
HAL Id: hal-00304125
https://hal.science/hal-00304125v1

Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing general belief function framework with a
practical codification for low complexity

Arnaud Martin

To cite this version:
Arnaud Martin. Implementing general belief function framework with a practical codification for
low complexity. Florentin Smarandache & Jean Dezert. Advances and Applications of DSmT for
Information Fusion, American Research Press Rehoboth, pp.Pnd, 2008. �hal-00304125�

https://hal.science/hal-00304125v1
https://hal.archives-ouvertes.fr


Implementing general belief function framework

with a practical codification for low complexity

Arnaud Martin ∗

ENSIETA E3I2-EA3876

Arnaud.Martin@ensieta.fr

July 22, 2008

Abstract

In this chapter, we propose a new practical codification of the elements

of the Venn diagram in order to easily manipulate the focal elements. In

order to reduce the complexity, the eventual constraints must be inte-

grated in the codification at the beginning. Hence, we only consider a

reduced hyper power set D
Θ
r

that can be 2Θ or D
Θ. We describe all

the steps of a general belief function framework. The step of decision is

particularly studied, indeed, when we can decide on intersections of the

singletons of the discernment space no actual decision functions are easily

to use. Hence, two approaches are proposed, an extension of previous

one and an approach based on the specificity of the elements on which to

decide.

The principal goal of this chapter is to provide practical codes of a

general belief function framework for the researchers and users needing

the belief function theory.

Keywords: DSmT, practical codification, DSmT decision,

low complexity.

1 Introduction

Today the belief function theory initiated by [6, 26] is recognized to propose
one of the more complete theory for human reasoning under uncertainty, and
have been applied in many kinds of applications [32]. This theory is based on
the use of functions defined on the power set 2Θ (the set of all the subsets
of Θ), where Θ is the set of considered elements (called discernment space),
whereas the probabilities are defined only on Θ. A mass function or basic belief
assignment, m is defined by the mapping of the power set 2Θ onto [0, 1] with:

∑

X∈2Θ

m(X) = 1. (1)

∗This work was carried out while the author was visiting DRDC (Defense Research and
Development Canada) at Valcatier, Québec, Canada, and is partially supported by the DGA
(Délégation générale pour l’Armement) and by BMO (Brest Métropole Océane).

1



One element X of 2Θ, such as m(X) > 0, is called focal element. The set of
focal elements for m is noted Fm. A mass function where Θ is a focal element,
is called a non-dogmatic mass functions.

One of the main goal of this theory is the combination of information given
by many experts. When this information can be written as a mass function,
many combination rules can be used [23]. The first combination rule proposed
by Dempster and Shafer is the normalized conjunctive combination rule given
for two basic belief assignments m1 and m2 and for all X ∈ 2Θ, X 6= ∅ by:

mDS(X) =
1

1− k

∑

A∩B=X

m1(A)m2(B), (2)

where k =
∑

A∩B=∅

m1(A)m2(B) is the inconsistence of the combination.

However the high computational complexity, especially compared to the
probability theory, remains a problem for more industrial uses. Of course, higher
the cardinality of Θ is, higher the complexity becomes [38]. The combination
rule of Dempster and Shafer is #P -complete [25]. Moreover, when combining
with this combination rule, non-dogmatic mass functions, the number of focal
elements can not decrease.

Hence, we can distinguish two kinds of approaches to reduce the complexity
of the belief function framework. First we can try to find optimal algorithms in
order to code the belief functions and the combination rules based on Möbius
transform [18, 33] or based on local computations [28] or to adapt the algorithms
to particulars mass functions [27, 3]. Second we can try to reduce the number
of focal elements by approximating the mass functions [37, 36, 4, 9, 16, 17], that
could be particularly important for dynamic fusion.

In practical applications the mass functions contain at first only few focal
elements [7, 1]. Hence it seems interesting to only work with the focal elements
and not with the entire space 2Θ. That is not the case in all general developed
algorithms [18, 33].

Now if we consider the extension of the belief function theory proposed by
[10], the mass function are defined on the extension of the power set into the
hyper power set DΘ (that is the set of all the disjunctions and conjunctions
of the elements of Θ). This extension can be seen as a generalization of the
classical approach (and it is also called DSmT for Dezert and Smarandache
Theory [29, 30]). This extension is justified in some applications such as in
[20, 21]. Try to generate DΘ is not easy and becomes untractable for more than
6 elements in Θ [11].

In [12], a first proposition have been proposed to order elements of hyper
power set for matrix calculus such as [18, 33] made in 2Θ. But as we said herein,
in real applications it is better to only manipulate the focal elements. Hence,
some authors propose algorithms considering only the focal elements [9, 15, 22].
In the previous volume [30], [15] have proposed Matlab1 codes for DSmT hybrid
rule. These codes are a preliminary work, but first it is really not optimized for
Matlab and second have been developed for a dynamic fusion.

Matlab is certainly not the best program language to reduce the speed of
processing, however most of people using belief functions do it with Matlab.

1Matlab is a trademark of The MathWorks, Inc.

2



In this chapter, we propose a codification of the focal elements based on a
codification of Θ in order to program easily in Matlab a general belief function
framework working for belief functions defined on 2Θ but also on DΘ.

Hence, in the following section we recall a short background of belief function
theory. In section 3 we introduce our practical codification for a general belief
function framework. In this section, we describe all the steps to fuse basic belief
assignments in the order of necessity: the codification of Θ, the addition of the
constraints, the codification of focal elements, the step of combination, the step
of decision, if necessary the generation of a new power set: the reduced hyper
power set DΘ

r and for the display, the decoding. We particularly investigate the
step of the decision for the DSmT. In section 5 we give the major part of the
Matlab codes of this framework.

2 Short background of belief functions theory

In the DSmT, the mass functions m are defined by the mapping of the hyper
power set DΘ onto [0, 1] with:

∑

X∈DΘ

m(X) = 1, (3)

with less terms in the sum than in the equation (3).
In the more general model, we can add constraints on some elements of

DΘ, that means that some elements can never be focal elements. Hence, if we
add the constraints that all the intersections of elements of Θ are impossible
(i.e. empty) we recover 2Θ. So, the constraints given by the application can
drastically reduce the number of possible focal elements and so the complexity
of the framework. On the contrary of the suggestion given by the flowchart on
the cover of the book [29] and the proposed codes in [15], we think that the
constraints must be integrated directly in the codification of the focal elements
of the mass functions as we shown in section 3. Hereunder, the hyper power
set DΘ taking into account the constraints is called the reduced hyper power set
and noted DΘ

r . Hence, DΘ
r can be DΘ, 2Θ, have a cardinality between these

two power sets or inferior to these two power sets. So the normality condition
is given by:

∑

X∈DΘ
r

m(X) = 1. (4)

Once defined the mass functions coming from numerous sources, many com-
bination rules are possible (see [5, 31, 20, 35, 23] for recent reviews of the com-
bination rules). The most of the combination rules are based on the conjunctive
combination rule, given for mass functions defined on 2Θ by:

mc(X) =
∑

Y1∩...∩Ys=X

s
∏

j=1

mj(Yj), (5)

where Yj ∈ 2Θ is the response of the source j, and mj(Yj) the corresponding
basic belief assignment. This rule is commutative, associative, not idempotent,
and the major problem that try to resolve the majority of the rules is the
increasing of the belief on the empty set with the number of sources and the

3



cardinality of Θ [19]. Now, in DΘ without any constraint, there is no empty
set, and the conjunctive rule given by the equation (5) for all X ∈ DΘ with
Yj ∈ DΘ

r can be used. If we have some constraints, we must to transfer the
belief mc(∅) on other elements of the reduced hyper power set. There is no
optimal combination rule, and we cannot achieve this optimality for general
applications.

The last step in a general framework for information fusion system is the
decision step. The decision is also a difficult task because no measures are
able to provide the best decision in all the cases. Generally, we consider the
maximum of one of the three functions: credibility, plausibility, and pignistic
probability. Note that other decision functions have been proposed [13].

In the context of the DSmT the corresponding generalized functions have
been proposed [14, 29]. The generalized credibility Bel is defined by:

Bel(X) =
∑

Y ∈DΘ
r

,Y ⊆X,Y 6≡∅

m(Y ) (6)

The generalized plausibility Pl is defined by:

Pl(X) =
∑

Y ∈DΘ
r

,X∩Y 6≡∅

m(Y ) (7)

The generalized pignistic probability is given for all X ∈ DΘ
r , with X 6= ∅ is

defined by:

GPT(X) =
∑

Y ∈DΘ
r

,Y 6≡∅

CM(X ∩ Y )

CM(Y )
m(Y ), (8)

where CM(X) is the DSm cardinality corresponding to the number of parts of X
in the Venn diagram of the problem [14, 29]. Generally in 2Θ, the maximum of
these functions is taken on the elements in Θ. In this case, with the goal to re-
duce the complexity we only have to calculate these functions on the singletons.
However, first, there exist methods providing decision on 2Θ such as in [2] and
that can be interesting in some application [24], and secondly, the singletons
are not the more precise elements on DΘ

r . Hence, to calculate these functions
on the entire reduced hyper power set could be necessary, but the complexity
could not be inferior to the complexity of DΘ

r and that can be a real problem if
there are few constraints.

3 A general belief function framework

We introduce here a practical codification in order to consider all the previous
remarks to reduce the complexity:

• only manipulate focal elements,

• add constraints on the focal elements before combination, and so work on
DΘ

r ,

• a codification easy for union and intersection operations with programs
such as Matlab.

4



We first give the simple idea of the practical codification for enumerating the
distinct parts of the Venn diagram and so a codification of the discernment space
Θ. Then we explain how simply add the constraints on the distinct elements
of Θ and so the codification of the focal elements. The subsections 3.4 and
3.5 show how to combine and decide with this practical codification, giving a
particular reflexion on the decision in DSmT. The subsection 3.6 presents the
generation of DΘ

r and the subsection 3.7 the decoding.

3.1 A practical codification

The simple idea of the practical codification is based on the affectation of an
integer number in [1; 2n − 1] to each distinct part of the Venn diagram that
contains 2n − 1 distinct parts with n = |Θ|. The figures 1 and 2 illustrate
the codification for respectively Θ = {θ1, θ2, θ3} and Θ = {θ1, θ2, θ3, θ4} with
the code given in section 5. Of course other repartitions of these integers are
possible.

Figure 1: Codification for Θ = {θ1, θ2, θ3}.

Hence, for example the element θ1 is given by the concatenation of 1, 2, 3
and 5 for |Θ| = 3 and by the concatenation of 1, 2, 3, 4, 6, 7, 9 and 12 for
|Θ| = 4. We will note respectively θ1 = [1 2 3 5] and θ1 = [1 2 3 4 6 7 9 12] for
|Θ| = 3 and for |Θ| = 4, with increasing order of the integers. Hence, Θ is given
respectively for |Θ| = 3 and |Θ| = 4 by:

Θ = {[1 2 3 5], [1 2 4 6], [1 3 4 7]}

and

Θ = {[1 2 3 4 6 7 9 12], [1 2 3 5 6 8 10 13], [1 2 4 5 7 8 11 14], [1 3 4 5 9 10 11 15]}.

The number of integers for the codification of one element θi ∈ Θ is given by:

1 +
n−1
∑

i=1

Ci
n−1, (9)

5



Figure 2: Codification for Θ = {θ1, θ2, θ3, θ4}.

with n = |Θ| and Cp
n the number of p-uplets with n numbers. The number 1 will

be still by convention the intersection of all the elements of Θ. The codification
of θ1 ∩ θ3 is given by [1 3] for |Θ| = 3 and [1 2 4 7] for |Θ| = 4. And the
codification of θ1 ∪ θ3 is given by [1 2 3 4 5 7] for |Θ| = 3 and [1 2 3 4 6 7 9 12]
for |Θ| = 4.

In order to reduce the complexity, especially using more hardware language
than Matlab, we could use binary numbers instead of the integer numbers.

The Smarandache’s codification [11], was introduce for the enumeration of
distinct parts of a Venn diagram. If |Θ| = n, < i > denotes the part of θi with
no covering with other θj , i 6= j. < ij > denotes the part of θi ∩ θj with no
covering with other parts of the Venn diagram. So if n = 2, θ1 ∩ θ2 = {< 12 >}
and if n = 3, θ1 ∩ θ2 = {< 12 >, < 123 >}, see the figure 3 for an illustration
for n = 3. The authors note a problem for n ≥ 10, but if we introduce space in
the codification we can conserve integers instead of other symbols and we write
< 1 2 3 > instead of < 123 >.

On the contrary of the Smarandache’s codification, the proposed codification
gives only one integer number to each part of the Venn diagram. This codifica-
tion is more complex for the reader then the Smarandache’s codification. Indeed,
the reader can understand directly the Smarandache’s codification thanks to the
mining of the numbers knowing the n: each disjoint part of the Venn diagram is
seen as an intersection of the elements of Θ. More exactly, this is a part of the
intersections. For example, θ1 ∩ θ2 is given with the Smarandache’s codification
by {< 12 >} if n = 2 and by {< 12 >, < 123 >} if n = 3. With the codification
practical codification the same element has also different codification according
to the number n. For the previous example θ1 ∩ θ2 is given by [1] if n = 2, and
by [1 2] if n = 3.

6



The proposed codification is more practical for computing union and inter-
section operations and the DSm cardinality, because only one integer represent
one of the distinct parts of the Venn diagram. With the Smarandache’s codi-
fication computing union and intersection operations and the DSm cardinality
could be very similar than with the practical codification, but adding a routine
in order to treat the code of one part of the Venn diagram.

Figure 3: Smarandache’s codification for Θ = {θ1, θ2, θ3}.

Hence, we propose to use the proposed codification to compute union, in-
tersection and DSm cardinality, and the Smarandache’s codification, easier to
read, to present the results in order to safe eventually a scan of DΘ

r .

3.2 Adding constraints

With this codification, adding constraints is very simple and can reduce rapidly
the number of integers. E.g. assume that in a given application we know
θ1 ∩ θ3 ≡ ∅ (i.e. θ1 ∩ θ3 /∈ DΘ

r ), that means that the integers [1 3] for |Θ| = 3
and [1 2 4 7] for |Θ| = 4 do not exist Θ. Hence, the codification of Θ with
the reduced discernment space, noted Θr, is given respectively for |Θ| = 3 and
|Θ| = 4 by:

Θr = {[2 5], [2 4 6], [4 7]}

and
Θr = {[3 6 9 12], [3 5 6 8 10 13], [5 8 11 14], [3 5 9 10 11 15]}.

Generally we have |Θ| = |Θr|, but it is not necessary if a constraint gives
θi ≡ ∅, with θi ∈ Θ. This can happen in dynamic fusion, if one element of the
discernment space can disappear.

Thereby, the introduction of the simple constraint θ1 ∩ θ3 ≡ ∅ in Θ, includes
all the other constraints that follow from it such as the intersection of all the
elements of Θ is empty. In [15] all the constraints must be given by the user.

7



3.3 Codification of the focal elements

In DΘ
r , the codification of the focal elements is given from the reduced discern-

ment space Θr. The codification of an union of two elements of Θ is given by the
concatenation of the codification of the two elements using Θr. The codification
of an intersection of two elements of Θ is given by the common numbers of the
codification of the two elements using Θr. In the same way, the codification of
an union of two focal elements is given by the concatenation of the codification
of the two focal elements and the codification of an intersection of two focal
elements is given by the common numbers of the codification of the two focal
elements. In fact, for union and intersection operations we only consider one
element as the set of the numbers given in its codification.

Hence, with the previous example (we assume θ1 ∩ θ3 ≡ ∅, with |Θ| = 3 or
|Θ| = 4), if the following elements θ1 ∩ θ2, θ1 ∪ θ2 and (θ1 ∩ θ2) ∪ θ3 are some
focal elements, there are coded for |Θ| = 3 by:

θ1 ∩ θ2 = [2],

θ1 ∪ θ2 = [2 4 5 6],

(θ1 ∩ θ2) ∪ θ3 = [2 4 7],

and for |Θ| = 4 by:
θ1 ∩ θ2 = [3 6],

θ1 ∪ θ2 = [3 5 6 8 9 10 12 13],

(θ1 ∩ θ2) ∪ θ3 = [3 5 6 8 11 14].

The DSm cardinality CM(X) of one focal element X is simply given by
the number of integers in the codification of X . The DSm cardinality of one
singleton is given by the equation (9), only if there is none constraint on the
singleton, and inferior otherwise.

The previous example with the focal element (θ1 ∩ θ2) ∪ θ3 illustrates well
the easiness to deal with the brackets in one expression. The codification of the
focal elements can be made with any brackets.

3.4 Combination

In order to manage only the focal elements and their associated basic belief
assignment, we can use a list structure [9, 15, 22]. The intersection and union
operations between two focal elements coming from two mass functions are made
as described before. If the intersections between two focal elements is empty the
associated codification is [ ]. Hence the conjunctive combination rule algorithm
can be done by the algorithm 1. The disjunctive combination rule algorithm is
exactly the same by changing ∩ in ∪.

Once again, the interest of the codification is for the intersection and union
operations. Hence in Matlab, we do not need to redefine these operations as in
[15].

For more complicated combination rules such as PCR6, we have generally
to conserve the intermediate calculus in order to transfer the partial conflict.
Algorithms for these rules have been proposed in [22], and Matlab codes are
given in section 5.

8



Algorithm 1: Conjunctive rule

Data: n experts ex: ex[1] . . . ex[n], ex[i].focal, ex[i].bba

Result: Fusion of ex by conjunctive rule: conj

extmp ← ex[1];
for e = 2 to n do

comb← ∅;
foreach foc1 in extmp.focal do

foreach foc2 in ex[e].focal do

tmp← extmp.focal(foc1) ∩ ex[e].focal(foc2);
comb.focal← tmp;
comb.bba← extmp.bba(foc1)× ex[e].bba(foc2);

Concatenate same focal in comb;
extmp← comb;

conj ← extmp;

3.5 Decision

As we write before, we can decide with one of the functions given by the equa-
tions (6), (7), or (8). These functions are increasing functions. Hence generally
in 2Θ, the decision is taken on the elements in Θ by the maximum of these
functions. In this case, with the goal to reduce the complexity, we only have
to calculate these functions on the singletons. However, first, we can provide
a decision on any element of 2Θ such as in [2] that can be interesting in some
applications [24], and second, the singletons are not the more precise or inter-
esting elements on DΘ

r . The figures 4 and 5 show the DSm cardinality CM(X),
∀X ∈ DΘ with respectively |Θ| = 3 and |Θ| = 4. The specificity of the single-
tons (given by the DSm cardinality) appears at a central position in the set of
the specificities of the elements in DΘ.

Hence, to calculate these decision functions on all the reduced hyper power
set could be necessary, but the complexity could not be inferior to the complexity
of DΘ

r and that can be a real problem. The more reasonable approach is to
consider either only the focal elements or a subset of DΘ

r on which we calculate
decision functions.

3.5.1 Extended weighted approach

Generally in 2Θ, the decisions are only made on the singletons [8, 34], and only
few approaches propose a decision on 2Θ. In order to provide decision on any
elements of DΘ

r , we can first extend the principle of the proposed approach in
[2] on DΘ

r . This approach is based on the weighting of the plausibility with a
Bayesian mass function taking into account the cardinality of the elements of
2Θ.

In a general case, if there is no constraint, the plausibility is not interesting
because all elements contain the intersection of all the singletons of Θ. According
the constraints the plausibility could be applied.

Hence, we generalize here the weighted approach to DΘ
r for every decision

function fd (plausibility, credibility, pignistic probability, ...). We note fwd the

9



Figure 4: DSm cardinality CM(X), ∀X ∈ DΘ with |Θ| = 3.

weighted decision function given for all X ∈ DΘ
r by:

fwd(X) = md(X)fd(X), (10)

where md is a basic belief assignment given by:

md(X) = KdλX

(

1

CM(X)s

)

, (11)

s is a parameter in [0, 1] allowing a decision from the intersection of all the
singletons (s = 1) (instead of the singletons in 2Θ) until the total indecision
Θ (s = 0). λX allows the integration of the lack of knowledge on one of the
elements X in DΘ

r . The constant Kd is the normalization factor giving by the
condition of the equation (4). Thus we decide the element A:

A = arg max
X∈DΘ

r

fwd(X), (12)

If we only want to decide on whichever focal element of DΘ
r , we only consider

X ∈ Fm and we decide:

A = arg max
X∈Fm

fwd(X), (13)

with fwd given by the equation (10) and:

md(X) = KdλX

(

1

CM(X)s

)

, ∀X ∈ Fm, (14)

s and Kd are both parameters defined above.

10



Figure 5: DSm cardinality CM(X), ∀X ∈ DΘ with |Θ| = 4.

3.5.2 Decision according to the specificity

The cardinality CM(X) can be seen as a specificity measure of X . The figures 4
and 5 show that for a given specificity there is different kind of elements such as
singletons, unions of intersections or intersections of unions. The figure 6 shows
well the central role of the singletons (the DSm cardinality of the singletons
for |Θ|=5 is 16), but also that there is many other elements (619) with exactly
the same cardinality. Hence, it could be interesting to precise the specificity of
the elements on which we want to decide. This is the role of s in the Appriou
approach. Here we propose to directly give the wanted specificity or an interval
of the wanted specificity in order to build the subset of DΘ

r on which we calculate
decision functions. Thus we decide the element A:

A = arg max
X∈S

fd(X), (15)

where fd is the chosen decision function (credibility, plausibility, pignistic prob-
ability, ...) and

S =
{

X ∈ DΘ

r ; minS ≤ CM(X) ≤ maxS

}

, (16)

with minS and maxS respectively the minimum and maximum of the specificity
of the wanted elements. If minS 6= maxS , if have to chose a pondered decision
function for fd such as fwd given by the equation (10).

However, in order to find all X ∈ S we must scan DΘ
r . To avoid to scan all

DΘ
r , we have to find the cardinality of S, but we can only calculate an upper

bound of the cardinality, unfortunately never reached. Let define the number
of elements of the Venn diagram nV . This number is given by:

nV = CM

(

n
⋃

i=1

θi

)

, (17)

11



Figure 6: Number of elements of DΘ for |Θ| = 5, with the same DSm cardinality.

where n is the cardinality of Θr and θi ∈ Θr. Recall that the DSm cardinality
is simply given by the number of integers of the codification. The upper bound
of the cardinality of S is given by:

|S| <
maxS
∑

s=minS

Cs
nV

, (18)

where Cs
nV

is the number of combinations of s elements among nV . Note that
it also works if minS = 0 for the empty set.

3.6 Generation of D
Θ
r

The generation of DΘ
r could have the same complexity than the generation of

DΘ if there is none constraint given by the user. Today, the complexity of the
generation of DΘ is the complexity of the proposed code in [11]. Assume for
example, the simple constrain θ1 ∩ θ2 ≡ ∅. First, the figures 7(a) and 7(b)
show the DSm cardinality for the elements of DΘ

r with |Θ| = 4 and the previous
given constraint. On the left figure, the elements are ordered by increasing DSm
cardinality and on the right figure with the same order than the figure 5. We can
observe that the cardinality of the elements have naturally decreased and the
number of non empty elements also. This is more interesting if the cardinality
of Θ is higher. Figure 8 presents for a given positive DSm cardinality, the
number of elements of DΘ

r for |Θ| = 5 and with the same constraint θ1∩θ2 ≡ ∅.
Compared to the figure 6, the total number of non empty elements (the integral
of the curve) is considerably lower.

Thus, we have to generate DΘ
r and not DΘ. The generation of DΘ (see

[11] for more details) is based on the generation of monotone boolean functions.
A monotone boolean function fmb is a mapping of (x1, ..., xb) ∈ {0, 1}b to a
single binary output such as ∀x,x′ ∈ {0, 1}b, with x 4 x′ then fmb(x) ≤

12



(a) Elements are ordered by increasing DSm
cardinality.

(b) Elements are ordered with the same
order than the figure 5.

Figure 7: DSm cardinality CM(X), ∀X ∈ DΘ
r with |Θ| = 4 and θ1 ∩ θ2 ≡ ∅.

fmb(x
′). Hence, a monotone boolean function is defined by the values of the

2b elements (x1, ..., xb), and there is |Db| different monotone boolean functions.
All the values of all these monotone boolean function can be represented by a
|Db| × 2b matrix. If we multiply this matrix by the vector of all the possible
intersections of the singletons in Θ with |Θ| = b (there is 2b intersections) given
an union of intersections, we obtain all the elements of DΘ. We can also use
the basis of all the unions of Θ (and obtain the intersections of unions), but
with our codification the unions are coded with more integer numbers. So, the
intersection basis is preferable.

Moreover, if we have some constraints (such as θ1 ∩ θ2 ≡ ∅), some elements
of the intersection basis can be empty. So we only need to generate a |Db| × nb

matrix where nb is the number of non empty intersections of elements in Θr.
For example, with the constraint given in example for |Θ| = 3, the basis is given
by: ∅, θ1, θ2, θ3, θ1 ∩ θ3, θ2 ∩ θ3, and there is no θ1 ∩ θ2 and θ1 ∩ θ2 ∩ θ3.

Hence, the generation of DΘ
r can run very fast if the basis is small, i.e. if

there is some constraints. The Matlab code is given in section 5.

3.7 Decoding

Once the decision on one element A of DΘ
r is taken, we have to transmit this

decision to the human operator. Hence we must to decode the element A (given
by the integer numbers of the codification) in terms of unions and intersections
of elements of Θ. If we know that A is in a subset of elements of DΘ

r given by
the operator, we only have to scan this subset. Now, if the decision A comes
from the focal elements (a priori unknown) or from all the elements of DΘ

r we
must scan all DΘ

r with possibly high complexity. What we propose here is to
consider the elements of DΘ

r ordering with first the elements most encountered
in applications. Hence, we first scan the elements of 2Θ and in the same time
the intersection basis that we must build for the generation of DΘ

r . Then, only
if the element is not found we generate DΘ

r and stop the generation when found

13



Figure 8: Number of elements of DΘ
r for |Θ| = 5 and θ1 ∩ θ2 ≡ ∅, with the same

positive DSm cardinality.

(see the section 5 for more details).
The Smarandache’s codification is an alternative to the decoding because

user can directly understand it. Hence we can represent the focal element as an
union of the distinct part of the Venn diagram. The Smarandache’s codification
allows a clear understanding of the different parts of the Venn diagram on the
contrary than the proposed codification. This representation of the results (for
the combination or the decision) does not need the generation of DΘ

r . However,
if we need to generate DΘ

r according to the strategy of decision, the decoding
will give a better display without more generation of DΘ

r .

4 Concluding remarks

This chapter presents a general belief function framework based on a practical
codification of the focal elements. First the codification of the elements of the
Venn diagram gives a codification of Θ. Then, the eventual constraints are
integrated giving a reduced discernment space Θr. From the space Θr, we
obtain the codification of the focal elements. Hence, we manipulate elements
of a reduced hyper power set DΘ

r and not the complete hyper power set DΘ,
reducing the complexity according to the kind of given constraints.

With the practical codification, the step of combination is easily made using
union and intersection functions.

The step of decision was particularly studied, because of the difficulties to
decide on DΘ or DΘ

r . An extension of the approach given in [2] in order to give
the possibility to decide on the unions in 2Θ was proposed. Another approach
based on the specificity was proposed in order to simply choose the elements on
which decide according to their specificity.

The principal goal of this chapter is to provide practical codes of a general

14



belief function framework for the researchers and users needing the belief func-
tion theory. However, for sake of clarity, all the Matlab codes are not in the
listing, but can be provided on demand to the author. The proposed codes
are not optimized either for Matlab, or in general and can still have bugs. All
suggestions in order to improve them are welcome.

5 Matlab codes

We give and explain here some Matlab codes of the general belief function
framework2. Note that the proposed codes are not optimized either for Matlab,
or in general.

First the human operator have to describe the problem (see function 1)
giving the cardinality of Θ, the list of the focal elements and the corresponding
bba for each experts, the eventual constraints (‘ ’ if there is no constraint),
the list of elements on which he want to obtain a decision and the parameters
corresponding to the choice of combination rule, the choice of decision criterium
the mode of fusion (static or dynamic) and the display. When the description
of the problem is made, he just has to call the fuse function 2.

Function 1 - Command configuration

% description of the problem

CardTheta=4; % cardinality of Theta

% list of experts with focal elements and associated bba

expert(1).focal={’1’ ’1u3’ ’3’ ’1u2u3’};

expert(1).bba=[0.5421 0.2953 0.0924 0.0702];

expert(2).focal={’1’ ’2’ ’1u3’ ’1u2u3’};

expert(2).bba=[0.2022 0.6891 0.0084 0.1003];

expert(3).focal={’1’ ’3n4’ ’1u2u3’};

expert(3).bba=[0.2022 0.6891 0.1087];

constraint={’1n2’ ’1n3’ ’2n3’}; % set of empty elements

elemDec={’F’}; % set of decision elements

%-------------------------------------------------------------

% parameters

criteriumComb=1; % combination citerium

criteriumDec=0; % decision criterium

mode=’static’; % mode of fusion

display=3; % kind of display

%-------------------------------------------------------------

% fusion

fuse(expert,constraint,CardTheta,criteriumComb,criteriumDec,...

mode,elemDec,display)

2Copyright c© 2008 Arnaud Martin. May be used free of charge. Selling without prior
written consent prohibited. Obtain permission before redistributing.

15



The first step of the fuse function 2 is the coding. The cardinality of Θ
gives the codification of the singletons of Θ, thanks to the function 3, then
we add the constraints to Θ with the function 4 and obtain Θr. With Θr, the
function 6 calling the function 5 codes the focal elements of the experts given by
the human operator. The combination is made by the function 7 in static mode.
For dynamic fusion, we just consider one expert with the previous combination.
In this case the order of the experts given by the user can have an important
signification. The decision step is made with the function 11. The last step
concern the display and the hard problem of the decoding. Thus, 4 choices are
possible: no display, the results of the combination only, the results of decision
only and both results. These displays could take long time according to the
parameters given by the human operator. Hence, the results of the combination
could have the complexity of the generation of DΘ

r and must be avoid if the
user does not need it. The complexity of the decision results could also be high
if the user does not give the exact set of elements on witch decide, or only the
singletons with ‘S’ or on 2Θ with ‘2T’. In other cases, with luck, the execution
time can be short thanks to the function 18.

Function 2 - Fuse function

function fuse(expert,constraint,n,criteriumComb,criteriumDec,mode,elemDec,display)

% To fuse experts’ opinions

%

% fuse(expert,constraint,n,criteriumComb,criteriumDec,mode,elemDec,display)

%

% Inputs:

% expertC = containt the structure of the list of coded focal elements and

% corresponding bba for all the experts

% constraint = the empty elements

% elemDec = list of elements on which we can decide

% n = size of the discernment space

% criteriumComb = is the combination criterium

% criteriumComb=1 Smets criterium

% criteriumComb=2 Dempster-Shafer criterium (normalized)

% criteriumComb=3 Yager criterium

% criteriumComb=4 disjunctive combination criterium

% criteriumComb=5 Florea criterium

% criteriumComb=6 PCR6

% criteriumComb=7 Mean of the bbas

% criteriumComb=8 Dubois criterium (normalized and

% disjunctive combination)

% criteriumComb=9 Dubois and Prade criterium (mixt combination)

% criteriumComb=10 Mixt Combination (Martin and Osswald criterium)

% criteriumComb=11 DPCR (Martin and Osswald criterium)

% criteriumComb=12 MDPCR (Martin and Osswald criterium)

% criteriumComb=13 Zhang’s rule

%

%

16



% criteriumDec = is the combination criterium

% criteriumDec=0 maximum of the bba

% criteriumDec=1 maximum of the pignistic probability

% criteriumDec=2 maximum of the credibility

% criteriumDec=3 maximum of the credibility with reject

% criteriumDec=4 maximum of the plausibility

% criteriumDec=5 Appriou criterium

% criteriumDec=6 DSmP criterium

%

% mode = ’static’ or ’dynamic’

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements only,

% SF for singleton plus focal elements, Cm for given specificity,

% 2T for only 2^Theta (DST case)

% display = kind of display

% display = 0 for no display,

% display = 1 for combination display,

% display = 2 for decision display,

% display = 3 for both displays,

% display = 4 for both displays with Smarandache codification

%

% Output:

% res = containt the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

% Coding

[Theta,Scod]=codingTheta(n);

ThetaRed=addConstraint(constraint,Theta);

expertCod=codingExpert(expert,ThetaRed);

%--------

switch nargin

case 1:5

mode=’static’;

elemDec=ThetaRed;

display=4;

case 6

elemDec=ThetaRed;

display=4;

case 7

elemDec=string2code(elemDec);

display=4;

end

%--------

if (display==1) || (display==2) || (display==3)

[DThetar,D_n]=generationDThetar(ThetaRed);

else

17



switch elemDec{1}

case {’A’}

[DThetar,D_n]=generationDThetar(ThetaRed);

otherwise

DThetar.s={[]};

DThetar.c={[]};

end

end

%--------

% Combination

if strcmp(mode, ’static’)

[expertComb]=combination(expertCod,ThetaRed,criteriumComb);

else % dynamic case

nbexp=size(expertCod,2);

expertTmp(1)=expertCod(1);

for exp=2:nbexp

expertTmp(2)=expertCod(exp);

expertTmp(1)=combination(expertTmp,ThetaRed,criteriumComb);

end

expertComb=expertTmp(1);

end

% Decision

[decFocElem]=decision(expertComb,ThetaRed,DThetar.c,criteriumDec,elemDec);

% Display

switch display

case 0

’no display’

case 1

% Result of the combination

sFocal=size(expertComb.focal,2);

focalRec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(focalRec)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertComb.bba(i)) ] )

end

case 2

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,ThetaRed);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

18



end

end

case 3

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(expertDec.focal)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertDec.bba(i)) ] )

end

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,ThetaRed,DThetar);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

case 4

% Results with Smarandache codification display

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=cod2ScodExpert(expertComb,Scod);

for i=1:sFocal

disp ([expertDec.focal{i},’=’,num2str(expertDec.bba(i))])

end

% Result of the decision

if isstruct(decFocElem)

focalDec=cod2ScodFocal(decFocElem.focal,Scod);

disp([’decision:’,focalDec])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

otherwise

’Accident in fuse: choice of display is uncorrect’

end

19



5.1 Codification

The codification is based on the function 3. The order of the integer numbers
could be different, here the choice is made to number the intersection of all the
elements with 1 and the smallest integer among the |Θ| = n bigger integers
for the first singleton. In the same time this function give the correspondence
between the integer numbers of the practical codification and the Smarandache’s
codification. This function 3 is based on the Matlab function nchoosek(tab,k)
given the array of all the combination of k elements of the vector tab. If the
length of tab is n, this function return an array of Ck

n rows and k columns.

Function 3 - codingTheta function

function [Theta,Scod]=codingTheta(n)

% Code Theta for DSmT framework

%

% [Theta,Scod]=codingTheta(n)

%

% Input:

% n = cardinality of Theta

%

% Outputs:

% Theta = the liste of coded elements in Theta

% Scod = the bijection function between the integer of

% the coded elements in Theta and the Smarandache codification

%

% Copyright (c) 2008 Arnaud Martin

i=2^n-1;

tabInd=[];

for j=n:-1:1

tabInd=[tabInd j];

Theta{j}=[i];

Scod{i}=[j];

i=i-1;

end

i=i+1;

for card=2:n

tabPerm=nchoosek(tabInd,card);

for j=1:n

[l,c]=find(tabPerm==j);

tabi=i.*ones(1,size(l,1));

Theta{j}=[sort(tabi-l’) Theta{j}];

for nb=1:size(l,1)

Scod{i-l(nb)}=[Scod{i-l(nb)} j];

end

end

20



i=i-size(tabPerm,1);

end

The addition of the constraints is made in two steps: first the codification
of the elements in the list constraint is made with the function 5, then the
integer numbers in the codification of the constraints are suppressed from the
codification of Θ. The function string2code is just the translation of the brackets
and union and intersection operators in negative numbers (-3 for ‘(’, -4 for ‘)’, -1
for ‘∪’ and -2 for ‘∩’) in order to manipulate faster integers than strings. This
simple function is not provided here.

Function 4 - addConstraint function

function [ThetaR]=addConstraint(constraint,Theta)

% Code ThetaR the reduced form of Theta

% taking into account the constraints given by the user

%

% [ThetaR]=addConstraint(constraint,Theta)

%

% Inputs:

% constraint = the list of element considered as constraint

% or ’2T’ to work on 2^Theta

% Theta = the description of Theta after coding

%

% Output:

% ThetaR = the description of coded Theta after reduction

% taking into account the constraints

%

% Copyright (c) 2008 Arnaud Martin

if strcmp(constraint{1}, ’2T’)

n=size(Theta,2);

nbCons=1;

for i=1:n

for j=i+1:n

constraint(nbCons)={[i -2 j]};

nbCons=nbCons+1;

end

end

else

constraint=string2code(constraint);

end

constraintC=codingFocal(constraint,Theta);

sConstraint=size(constraintC,2);

unionCons=[];

for i=1:sConstraint

unionCons=union(unionCons,constraintC{i});

21



end

sTheta=size(Theta,2);

for i=1:sTheta

ThetaR{i}=setdiff(Theta{i},unionCons);

end

The function 5 simply transforms the list of focal elements given by the
user with the codification of Θ to obtain the list of constraints and with Θr for
the focal elements of each expert. The function 6 prepares the coding of focal
elements and return the list of the experts with the coded focal elements.

Function 5 - codingFocal function

function [focalC]=codingFocal(focal,Theta)

% Code the focal element for DSmT framework

%

% [focalC]=codingFocal(focal,Theta)

%

% Inputs:

% focal = the list of focal element for one expert

% Theta = the description of Theta after coding

%

% Output:

% focalC = the list of coded focal element for one expert

%

% Copyright (c) 2008 Arnaud Martin

nbfoc=size(focal,2);

if nbfoc

for foc=1:nbfoc

elemC=treat(focal{foc},Theta);

focalC{foc}=elemC;

end

else

focalC={[]};

end

end

%%

function [elemE]=eval(oper,a,b)

if oper==-2

elemE=intersect(a,b);

else

elemE=union(a,b);

end

end

22



%%

function [elemC,cmp]=treat(focal,Theta)

nbelem=size(focal,2);

PelemC=0;

oper=0;

e=1;

if nbelem

while e <= nbelem

elem=focal(e);

switch elem

case -1

oper=-1;

case -2

oper=-2;

case -3

[elemC,nbe]=treat(focal(e+1:end),Theta);

e=e+nbe;

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

case -4

cmp=e;

e=nbelem;

otherwise

elemC=Theta{elem};

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

end

e=e+1;

end

else

elemC=[];

end

end

Function 6 - codingExpert function

function [expertC]=codingExpert(expert,Theta)

% Code the focal element for DSmT framework

%

23



% [expertC]=codingExpert(expert,Theta)

%

% Inputs:

% expert = structure containing the list of focal elements for

% each expert and the bba corresponding

% Theta = the description of Theta after coding

%

% Output:

% expertC = structure containing the list of coded focal element

% for each expert and the bba corresponding

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=string2code(expert(exp).focal);

expertC(exp).focal=codingFocal(focal,Theta);

expertC(exp).bba=expert(exp).bba;

end

end

5.2 Combination

The function 7 proposes many combination rules. Most of them are based on the
function 8, but for some combination rules we need to keep more information,
so we use the function 9 for the conjunctive combination. E.g. in the func-
tion 10 note the simplicity of the code for the PCR6 combination rule. Other
combination rules’ codes are not given here for the sake of clarity.

Function 7 - combination function

function [res]=combination(expertC,ThetaR,criterium)

% Give the combination of many experts

%

% [res]=combination(expert,constraint,n,criterium)

%

% Inputs:

% expertC = containt the structure of the list of focal elements

% and corresponding bba for all the experts

% ThetaR = the coded and reduced discernment space

% criterium = is the combination criterium

% criterium=1 Smets criterium (conjunctive rule in open world)

% criterium=2 Dempster-Shafer criterium (normalized)

% (conjunctive rule in closed world)

% criterium=3 Yager criterium

% criterium=4 disjunctive combination criterium

% criterium=5 Florea criterium

% criterium=6 PCR6

% criterium=7 Mean of the bbas

24



% criterium=8 Dubois criterium

% (normalized and disjunctive combination)

% criterium=9 Dubois and Prade criterium (mixt combination)

% criterium=10 Mixt Combination (Martin and Osswald criterium)

% criterium=11 DPCR (Martin and Osswald criterium)

% criterium=12 MDPCR (Martin and Osswald criterium)

% criterium=13 Zhang’s rule

%

% Output:

% res = containt the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

switch criterium

case 1

%Smets criterium

res=conjunctive(expertC);

case 2

%Dempster-Shafer criterium (normalized)

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

expConj.bba=expConj.bba/(1-k);

expConj.bba(ind)=0;

end

res=expConj;

case 3

%Yager criterium

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

eTheta=ThetaR{1};

for i=2:n

eTheta=[union(eTheta,ThetaR{i})];

end

indTheta=findeqcell(expConj.focal,eTheta);

if ~isempty(indTheta)

expConj.bba(indTheta)=expConj.bba(indTheta)+k;

expConj.bba(ind)=0;

else

sFocal=size(expConj.focal,2);

expConj.focal(sFocal+1)={eTheta};

expConj.bba(sFocal+1)=k;

expConj.bba(ind)=0;

end

end

res=expConj;

25



case 4

%disjounctive criterium

[res]=disjunctive(expertC);

case 5

% Florea criterium

expConj=conjunctive(expertC);

expDis=disjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

alpha=k/(1-k+k*k);

beta=(1-k)/(1-k+k*k);

expFlo=expConj;

expFlo.bba=beta.*expFlo.bba;

expFlo.bba(ind)=0;

nbFocConj=size(expConj.focal,2);

nbFocDis=size(expDis.focal,2);

expFlo.focal(nbFocConj+1:nbFocConj+nbFocDis)=expDis.focal;

expFlo.bba(nbFocConj+1:nbFocConj+nbFocDis)=alpha.*expDis.bba;

expFlo=reduceExpert(expFlo);

else

expFlo=expConj;

end

res=expFlo;

case 6

% PCR6

[res]=PCR6(expertC);

case 7

% Means of the bba

[res]=meanbba(expertC);

case 8

% Dubois criterium (normalized and disjunctive combination)

expDis=disjunctive(expertC);

ind=findeqcell(expDis.focal,[]);

if ~isempty(ind)

k=expDis.bba(ind);

expDis.bba=expDis.bba/(1-k);

expDis.bba(ind)=0;

end

res=expDis;

case 9

% Dubois and Prade criterium (mixt combination)

[res]=DP(expertC);

case 10

% Martin and Ossawald criterium (mixt combination)

26



[res]=Mix(expertC);

case 11

% DPCR (Martin and Osswald criterium)

[res]=DPCR(expertC);

case 12

% MDPCR (Martin and Osswald criterium)

[res]=MDPCR(expertC);

case 13

% Zhang’s rule

[res]=Zhang(expert)

otherwise

’Accident: in combination choose of criterium: uncorrect’

end

Function 8 - conjunctive function

function [res]=conjunctive(expert)

% Conjunctive Rule

%

% [res]=conjunctive(expert)

%

% Inputs:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal element...

are different’

end

end

interm=expert(1);

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

i=1;

comb.focal={};

comb.bba=[];

27



for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)

tmp=intersect(interm.focal{foc1},expert(exp).focal{foc2});

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end

interm=reduceExpert(comb);

end

res=interm;

Function 9 - globalConjunctive function

function [res,tabInd]=globalConjunctive(expert)

% Conjunctive Rule conserving all the focal elements

% during the combination

%

% [res,tabInd]=globalConjunctive(expert)

%

% Input:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

%

% outputs:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

% tabInd = table of the indices given the combination

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal element...

are different’

end

end

interm=expert(1);

tabIndPrev=[1:1:nbfocal(1)];

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

28



i=1;

comb.focal={};

comb.bba=[];

tabInd=[];

for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)

tmp=intersect(interm.focal{foc1},expert(exp).focal{foc2});

tabInd=[tabInd [tabIndPrev(:,foc1);foc2]];

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end

tabIndPrev=tabInd;

interm=comb;

end

res=interm;

Function 10 - PCR6 function

function [res]=PCR6(expert)

% PCR6 combination rule

%

% [res]=PCR6(expert)

%

% Input:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Reference: A. Martin and C. Osswald, ’’A new generalization of the

% proportional conflict redistribution rule stable in terms of decision,’’

% Applications and Advances of DSmT for Information Fusion, Book 2,

% American Research Press Rehoboth, F. Smarandache and J. Dezert,

% pp. 69-88 2006.

%

% Copyright (c) 2008 Arnaud Martin

[expertConj,tabInd]=globalConjunctive(expert);

ind=findeqcell(expertConj.focal,[]);

nbexp=size(tabInd,1);

29



if ~isempty(ind)

expertConj.bba(ind)=0;

sInd=size(ind,2);

for i=1:sInd

P=1;

S=0;

for exp=1:nbexp

bbaexp=expert(exp).bba(tabInd(exp,ind(i)));

P=P*bbaexp;

S=S+bbaexp;

end

for exp=1:nbexp

expertConj.focal(end+1)=expert(exp).focal(tabInd(exp,ind(i)));

expertConj.bba(end+1)=expert(exp).bba(tabInd(exp,ind(i)))*P/S;

end

end

end

res=reduceExpert(expertConj);

5.3 Decision

The function 11 gives the decision on the expert focal element list for the cor-
responding bba with one of the chosen criterium and on the elements given by
the user for the decision. Note that the choices ‘A’ and ‘Cm’ for the variable
elemDec could take a long time because it need the generation of DΘ

r . This
function can call one of the decision functions 13, 14, 15, 16. If any decision is
possible on the chosen elements given by elemDec, the function return -1. In
case of reject element, te function return 0.

Function 11 - decision function

function [decFocElem]=decision(expert,Theta,criterium,elemDec)

% Give the decision for one expert

%

% [decFocElem]=decision(expert,Theta,criterium)

%

% Inputs:

% expert = containt the structure of the list of focal elements and

% corresponding bba for all the experts

% Theta = list of coded (and reduced with constraint) of the

% elements of the discernement space

% criterium = is the combination criterium

% criterium=0 maximum of the bba

% criterium=1 maximum of the pignistic probability

% criterium=2 maximum of the credibility

% criterium=3 maximum of the credibility with reject

% criterium=4 maximum of the plausibility

% criterium=5 DSmP criterium

% criterium=6 Appriou criterium

30



% criterium=7 Credibility on DTheta criterium

% criterium=8 pignistic on DTheta criterium

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements only,

% SF for singleton plus focal elements, Cm for given specificity,

% 2T for only 2^Theta (DST case)

%

% Output:

% decFocElem = the retained focal element, 0 in case of rejet, -1

% if the decision cannot be taken on elemDec

%

% Copyright (c) 2008 Arnaud Martin

type=1;

switch elemDec{1}

case ’S’

type=0;

elemDecC=Theta;

expertDec=expert;

case ’F’

elemDecC=expert.focal;

expertDec=expert;

case ’SF’

expertDec=expert;

n=size(Theta,2);

for i=1:n

expertDec.focal{end+1}=Theta{i};

expertDec.bba(end+1)=0;

end

expertDec=reduceExpert(expertDec);

elemDecC=expertDec.focal;

case ’Cm’

sElem=size(elemDec,2);

switch sElem

case 2

minSpe=str2num(elemDec{2});

maxSpe=minSpe;

case 3

minSpe=str2num(elemDec{2});

maxSpe=str2num(elemDec{3});

otherwise

’Accident in decision: with the option Cm for ....

elemDec give the specifity of decision element ...

(eventually the minimum and the maximum of the ...

desired specificity’

pause

end

elemDecC=findFocal(Theta,minSpe,maxSpe);

31



expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

ind=findeqcell(elemDecC,expert.focal{foc});

if ~isempty(ind)

expertDec.bba(ind)=expert.bba(foc);

else

expertDec.bba(ind)=0;

end

end

case ’2T’

type=0;

natoms=size(Theta,2);

expertDec.focal(1)={[]};

indFoc=findeqcell(expert.focal,{[]});

if isempty(indFoc)

expertDec.bba(1)=0;

else

expertDec.bba(1)=expert.bba(indFoc);

end

step =2;

for i=1:natoms

expertDec.focal(step)=codingFocal({[i]},Theta);

indFoc=findeqcell(expert.focal,expertDec.focal{step});

if isempty(indFoc)

expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

indatom=step;

for step2=2:indatom-2

expertDec.focal(step)={[union(expertDec.focal{step2},...

expertDec.focal{indatom-1})]};

indFoc=findeqcell(expert.focal,expertDec.focal{step});

if isempty(indFoc)

expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

end

end

elemDecC=expertDec.focal;

32



case ’A’

elemDecC=generationDThetar(Theta);

elemDecC=reduceFocal(elemDecC);

expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

expertDec.bba(findeqcell(elemDecC,expert.focal{foc}))...

=expert.bba(foc);

end

otherwise

type=0;

elemDec=string2code(elemDec);

elemDecC=codingFocal(elemDec,Theta);

expertDec=expert;

nbElemDec=size(elemDecC,2);

for foc=1:nbElemDec

if ~isElem(elemDecC{foc}, expertDec.focal)

expertDec.focal{end+1}=elemDecC{foc};

expertDec.bba(end+1)=0;

end

end

end

%---------------------------------------------------------

nbFocal=size(expertDec.focal,2);

switch criterium

case 0

% maximum of the bba

nbFocal=size(expertDec.focal,2);

nbElem=0;

for foc=1:nbFocal

ind=findeqcell(elemDecC,expertDec.focal{foc});

if ~isempty(ind)

bba(ind)=expertDec.bba(foc);

end

end

[bbaMax,indMax]=max(bba);

if bbaMax~=0

decFocElem.bba=bbaMax;

decFocElem.focal={elemDecC{indMax}};

else

decFocElem=-1;

end

case 1

% maximum of the pignistic probability

[BetP]=pignistic(expertDec);

decFocElem=MaxFoc(BetP,elemDecC,type);

case 2

% maximum of the credibility

33



[Bel]=credibility(expertDec);

decFocElem=MaxFoc(Bel,elemDecC,type);

case 3

% maximum of the credibility with reject

[Bel]=credibility(expertDec);

TabSing=[];

focTheta=[];

for i=1:size(Theta,2)

focTheta=union(focTheta,Theta{i});

end

for foc=1:nbFocal

if isElem(Bel.focal{foc}, elemDecC)

TabSing=[TabSing [foc ; Bel.Bel(foc)]];

end

end

[BelMax,indMax]=max(TabSing(2,:));

if BelMax~=0

focMax=Bel.focal{TabSing(1,indMax)};

focComplementary=setdiff(focTheta,focMax);

if isempty(focComplementary)

focComplementary=[];

end

ind=findeqcell(Bel.focal,focComplementary);

if BelMax < Bel.Bel(ind)

% if ind is empty this is always false

decFocElem=0; % That means that we reject

else

if isempty(ind)

decFocElem=0; % That means that we reject

else

decFocElem.focal={Bel.focal{TabSing(1,indMax)}};

decFocElem.Bel=BelMax;

end

end

else

decFocElem=-1; % That means that we reject

end

case 4

% maximum of the plausibility

[Pl]=plausibility(expertDec);

decFocElem=MaxFoc(Pl,elemDecC,type);

case 5

% DSmP criterium

epsilon=0.00001; % 0 can allows problem

[DSmP]=DSmPep(expertDec,epsilon);

34



decFocElem=MaxFoc(DSmP,elemDecC,type);

case 6

% Appriou criterium

[Pl]=plausibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=Pl.Pl.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Pl.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 7

% Credibility on DTheta criterium

[Bel]=credibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=Bel.Bel.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Bel.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 8

% pignistic on DTheta criterium

[BetP]=pignistic(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=BetP.BetP.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=BetP.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

otherwise

’Accident: in decision choose of criterium: uncorrect’

end

end

%%

function [bool]=isElem(focal, listFocal)

% The g oal of this function is to return a boolean on the test focal in

% listFocal

%

% [bool]=isElem(focal, listFocal)

35



%

% Inputs:

% focal = one focal element (matrix)

% listFocal = the list of elements in Theta (all different)

%

% Output:

% bool = boolean: true if focal is in listFocal, elsewhere false

%

% Copyright (c) 2008 Arnaud Martin

n=size(listFocal,2);

bool=false;

for i=1:n

if isequal(listFocal{i},focal)

bool=true;

break;

end

end

end

%%

function [decFocElem]=MaxFoc(funcDec,elemDecC,type)

fieldN=fieldnames(funcDec);

switch fieldN{2}

case ’BetP’

funcDec.bba=funcDec.BetP;

case ’Bel’

funcDec.bba=funcDec.Bel;

case ’Pl’

funcDec.bba=funcDec.Pl;

case ’DSmP’

funcDec.bba=funcDec.DSmP;

end

if type

[funcMax,indMax]=max(funcDec.bba);

FocMax={funcDec.focal{indMax}};

else

nbFocal=size(funcDec.focal,2);

TabSing=[];

for foc=1:nbFocal

if isElem(funcDec.focal{foc}, elemDecC)

TabSing=[TabSing [foc ; funcDec.bba(foc)]];

end

end

[funcMax,indMax]=max(TabSing(2,:));

FocMax={funcDec.focal{TabSing(1,indMax)}};

36



end

if funcMax~=0

decFocElem.focal=FocMax;

switch fieldN{2}

case ’BetP’

decFocElem.BetP=funcMax;

case ’Bel’

decFocElem.Bel=funcMax;

case ’Pl’

decFocElem.Pl=funcMax;

case ’DSmP’

decFocElem.DSmP=funcMax;

end

else

decFocElem=-1;

end

end

Function 12 - findFocal function

function [elemDecC]=findFocal(Theta,minSpe,maxSpe)

% Find the element of DTheta with the minium of specifity minSpe

% and the maximum maxSpe

%

% [elemDecC]=findFocal(Theta,minSpe,maxSpe)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint) of

% the elements of the discernment space

% minSpe = minimum of the wanted specificity

% minSpe = maximum of the wanted specificity

%

% Output:

% elemDec = list of elements on which we want to decide with the

% minimum of specifity minSpe and the maximum maxSpe

%

% Copyright (c) 2008 Arnaud Martin

elemDecC{1}=[];

n=size(Theta,2);

ThetaSet=[];

for i=1:n

ThetaSet=union(ThetaSet,Theta{i});

end

for s=minSpe:maxSpe

37



tabs=nchoosek(ThetaSet,s);

elemDecC(end+1:end+size(tabs,1))=num2cell(tabs,2)’;

end

elemDecC=elemDecC(2:end);

Function 13 - pignistic function

function [BetP]=pignistic(expert)

% Generalized Pignistic Transformation

%

% [BetP]=pignistic(expert)

%

% Input:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% BetP = containt the structure of the list of focal element and

% the matrix of the plausibility corresponding

% BetP.focal = list of focal elements

% BetP.BetP = matrix of the pignistic transformation

% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The pignistic is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

BetP.focal=expert.focal;

BetP.BetP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

BetP.BetP(focA)=BetP.BetP(focA)+size(focI,2)/...

size(expert.focal{focB},2)*expert.bba(focB);

else

if isequal(expert.focal{focB},[])

% for the empty set:

38



% cardinality(empty set)/cardinality(empty set)=1,

% so we add the bba

BetP.BetP(focA)=BetP.BetP(focA)+expert.bba(focB);

end

end

end

end

Function 14 - credibility function

function [Bel]=credibility(expert)

% Credibility function

%

% [Bel]=credibility(expert)

%

% Input:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% Bel = containt the structure of the list of focal element and

% the matrix of the credibility corresponding

% Bel.focal = list of focal elements

% Bel.Bel = matrix of the credibility

% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The credibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Bel.focal=expert.focal;

Bel.Bel=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

indMem=ismember(expert.focal{focB},expert.focal{focA});

if sum(indMem)==size(expert.focal{focB},2)

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])

39



% the empty set is include to all the focal elements

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

end

end

end

end

Function 15 - plausibility function

function [Pl]=plausibility(expert)

% Plausibility function

%

% [Pl]=plausibility(expert)

%

% Input:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% Pl = containt the structure of the list of focal element and

% the matrix of the plausibility corresponding

% Pl.focal = list of focal elements

% Pl.Pl = matrix of the plausibility

% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The plausibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Pl.focal=expert.focal;

Pl.Pl=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])...

&& isequal(expert.focal{focA},[])

% for the empty set we keep the bba for the Pl

40



Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

end

end

end

end

Function 16 - DSmPep function

function [DSmP]=DSmPep(expert,epsilon)

% DSmP Transformation

%

% [DSmP]=DSmPep(expert,epsilon)

%

% Inputs:

% expert = containt the structures of the list of focal element and

% corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

% epsilon = epsilon coefficient

%

% Output:

% DSmPep = containt the structure of the list of focal element and

% the matrix of the plausibility corresponding

% DSmPep.focal = list of focal elements

% DSmPep.DSmP = matrix of the pignistic transformation

%

% Reference: Dezert & Smarandache,

% ’’A new probbilistic transformation of belief mass assignment’’,

% fusion 2008, Cologne, Germany.

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

DSmP.focal=expert.focal;

DSmP.DSmP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

sumbbaFocB=0;

sFocB=size(expert.focal{focB},2);

for elB=1:sFocB

ind=findeqcell(expert.focal,expert.focal{focB}(elB));

if ~isempty(ind)

sumbbaFocB=sumbbaFocB+expert.bba(ind);

end

41



end

if ~isempty(focI)

sumbbaFocI=0;

sFocI=size(focI,2);

for elB=1:sFocI

ind=findeqcell(expert.focal,focI(elB));

if ~isempty(ind)

sumbbaFocI=sumbbaFocI+expert.bba(ind);

end

end

DSmP.DSmP(focA)=DSmP.DSmP(focA)+expert.bba(focB)...

*(sumbbaFocI+epsilon*sFocI)/(sumbbaFocB+epsilon*sFocB);

end

end

end

5.4 Decoding and generation of D
Θ
r

For the displays, we must decode the focal elements and/or the final decision.
The function 17 decodes the focal elements in the structure expert that contain
normally only one expert. This function calls the function 18 that really does
the decoding for the user. This function is based on the generation of DΘ

r given
by the function 21 that a is modified and adapted code from [11]. To generate
DΘ

r we first must create the intersection basis. Hence in the function 18 we use
a loop of 2Θ in order to generate the basis and in the same time to scan the
power set 2Θ and also the elements of the intersection basis. These two basis
(intersection and union) are in fact concatenated during the construction, so
we scan also some elements such intersections of previous unions and unions
of previous intersections. This generated set of elements does not cover DΘ

r .
When all the searching focal elements (that can be only one decision element)
are found, we stop the function and avoid to generate all DΘ

r . Hence if the
searching elements are not all found after this loop, we begin to generate DΘ

r

and stop when all elements are found. So, with luck, that can be fast.
We can avoid to generate DΘ

r for only the display if we use the Smarandache’s
codification. The function 19 transforms the used code of the focal elements in
the structure expert in the Smarandache’s code, easer to understand by reading.
This function calls the function 20 that really does the transformation. The focal
elements are directly in string for the display.

Function 17 - decodingExpert function

function [expertDecod]=decodingExpert(expert,Theta,DTheta)

% The goal of this function is to decode the focal elements in expert

%

% [expertDecod]=decodingExpert(expert,Theta)

%

% Inputs:

% expert = containt the structure of the list of focal elements after

% combination and corresponding bba for all the experts (generally use

42



% for only one after combination)

% Theta = list of coded (and reduced with constraint) of the elements of

% the discernement space

% DTheta = list of coded (and reduced with constraint) of the elements of

% DTheta

%

% Output:

% expertDecod = containt the structure of the list of decoded (for human)

% focal elements and corresponding bba for all the experts

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=decodingFocal(focal,{’A’},Theta,DTheta);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 18 - decodingFocal function

function [focalDecod]=decodingFocal(focal,elemDec,Theta,DTheta)

% The goal of this function is to decode the focal elements

%

% [focalDecod]=decodingFocal(focal,elemDec,Theta)

%

% Inputs:

% expert = containt the structure of the list of focal elements after

% combination and corresponding bba for all the experts

% elemDec = the description of the subset of uncoded elements

% for decision

% Theta = list of coded (and reduced with constraint) of the

% elements of the discernement space

% DTheta = list of coded (and reduced with constraint) of the

% elements of DTheta, eventually empty if not necessary

% Output:

% focalDecod = containt the list of decoded (for human) focal elements

%

% Copyright (c) 2008 Arnaud Martin

switch elemDec{1}

case {’F’,’A’,’SF’,’Cm’}

opt=1;

case ’S’

opt=0;

elemDecC=Theta;

43



for i=1:size(Theta,2)

elemDec(i)={[i]};

end

case ’2T’

opt=0;

natoms=size(Theta,2);

elemDecC(1)={[]};

elemDec(1)={[]};

step =2;

for i=1:natoms

elemDecC(step)=codingFocal({[i]},Theta);

elemDec(step)={[i]};

step=step+1;

indatom=step;

for step2=2:indatom-2

elemDec(step)={[elemDec{step2} -1 elemDec{indatom-1}]};

elemDecC(step)={[union(elemDecC{step2},elemDecC{indatom-1})]};

step=step+1;

end

end

otherwise

opt=0;

elemDecN=string2code(elemDec);

elemDecC=codingFocal(elemDecN,Theta);

end

if ~opt

sFoc=size(focal,2);

for foc=1:sFoc

[ind]=findeqcell(elemDecC,focal{foc});

if isempty(ind)

’Accident in decodingFocal: elemDec does not be 2T’

pause

else

focalDecod(foc)=elemDec(ind);

end

end

else

focalDecod=cell(size(focal));

cmp=0;

sFocal=size(focal,2);

sDTheta=size(DTheta.c,2);

i=1;

while i<sDTheta && cmp<sFocal

DThetai=DTheta.c{i};

indeq=findeqcell(focal,DThetai);

if ~isempty(indeq)

cmp=cmp+1;

focalDecod(indeq)=DTheta.s(i);

44



end

i=i+1;

end

end

Function 19 - cod2ScodExpert function

function [expertDecod]=cod2ScodExpert(expert,Scod)

% The goal of this function is to code the focal elements in

% expert with the Smarandache’s codification from the practical

% codification in order to display the expert

%

% [expertDecod]=cod2ScodExpert(expert,Scod)

%

% Inputs:

% expert = containt the structure of the list of focal elements after

% combination and corresponding bba for all the experts (generally use

% for only one after combination)

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% expertDecod = containt the structure of the list of decoded (for human)

% focal elements and corresponding bba for all the experts

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=cod2ScodFocal(focal,Scod);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 20 - cod2ScodFocal function

function [focalDecod]=cod2ScodFocal(focal,Scod)

% The goal of this function is to code the focal elements with the

% Smarandache’s codification from the practical codification in order to

% display the focal elements

%

% [focalDecod]=cod2ScodFocal(focal,Scod)

%

% Inputs:

45



% expert = containt the structure of the list of focal elements after

% combination and corresponding bba for all the experts

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% focalDecod = containt the list of decoded (for human) focal elements

%

% Copyright (c) 2008 Arnaud Martin

sFocal=size(focal,2);

for foc=1:sFocal

sElem=size(focal{foc},2);

if sElem==0

focalDecod{foc}=’{}’;

else

ch=’{’;

ch=strcat(ch,’<’);

ch=strcat(ch,num2str(Scod{focal{foc}(1)}));

ch=strcat(ch,’>’);

for elem=2:sElem

ch=strcat(ch,’,<’);

ch=strcat(ch,num2str(Scod{focal{foc}(elem)}));

ch=strcat(ch,’>’);

end

focalDecod{foc}=strcat(ch,’}’);

end

end

Function 21 - generationDThetar function

function [DTheta]=generationDThetar(Theta)

% Generation of DThetar: modified and adapted code from

% Dezert & Smarandache Chapter 2 DSmT book % Vol 1 to generate DTeta

%

% [DTheta]=generationDThetar(Theta)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint) of

% the elements of the discernment space

%

% Output:

% DTheta = list of coded (and eventually reduced with constraint in

% this case some elements can be the same) of the elements

% of the DTheta

%

% Copyright (c) 2008 Arnaud Martin

n=size(Theta,2);

46



step =1;

for i=1:n

basetmp(step)={[Theta{i}]};

step=step+1;

indatom=step;

for step2=1:indatom-2

basetmp(step)={intersect(basetmp{indatom-1},basetmp{step2})};

step=step+1;

end

end

sBaseTmp=size(basetmp,2);

step=1;

for i=1:sBaseTmp

if ~isempty(basetmp{i})

base(step)=basetmp(i);

step=step+1;

end

end

sBase=size(base,2);

DTheta{1}=[];

step=1;

nbC=2;

stop=0;

D_n1 =[0 ; 1];

sDn1=2;

for nn=1:n

D_n =[ ] ;

cfirst=1+(nn==n);

for i =1:sDn1

Li=D_n1(i,:);

sLi=size(Li,2);

if (2*sLi>sBase)&& (Li(sLi-(sBase-sLi))==1)

stop=1;

break

end

for j=i:sDn1

Lj=D_n1(j,:);

if(and(Li,Lj)==Li)&(or(Li,Lj)==Lj)

D_n=[D_n ; Li Lj ] ;

if size(D_n,1)>step

step=step+1;

DTheta{step}=[];

for c=cfirst:nbC

if D_n(end,c)

if isempty(DTheta{step})

DTheta{step}=base{sBase+c-nbC};

else

47



DTheta{step}=union(DTheta{step},base{sBase+c-nbC});

end

end

end

end

end

end

end

if stop

break

end

D_n1=D_n;

sDn1=size(D_n1,1);

nbC=2*size(D_n1,2);

end

Acknowledgment

The author thanks Pascal Djiknavorian for the interesting discussion on the
generation of DΘ

r , Florentin Smarandache for his comments on the codification
and Jean Dezert for his advices on the representation of the DSm cardinality
CM(X).

References

[1] A. Appriou. Uncertain data aggregation in classification an tracking pro-
cess. In B. Bouchon-Meunier, editor, Aggregation and Fusion of Imperfect
Information, pages 231–260. Springer, 1998.

[2] A. Appriou. Approche générique de la gestion de l’incertain dans les pro-
cessus de fusion multisenseur. Traitement du signal, 24(4):307–319, 2005.

[3] J.A. Barnett. Computational methods for a mathematical theory of evi-
dence. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 868–875, Vancouver, Canada, August 1981.

[4] M. Bauer. Approximation algorithms and decision making in the dempster-
shafer theory of evidence. International Journal of Approximate Reasoning,
17:217–237, 1997.

[5] M. Daniel. Classical combination rules generalized to DSm hyper-power
sets and their comparison with the hybrid DSm rule. In F. Smarandache
and J. Dezert, editors, Applications and Advances of DSmT for Informa-
tion Fusion, volume 2, chapter 3, pages 89–112. American Research Press
Rehoboth, 2006.

[6] A.P. Dempster. Uper and Lower probabilities induced by a multivalued
mapping. Anals of Mathematical Statistics, 38:325–339, 1967.

48



[7] T. Denœux. A k-Nearest Neighbor Classification Rule Based on Dempster-
Shafer Theory. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 25(5):804–813, May 1995.

[8] T. Denœux. Analysis of evidence-theoric decision rules for pattern classifi-
cation. Pattern Recognition, 30(7):1095–1107, 1997.

[9] T. Denœux. Inner and outer approximation of belief structures using a
hierarchical clustering approach. Int. Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 9(4):437–460, 2001.

[10] J. Dezert. Foundations for a new theory of plausible and paradoxical rea-
soning. Information & Security: An International Journal, 9, 2002.

[11] J. Dezert and F. Smarandache. The generation of the hyper-power sets.
In F. Smarandache and J. Dezert, editors, Applications and Advances of
DSmT for Information Fusion, volume 1, chapter 2, pages 37–48. American
Research Press Rehoboth, 2004.

[12] J. Dezert and F. Smarandache. Partial ordering on hyper-power sets.
In F. Smarandache and J. Dezert, editors, Applications and Advances of
DSmT for Information Fusion, volume 1, chapter 3, pages 49–60. American
Research Press Rehoboth, 2004.

[13] J. Dezert and F. Smarandache. A new probabilistic transformation of belief
mass assignment. In eleventh International Conference on Information
Fusion, Cologne, Germany, June 2008.

[14] J. Dezert, F. Smarandache, and M. Daniel. The Generalized Pignistic
Transformation. In Seventh International Conference on Information Fu-
sion, Stockholm, Sweden, June 2004.

[15] P. Djiknavorian and D. Grenier. Reducing DSmT hybrid rule complexity
throught optimisation of the calculation algorithm. In F. Smarandache and
J. Dezert, editors, Applications and Advances of DSmT for Information
Fusion, volume 2, chapter 15, pages 365–430. American Research Press
Rehoboth, 2006.

[16] R. Haenni and N. Lehmann. Resource-bounded and anytime approxima-
tion of belief function computations. International Journal of Approximate
Reasoning, 32(1–2):103–154, 2002.

[17] R. Haenni and N. Lehmann. Implementing belief function computations.
International Journal of Intelligent Systems, Special issue on the Dempster-
Shafer theory of evidence, 18(1):31–49, 2003.

[18] R. Kennes. Computational Aspect of the Möbius Transformation of
Graphs. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 22(2):201–223, 1992.

[19] A. Martin, A.-L. Jousselme, and C. Osswald. Conflict measure for the
discounting operation on belief functions. In International Conference on
Information Fusion, Cologne, Germany, July 2008.

49



[20] A. Martin and C. Osswald. Generalized proportional conflict redistribution
rule applied to sonar imagery and radar targets classification. In F. Smaran-
dache and J. Dezert, editors, Applications and Advances of DSmT for In-
formation Fusion, volume 2, chapter 11, pages 289–304. American Research
Press Rehoboth, 2006.

[21] A. Martin and C. Osswald. Human experts fusion for image classification.
Information & Security: An International Journal, Special issue on Fusing
Uncertain, Imprecise and Paradoxist Information (DSmT), 2006.

[22] A. Martin and C. Osswald. A new generalization of the proportional con-
flict redistribution rule stable in terms of decision. In F. Smarandache
and J. Dezert, editors, Applications and Advances of DSmT for Informa-
tion Fusion, volume 2, chapter 2, pages 69–88. American Research Press
Rehoboth, 2006.

[23] A. Martin and C. Osswald. Toward a combination rule to deal with partial
conflict and specificity in belief functions theory. In International Confer-
ence on Information Fusion, Québec, Canada, July 2007.

[24] A. Martin and I. Quidu. Decision support with belief functions theory
for seabed characterization. In International Conference on Information
Fusion, Cologne, Germany, July 2008.

[25] P. Orponen. Dempster’s rule of combination is #P -complete. Artificial
Intelligence, 44:245–253, 1990.

[26] G. Shafer. A mathematical theory of evidence. Princeton University Press,
1976.

[27] G. Shafer and R. Logan. Implementing Dempster’s Rule for Hierarchical
Evidence. Artificial Intellignece, 33:271–298, 1987.

[28] P.P. Shenoy and G. Shafer. Propagating belief functions with local compu-
tations. IEEE Expert, 1(3):43–51, 1986.

[29] F. Smarandache and J. Dezert. Applications and Advances of DSmT for
Information Fusion, volume 1. American Research Press Rehoboth, 2004.

[30] F. Smarandache and J. Dezert. Applications and Advances of DSmT for
Information Fusion, volume 2. American Research Press Rehoboth, 2006.

[31] F. Smarandache and J. Dezert. Proportional conflict redistribution rules for
information fusion. In F. Smarandache and J. Dezert, editors, Applications
and Advances of DSmT for Information Fusion, volume 2, chapter 1, pages
3–68. American Research Press Rehoboth, 2006.

[32] Ph. Smets. Practical uses of belief functions. In K.B. Laskey and H. Prade,
editors, Fifteenth Conference on Uncertainty in Artificial Intelligence, vol-
ume 99, pages 612–621, Stockholm, Sweden, July 1999.

[33] Ph. Smets. The application of matrix calculs for belief functions. Interna-
tional Journal of Approximate Reasoning, 31:1–30, 2002.

50



[34] Ph. Smets. Decision making in the tbm: the necessity of the pignistic
transformation. International Journal of Approximate Reasonning, 38:133–
147, 2005.

[35] Ph. Smets. Analyzing the combination of conflicting belief functions. In-
formation Fusion, 8:387–412, 2006.

[36] B. Tessem. Approximations for efficient computation in the theory of evi-
dence. Artificial Intelligence, 61:315–329, 1993.

[37] F. Voorbraak. A computationally efficient approximation of dempster-
shafer teory. International Journal Man-Machine Studies, 30:525–536,
1989.

[38] N. Wilson. Algorithms for Dempster-Shafer theory. In D.M. Gabbay and
Ph. Smets, editors, Hanbook of defeqsible reasoning and uncertainty man-
agement, volume 5: Algorithms for uncertainty and Defeasible Reasoning,
pages 421–475. Kluwer Academic Publisher, Boston, 2000.

51


