thus this band’s contribution is deactivated in the experiments reported

1
Eckermann, S. D.: Hybrid σ-p coordinate choices for a global model, Mon. Weather Rev.,

submitted, 2008.
2
Eckermann, S. D., Hoppel, K. W., Coy, L., McCormack, J. P., Siskind, D. E., Nielsen, K.,

Kochenash, A., Stevens, M. H., Englert, C. R., and Gervig, M.: High-altitude data assimilation

system experiments for the northern summer mesosphere season of 2007, J. Atmos. Sol.-Terr.

Phys., submitted, 2008.
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here. We are currently testing the non-LTE near-IR CO2 heating rate parameterization

of Fomichev et al. (2004) in NOGAPS-ALPHA as a potential replacement for CLIRAD

near-IR heating rates at high altitudes.

These radiation schemes use the model’s specific humidity fields from the surface

to 200 hPa: above this level specific humidities are specified using the zonal-mean ob-5

servational climatology described in Eckermann et al. (2007). Ozone mixing ratios in

the radiation calculation here use the zonal-mean observational climatology described

by Eckermann et al. (2007), which uses only daytime ozone values at altitudes above

0.3 hPa where ozone varies diurnally. The radiation schemes can also use the model’s

three-dimensional prognostic ozone fields, but that option is not used in the experi-10

ments reported here.

To reduce the computational burden, the radiative heating and cooling rates are

updated in the model every two hours, and the longwave cooling rates can be computed

on a reduced horizontal grid then re-interpolated back onto the model grid, though the

latter option was not used here.15

2.3 Middle Atmospheric Gravity Wave Drag

We parameterize nonorographic gravity wave drag (GWD) here using the Whole Atmo-

sphere Community Climate Model (WACCM) scheme, described in Appendix A of Gar-

cia et al. (2007). As implemented here, we apply only the gravity wave momentum flux

divergence tendencies to the model. GWD-induced vertical diffusivities, while calcu-20

lated, are not at present used to mix momentum, heat and constituents. Benchmarking

and optimal tuning of this scheme in NOGAPS-ALPHA is underway through a series

of multi-year forecast and climate simulations which will be reported elsewhere (see,

e.g., Eckermann et al., 2008
2
). Here, we choose parameter values similar to those

currently used in WACCM. In every grid box we launch at 500 hPa 65 gravity waves25

whose momentum fluxes have a Gaussian distribution as a function of intrinsic phase

speed, centered at zero with of width of 30 m s
−1

. The 65 waves sample this spectrum

evenly between intrinsic phase speed limits of ±80 m s
−1

, with all waves coaligned with
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the source-level wind direction. We use the same latitudinal and seasonal variation of

the source spectrum as in Garcia et al. (2007) with a background stress τ
q

b
=0.007 Pa.

To yield a realistic polar summer mesopause temperature in the model, we reduced

the gravity wave drag efficiency e from its nominal WACCM value of 0.125 to 0.050.

While available, we do not use the WACCM orographic gravity wave drag parameter-5

ization. Instead, we use the Palmer et al. (1986) scheme which has been found to

capture the interannual variations of the Arctic winter stratopause temperatures during

2006 in previous NOGAPS-ALPHA runs (Siskind et al., 2007). Section 4.3 further de-

scribes the effectiveness of the GWD scheme in maintaining the observed zonal mean

temperatures.10

3 Assimilation setup

3.1 NAVDAS

The NRL Atmospheric Variational Data Assimilation System (NAVDAS) is a three-

dimensional variational (3DVAR) data assimilation system (Daley and Barker, 2001),

designed for use with both global and mesoscale NWP models. NAVDAS became15

operational for NOGAPS in October 2003. NAVDAS solves the 3DVAR equation in

observation space, i.e.:

xa − xb = PbHT
{

HPbHT
+ R

}

[

y − H (xb)
]

(1)

where xa is the analysis vector, xb is the background vector, Pb is the background er-

ror covariance, y is the observation vector, R is the observation error covariance, and20

the superscript T denotes transpose. In general, the application of the observation or

forward operator H represents any necessary spatial and temporal interpolations from

the forecast model background to the observation location and time. If the observed

quantity is not directly related to the model state variables, then H also represents the

transformation from the forecast values to the observed quantity. The matrix H is the25
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Jacobian matrix corresponding to the forward operator H(xb) linearized about the back-

ground state vector. The analysis vector consists of the gridded fields of temperature,

winds, geopotential height, and pseudo-relative humidity (e.g. Dee and Silva, 2003).

For the applications discussed in this paper, the analyses are computed using a 6-h

update cycle, and xb is the 6-h forecast from the previous update cycle. However, the5

innovations, y-H (xb), are calculated using the 3-, 6- and 9-h NWP forecasts interpo-

lated to the observation location and time (linear in time; bicubic in horizontal space;

log pressure in the vertical). This makes NAVDAS a low-time resolution 3DVAR-FGAT

(first guess at appropriate time) algorithm. The innovations (also called the observation

minus forecast, or O-F) represent the deviation of the forecast from the observations,10

in observation space. The quantity xa–xb is the correction vector in model grid space.

The solution to Eq. (1) is calculated in observation space, using the following 3 steps.

First, we calculate the observation space matrix and innovation vector:

A = HPbHT
+ R ; d = y − H (xb) (2)

Next, we solve the linear system:15

Az = d (3)

Last, we perform the post-multiplication:

xa − xb = PbHT z (4)

The background covariance, Pb, is formulated as a separable product of vertical and

horizontal functions. The background variances are static, and specified as a func-20

tion of latitude and pressure. A second-order autoregressive (SOAR) function is used

to represent spatial correlations in the vertical and horizontal, with correlation lengths

that vary as a function of variable and pressure level. Options are built into NAVDAS for

non-separable formulations, but these have not been explored for this work. The multi-

variate correlations are derived from hydrostatic and geostrophic balance constraints,25

following the formalism of Daley (1991) and Daley and Barker (2001). The strength
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of the temperature-wind geostrophic coupling is given by the factor 0.9*sin(|ϕ|) for lati-

tudes |ϕ|>30
◦
. The coupling factor decreases rapidly to zero equatorward of 30

◦
. The

background error covariances control how the information is spread from the observa-

tion to the surrounding grid points, and to other variables (e.g., wind observations will

produce height increments away from the equator).5

The research version of NAVDAS used in this study has an extended vertical range

with a data top at 0.01 hPa. Satellite observations that are currently assimilated op-

erationally include AMSU-A, surface winds and total precipitable water from polar or-

biting microwave imagers, atmospheric motion vectors from polar and geostationary

satellites, and surface winds from scatterometers. A complete list of assimilated ob-10

servation types, and typical data counts may be found in Baker et al. (2007). AMSU-A

radiances have been assimilated operationally with NAVDAS since 2004 (Baker et al.,

2005). For this study, AMSU-A channel 10, which has a weighting function that peaks

around 50 hPa, is the highest AMSU-A channel that is used. Higher-peaking chan-

nels 11–14 are not used, due to the tendency of the current operational radiance bias15

correction scheme (Campbell et al., 2005) to reinforce the model bias at these levels.

3.2 MLS data

The Microwave Limb Sounder (MLS) was launched aboard the Aura satellite in July

2004 (Waters et al., 2006). It retrieves atmospheric temperature using limb observa-

tions of the 118-GHz O2 and the 234-GHz O
18

O spectral lines. Here retrieval version20

2.2 (v2.2) temperatures between 32–0.01 hPa are assimilated into NOGAPS-ALPHA.

The precision of the temperature measurement is 1 K or better at altitudes below

0.316 hPa, but degrades to ∼2.2 K at 0.01 hPa (Schwartz et al., 2008). Schwartz et

al. (2008) presented comparisons of MLS v2.2 temperatures with correlative data sets.

They showed that while the bias in the stratosphere was generally less than 2 K when25

compared to other observations, at some levels there were persistent MLS tempera-

ture biases with ∼3 K peak-to-peak vertical structure. In the mesosphere MLS v2.2

temperatures are ∼0–7 K colder than most other measurements.
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The horizontal resolution of the MLS temperature measurements in the stratosphere

is about ∼180 km along track and ∼12 km cross-track. Because here the forecast

model is being run at a lower resolution (T79) than either the MLS and SABER data

resolution, the analysis does not account for the specific limb sampling geometry.

The vertical resolution of the temperature retrievals, expressed as the full-width half-5

maximum (FWHM) of the averaging kernel is ∼3.5 km at 31.6 hPa, and degrades at

altitudes above 20 hPa to ∼6.2 km at 3.16 hPa and ∼14 km at 0.01 hPa. In principal,

the assimilation algorithm should incorporate the retrieval’s height-dependent vertical

averaging kernel in the observation operator (H in Eq. 1). For MLS temperatures, this

is problematic near the top of the analysis domain (0.01 hPa) because the observation10

temperature is sensitive to temperatures above the top. Thus, for simplicity, in this work

NAVDAS uses a Gaussian vertical averaging kernel for MLS with a FWHM of ∼4 km

at all altitudes. This analysis averaging kernel is smaller than the true MLS averaging

kernel in the upper stratosphere and mesosphere, and is a possible source of error at

altitudes above ∼0.1 hPa.15

3.3 SABER data

SABER is a 10 channel broadband, limb-viewing, infrared radiometer which has been

measuring stratospheric and mesospheric temperatures since the launch of the Ther-

mosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite in De-

cember 2001. Stratospheric temperature is obtained from the 15µm radiation of CO2.20

This emission is in local thermodynamic equilibrium (LTE) in the stratosphere and

lower mesosphere and has been extensively discussed and validated by Remsberg

et al. (2003). In the middle to upper mesosphere and lower thermosphere (MLT), non-

LTE conditions prevail. Initial results from a non-LTE temperature retrieval have been

presented by Mertens et al. (2004). Here we use retrievals with the non-LTE effects in-25

cluded (Version 1.06 in the SABER database) over the pressure range of 32-0.019 hPa.

Remsberg et al. (2003) estimated the precision by calculating the zonal standard devia-

tion at 50
◦
S during the summertime when geophysical variability is low. The estimated
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precision was ∼1 K at 32 hPa, and monotonically increases to ∼4 K at 0.01 hPa. The

SABER v1.06 temperatures are known to have a cold bias of ∼5 K in the cold polar

summer mesopause region (Kutepov et al., 2006), a problem that has been corrected

in the most recent retrieval version (Mlynczak et al., 2007). This bias is not corrected

for in the analysis, and thus ordinarily would lead to analysis errors near 0.01 hP in the5

southern polar region for this assimilation experiment. However, SABER views to the

side of the spacecraft and during January–February 2006 was preferentially viewing

high northern (winter) latitudes only, with data in the summer hemisphere extending

only to ∼52
◦
S. The SABER retrieval vertical resolution is ∼2 km and the along-track

profile spacing is ∼3
◦
. The forecast model vertical resolution in the stratosphere and10

mesosphere is also ∼2 km. Therefore the analysis observation operator, H, for the

SABER observations uses vertical interpolation with no extra smoothing.

3.4 Assimilation of MLS and SABER data

NOGAPS-ALPHA assimilates MLS and SABER temperatures between 32 and

0.01 hPa. Figure 2 illustrates the MLS and SABER measurement locations during one15

particular 6-h analysis update. It also shows the correction field, and illustrates the

background horizontal correlation length (385 km) used for the assimilation of MLS and

SABER data. At altitudes above 0.01 hPa, the upper-level correction fields are damped

over a height range of ∼6 km before reverting to the free-running forecast model fields

up to 0.0005 hPa. Although no measurements are assimilated above 0.01 hPa, we20

find that the model layers between 0.005 hPa and 0.0005 hPa are still important for

capturing the effects of gravity wave breaking on the mesospheric and stratospheric

circulations.

Global mean systematic biases between MLS and SABER temperatures have been

removed to prevent the introduction of spurious temperature structures in the analysis.25

The relative bias between SABER and MLS temperatures was estimated from the glob-

ally averaged innovation (O-F) statistics. The difference between the average SABER

and MLS innovation, shown in Fig. 3a, was used to modify the SABER data prior to
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assimilation. This bias estimate is similar to the SABER-MLS differences reported in

the MLS temperature validation study of Schwartz et al. (2008). Figure 3b shows the

global average O-F for the analysis performed with the bias-corrected SABER data.

The MLS and SABER average innovations differ by less than ∼1 K, which suggests

that most of the relative bias between the instruments has been successfully removed5

using this simple procedure.

4 Results

4.1 Analysis of the 2006 stratospheric sudden warming

The analysis period of January–February 2006 encompasses a well-documented

stratospheric sudden warming (Manney et al., 2008; Hoffmann et al., 2007; Siskind10

et al., 2007; Coy et al., 2008
3
). The Northern Hemisphere winter of 2006 was dis-

turbed by a major stratospheric sudden warming (SSW) on 20 January 2006 (Coy et

al., 2008
3
). After the major SSW the lower stratosphere remained warm until the end

of February, while during the same time the polar stratopause reformed at an unusually

high altitude (Siskind et al., 2007; Manney et al., 2008). Figure 4 compares the Jan–15

Feb daily polar temperature from NOGAPS-ALPHA with the SABER observations. The

analysis captures the descent of warm air after the major SSW, the disappearance of

the stratopause in late January, and the high-altitude reformation of the stratopause in

early February. There are small differences between the NOGAPS-ALPHA and SABER

temperatures because the analysis provides a synoptic polar value, while the SABER20

estimate is from a limited range of longitudes and local times poleward of 80
◦
N. The

high stratopause formation on 1 February seen in SABER occurs near the top of the

assimilated observations at 0.005 hPa and is lower and cooler in the analysis. Man-

ney et al. (2008) noted the difficulty of reproducing this high-altitude stratopause in

3
Coy, L., Eckermann, S. D., and Hoppel, K. W.: Planetary wave breaking and tropospheric

forcing as seen in the stratospheric sudden warming of 2006, J. Atmos. Sci., submitted, 2008.
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the version 5 Goddard Earth Observing System (GEOS-5) and European Centre for

Medium-Range Weather Forecasts (ECMWF) analyses, presumably because of the

lower model top (0.01 hPa and 0.1 hPa, respectively) and the absence of mesospheric

temperature data in these analyses.

The major SSW resulted from the rapid advection of tropical, low potential vorticity5

(PV) air, over the pole near 10 hPa (Coy et al., 2008
3
). As this low PV air was trans-

ported over the pole, conservation of PV induced an anti-cyclonic circulation along with

an associated high pressure system. The development of this high pressure system

can be seen in the NOGAPS-ALPHA 10 hPa geopotential height fields (Fig. 5). The

breaking wave that initiated the poleward intrusion of tropical air occurs at 10 hPa near10

the Greenwich Meridian on 18 January 2006, although the developing high is too small

to be seen at this time (Fig. 5a), and only the quasi-stationary Aleutian high is apparent.

By 20 January 2006 (Fig. 5b) the developing anti-cyclone (near 60 N, 80 E) is already

stronger than the weakening Aleutian high. The 10 hPa geopotential height of the de-

veloping anti-cyclone continues to increase to over 40.2 km on 22 January as it moves15

closer to the pole (Fig. 5c), and peaks at over 40.4 km on 24 January (Fig. 5d). The

Aleutian High is now gone, having “merged” with (i.e., wrapped around) the developing

high, similar to the merging Aleutian and developing highs that occurred in the January

1992 minor warming (see O’Neill et al., 1994). While the high is developing, the low of

the polar vortex fills in as the vortex weakens as can be seen by the shrinking of the20

purple area over time in Fig. 5. Thus the NOGAPS-ALPHA assimilation realistically

captures the dynamical evolution of the major SSW.

A key test of the analysis is the quality of meteorological quantities other than the

temperature, which is directly constrained by the assimilation. Figure 6 shows some

zonally averaged diagnostics before (Fig. 6a) and after (Fig. 6b) the major SSW, in-25

cluding zonal winds, Eliassen-Palm (EP) flux vectors (a measure of planetary wave

activity and propagation) and velocity vectors of the residual mean meridional circu-

lation. Before the SSW the Northern Hemisphere planetary waves are strong, (as

evidenced by the large upward and equatorward EP flux vectors in Fig. 6a) and the
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Northern Hemisphere zonal-mean zonal winds are weak. After the SSW, the plane-

tary waves are weak and the zonal winds are strong in the winter mesosphere. In the

winter stratosphere the zonal winds remain weak with a prominent zero-wind line near

60
◦
N in the lower stratosphere. This zero-wind line blocks the vertical propagation of

planetary waves near 60
◦
N after the SSW. The temperatures after the SSW show the5

elevated polar stratopause (near 0.02 hPa), with cold air at 1 hPa, the typical winter

polar stratopause height (as in Fig. 6a).

The residual mean meridional circulation (red arrows in Fig. 6) shows strong pole-

ward and downward motion north of 60
◦
N at 1 hPa before the SSW, forced mainly by

the EP flux divergence of the planetary scale waves. After the SSW, the poleward and10

downward motion north of 60
◦
N is located at higher altitudes, at and above 0.1 hPa,

forced mainly by the gravity wave drag parameterization acting in the upper part of the

westerly jet where the zonal winds are decreasing with altitude. Note that, after the

SSW, the meridional circulation in the mesosphere is strong into the zonal wind west-

erly jet, and weak north of the mesospheric jet. The unusual mesospheric jet seen15

in February 2006 has been noted by Manney et al. (2008) and Siskind et al. (2007).

The ability of NOGAPS-ALPHA to produce realistic winds and derived secondary cir-

culations and planetary wave diagnostics in the mesosphere will enable detailed future

studies of this highly dynamic region.

4.2 O-F statistics20

There are currently few stratospheric and mesospheric temperature measurements

that can be used as an independent validation of the analysis. We therefore char-

acterize the quality of an assimilation by examining the observation minus forecast

(O-F) statistics generated by the analysis. As described in Sect. 3.1, each O-F value

is calculated for a forecast time of 3 to 9 h during an update cycle. For each 6-h25

update cycle, O-F statistics (mean, standard deviation, correlation coefficient) were

calculated for several latitude bins. The statistics were then averaged over all up-

date cycles during the analysis period. Figure 7(a–c) shows the mean O-F for three
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latitude bins representing mid-latitude summer, equatorial, and mid-latitude winter re-

gions. Although a globally-averaged SABER-MLS bias correction has been applied, a

small residual latitudinally-varying bias is evident in the differences between the mean

SABER and MLS O-F profiles. The largest mean O-F differences occur near the equa-

torial stratopause and near the summer mid-latitude mesopause. The structure of the5

O-F bias in the tropics indicates that the observed stratopause is slightly warmer and

occurs at a slightly higher altitude than the forecast stratopause. There is some indi-

cation in MLS temperature comparisons with other instruments that a MLS warm bias

exists near 1 hPa (Schwartz et al., 2008).

The standard deviation of the temperature O-F, shown in Fig. 7d–f, increases almost10

monotonically with altitude from ∼1–2 K at 10 hPa to ∼6 K at 0.01 hPa for all three lati-

tude bins. Some of this increase in standard deviation may be attributable to degrada-

tion in the MLS precision in the mesosphere. This MLS O-F standard deviation profile

corresponds to approximately twice the estimated MLS precision (Table 2 of Schwartz

et al., 2008). The standard deviation profiles for SABER and MLS are very similar to15

the standard deviation profiles for the coincident SABER-MLS measurements in the

validation study of Schwartz et al. (2008). The coincidence criteria used in that study

were <220 km and <3 h. This suggests that the O-F standard deviation is a combi-

nation of random observation error and geophysical variability over short temporal and

spatial scales that is not captured by the forecast. Assimilation in the mesosphere is ex-20

pected to be more difficult because of increased dynamical variance at small temporal

and spatial scales. One potential difficulty is that the NAVDAS multivariate correlation

scheme assumes a purely rotational wind with strong geostrophic coupling at high lat-

itudes. Koshyk et al. (1999) have shown that in the mesosphere, the forecast model’s

kinetic energy at horizontal wave numbers > ∼50 (which includes the spatial scale of25

the MLS and SABER temperature corrections) is dominated by divergent rather than

rotational motions (i.e., gravity waves). While some of this small-scale divergent mo-

tion can be resolved in MLS and SABER temperatures, most of it is unresolved (e.g.,

Preusse et al., 2006; Wu and Eckermann, 2008), potentially explaining some of this
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increase in O-F standard deviation with height. Further study is needed to determine if

the use of unbalanced wind and temperature corrections in the mesosphere or higher

resolution mesospheric satellite data (e.g., Alexander et al., 2008) can reduce these

O-F standard deviations.

The dotted lines shown with the O-F standard deviations in Fig. 7 are the standard5

deviation of just the observations (O) that were used for the O-F calculation. The O

standard deviation includes contributions from geophysical variations (zonal and merid-

ional) within the latitude bin and measurement error. If the observation noise is small

and the model forecast accurate, we would expect the O-F standard deviation to be

smaller than the O standard deviation, because the model should capture some of the10

true geophysical variability represented in the observations. This is the case for the

mid-latitude winter, where the O standard deviation is much larger than that of O-F. In

the summer mid-latitudes the O-F standard deviation is somewhat smaller than the O

standard deviation, while in the equatorial latitudes the O-F and O standard deviations

are similar. Another measure of the quality of the forecast is provided by the correlation15

coefficient between the observations and forecast, which is shown in Fig. 7g–i. In the

mid-latitude winter hemisphere the correlation coefficient ranges from ∼1 in the lower

stratosphere to ∼0.8 in the mesosphere. In the summer mid-latitudes the correlation

coefficient is ∼0.6–0.8 between 30 and 0.1 hPa, while in the tropics the correlation is

∼0.4–0.6 throughout most of the pressure range. The low correlation in the tropics may20

reflect both the smaller geophysical variability in this region and absence of stringent

balance relations which can be used to constrain winds based on measurements of

temperature only.

4.3 Medium range forecast skill

Comparing medium range forecasts with the analysis has proven to be a useful tool for25

refining and evaluating the forecast model. Ten day forecasts were found to be suffi-

cient for identifying temperature tendencies and the impact of changing model param-

eters such as those in the nonorographic GWD scheme (see Eckermann et al., 2008
2
.
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For the forecast model configuration used in these experiments, the average zonal-

mean temperature bias that develops over 10-day forecasts during January–February

2007 is shown in Fig. 8. Twelve 10 day T79L68 forecasts were initialized from analy-

sis (using MLS and SABER data) and then compared to the zonal-mean temperatures

calculated directly from the MLS measurements. The regions with the largest temper-5

ature differences are near and just above the stratopause, especially near the sum-

mer mesopause and at the equatorial stratopause. The difference near the equatorial

stratopause was already apparent in the mean O-F (Fig. 6) and may be due in part to

a warm bias in the MLS temperatures in this region. Elsewhere the bias after 10 days

is less than 5 K. While Fig. 8 suggests that the medium range forecasts produces rea-10

sonable zonal-mean temperatures, such forecasts in the mesosphere are expected

to be difficult due to the short spatial and temporal correlation scales. Shepherd et

al. (2000) showed that on the 1000 K potential temperature surface (∼35 km altitude)

the correlation time for Eulerian horizontal velocity shear is ∼2 days whereas at 4000 K

(∼70 km), the correlation time drops to ∼3 h. This dramatic change with altitude reflects15

the dominance of gravity-wave motion in the mesosphere (Shepherd, 2007).

To examine medium range forecast skill in more detail, we calculated forecast errors

by comparing the forecasts with the analyses (F-A). Absent any better estimate of the

analysis errors, we use the SH O-F standard deviation of Fig. 7d as the estimated

random error of the analysis in the stratosphere and mesosphere. Figure 9 shows the20

F-A mean and standard deviations as a function of the forecast length. Comparisons

are shown for 30–70
◦

latitude for the NH (winter) and SH (summer). The white line

denotes the forecast day at which the F-A error exceeds the estimated analysis error.

Forecast errors less than the analysis error are not meaningful since the analysis is

being used as the truth.25

In the SH summer, both the standard deviation and the mean error increase rapidly

at altitudes above 0.1 hPa. Between 100-.1 hPa, the 10-day F-A standard deviation

has not increased much above the analysis error, and is similar in magnitude to the

zonal standard deviation of just the analysis (not shown). Because there is very little
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geophysical variability, experiments (not shown) indicate that a forecast based only on

persistence yields similar results in the summer at altitudes above ∼10 hPa. In the

NH winter the forecast error exceeds the estimated analysis error after ∼1 day in the

mesosphere and ∼3 days in the lower stratosphere.

Because the mesosphere is strongly forced by waves propagating from below, the5

importance of the mesospheric initial conditions to forecast skill may be less than that

at lower altitudes. To examine this further, we ran the same set of 10-day forecasts us-

ing a zonal mean climatology above 10 hPa for the initial conditions. Between 10 and

1 hPa, the current analysis was transitioned linearly (in log pressure) to the COSPAR

International Reference Atmosphere (CIRA) temperature climatology and the UARS10

reference atmosphere project (URAP) zonal wind climatology. Figure 10 shows a com-

parison of forecast RMS error between the two cases. In the SH summer mid-high

latitudes, there is no significant difference in forecast RMS error between the two ini-

tializations after about 2 days. The equatorial regions show little difference in forecast

RMS error after about 4 days between the two different initializations. The only excep-15

tion is a small, persistent improvement near 3 hPa for the forecasts initialized from the

analysis. By contrast, in the NH winter mid-high latitudes, using the analysis instead of

a climatology for the initial conditions leads to smaller RMS error for the entire 10-day

forecast between ∼10 and 0.01 hPa.

5 Discussion and conclusions20

For the first time we have assimilated high-altitude temperature measurements from

MLS and SABER into NOGAPS-ALPHA, and studied the properties of the resulting

analyses and forecasts for the period January–February 2006. The resulting high-

altitude temperature analyses for January–February 2006 were minimally biased at

most heights and latitudes. Furthermore, indirect fields such as zonal winds and highly-25

derived diagnostic quantities such as EP flux and residual velocity vectors yielded phys-

ically sensible results throughout the mesosphere up to ∼0.01 hPa. These fields were
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all useful for understanding the deep circulation, temperature and eddy-flux anomalies

that developed in the winter hemisphere during this period. The high-altitude analy-

ses also provided initial conditions that reduced RMS forecast errors in medium range

forecasts of the winter upper stratosphere and mesosphere.

In the winter hemisphere, the correlation coefficient between the observations and5

background (6–9 h) forecasts (O*F) is high (∼0.8–1.0) from the lower stratosphere to

the upper mesosphere. Thus these short 6–9 h background forecasts capture much

of the geophysical variance in the MLS and SABER observations. However, the O*F

correlation is lower (0.4–0.6) over the same pressure range in the tropics and in the

summer hemisphere, where the zonal temperature variance is smaller. The O-F stan-10

dard deviation increases monotonically with altitude at all latitudes. This increase in

the O-F RMS error with altitude is likely due to the progressively greater concentration

of dynamical variability at small spatial and temporal scales and larger divergent wind

component at high altitudes. The smaller temporal scales are underresolved by the 6-h

3DVAR analysis and the smaller spatial scales are underresolved by MLS and SABER15

relative to the forecast model.

The temperature measurements have been assimilated here using a coarse time

resolution 3DVAR algorithm. A recent study by Sankey et al. (2007) examined the im-

pact of the update method on the wave energy in the stratosphere and mesosphere.

They found that the unfiltered update method used here produced significant excess20

gravity wave energy in the mesosphere due to the propagation of unrealistic model-

resolved gravity waves resulting from the data assimilation process at altitudes below

1 hPa. This problem may be further exacerbated here by the use of stratospheric and

mesospheric limb measurements which have sparser spatial sampling than most nadir

sounders. We plan to investigate the use of both nonlinear normal-mode initialization25

of analysis increments (Errico et al., 1998; Ballish et al., 1992) and other incremental

analysis update methods (Bloom et al., 1996) which produce analysis fields that gen-

erate less spurious gravity wave energy in the forecasts. We are also exploring the

use of NAVDAS-AR (accelerated representer), a 4DVAR assimilation algorithm that is
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currently being tested for operational use (Rosmond and Xu, 2006).
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Fig. 1. The approximate vertical range of temperature measurements for the indicated satellite

instruments. Also shown are the forecast model tops the L30 operational NOGAPS and the L68

NOGAPS-ALPHA used in this study, and the highest level used for assimilating observations

in this study (dotted line). The CMAM (Sankey et al., 2007) has also been used to study the

impact of data assimilation on the mesosphere, but with AMSU-A observations extending only

to ∼1 hPa.
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Fig. 2. Example of the MLS(squares) and SABER(crosses) measurement locations during a

6-h assimilation cycle on 5 February 2006 at 00:00 UTC. The color shading shows the analysis-

forecast (A-F) temperature correction (K) at 0.04 hPa.
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Fig. 3. (a) The SABER (v1.06)-MLS (v2.2) global temperature bias estimate. (b) The global

average O-F for MLS and SABER for the Jan–Feb 2006 analysis. The bias profile (a) was

subtracted from the SABER temperatures prior to assimilation summarized in (b).
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Fig. 4. Northern polar temperature (K) as a function of time and pressure for (a) SABER and (b)

NOGAPS-ALPHA analysis. The contour interval is 10 K. Contours less than 210 K are shaded

blue/purple. Contours greater than 230 K are shaded green/orange/red. The SABER profiles

at and poleward of 80
◦
N are averaged over a day. The NOGAPS-ALPHA north pole tempera-

tures are plotted at 12:00 UTC only. For clarity, a 3 point box smoothing was performed both

vertically and in time on the NOGAPS-ALPHA temperatures. NOGAPS-ALPHA temperatures

were derived diagnostically from the geopotential height analyses using standard hydrostatic

formulas.
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Fig. 5. Analyzed NOGAPS-ALPHA geopotential heights (km) at 10 hPa on 18–24 January

2006 at 12:00 UTC. Panels (a) through (d) show the fields at 2-day intervals. The Lambert

equal area projections are centered on the North Pole and extend to the equator. Zero degrees

longitude is at the bottom. The contour interval is 0.2 km. Heights less than 30.4 km have

blue/purple shading and heights greater than 30.6 km have yellow/green/light-blue shading and

black contours.
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Fig. 6. Zonally averaged diagnostics from NOGAPS-ALPHA analyses for (a) 1–10 January

2006 and (b) 10–20 February 2006. Shown are: temperature (K), 10 K contour intervals, white

contours, with temperature greater than 230 K shaded green/orange/red and temperature less

than 170 K shaded blue; zonal wind (m s
−1

), 10 m s
−1

contour intervals, black contours, with the

heavy black curve showing the zero value; vertical component of the EP flux (x10
−3

Kg m
3

s
−2

),

blue contours, contour intervals of 100, 300, 500, yellow shaded; EP flux, blue vectors, maxi-

mum vertical component 2×10
5

kg m
3

s
−2

, maximum horizontal component 150×10
5

Kg m
3

s
−2

;

residual circulation velocities, red vectors, maximum vertical component 0.025 m s
−1

maximum

horizontal component 9 m s
−1

.
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Fig. 7. O-F statistics for the January–February 2006 analysis period: black=MLS, red=SABER

in three latitude bands of 50
◦
–70

◦
S (left), ±10

◦
(center) and 50

◦
–70

◦
N (right), (a–c): Global

average O-F; (d–f) O-F standard deviation; (g–i) Correlation coefficient between observations

and forecast. Dotted curves in (d–f) plot corresponding O standard deviations only.
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Fig. 8. Comparison of the zonal-mean temperature fields from 10-day forecasts and from

the MLS measurements. Twelve 10-day forecasts were averaged during January–February

2006. Each forecast was initialized from the analysis. The MLS zonal-mean temperature was

calculated using the all MLS measurements within ±1 day of the forecast time.
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Fig. 9. Forecast mean error and error standard deviation relative to the analysis at 30
◦
–70

◦
S

(top row) and 30
◦
–70

◦
N (bottom row). Results are an average of 12 10-day forecasts. White

line marks the forecast day at which the error standard deviation increases above the estimated

accuracy of the assimilation (based on MLS and SABER O-F statistics above 30 hPa, see text

for details).
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Fig. 10. Forecast root-mean-square-error (RMSE) averaged over 12 independent forecasts

during the analysis period after +2 days (left panel) and +10 days (right panel). The solid

lines are forecasts that were initialized from the analysis. The dotted lines are corresponding

forecasts that were initialized from the analysis at altitudes below 10 hPa, and initialized from

a zonal mean climatology above (see text for details). Colors denote results within the latitude

band indicated in the bottom-right of each panel.
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