Arnaud Martin 
email: arnaud.martin@ensieta.fr
  
Ensieta E3i2-Ea3876 
  
Implementing general belief function framework with a practical codification for low complexity

Keywords: DSmT, practical codification, DSmT decision, low complexity

In this chapter, we propose a new practical codification of the elements of the Venn diagram in order to easily manipulate the focal elements. In order to reduce the complexity, the eventual constraints must be integrated in the codification at the beginning. Hence, we only consider a reduced hyper power set D Θ r that can be 2 Θ or D Θ . We describe all the steps of a general belief function framework. The step of decision is particularly studied, indeed, when we can decide on intersections of the singletons of the discernment space no actual decision functions are easily to use. Hence, two approaches are proposed, an extension of previous one and an approach based on the specificity of the elements on which to decide.

The principal goal of this chapter is to provide practical codes of a general belief function framework for the researchers and users needing the belief function theory.

Introduction

Today the belief function theory initiated by [START_REF] Dempster | Uper and Lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF] is recognized to propose one of the more complete theory for human reasoning under uncertainty, and have been applied in many kinds of applications [START_REF] Ph | Practical uses of belief functions[END_REF]. This theory is based on the use of functions defined on the power set 2 Θ (the set of all the subsets of Θ), where Θ is the set of considered elements (called discernment space), whereas the probabilities are defined only on Θ. A mass function or basic belief assignment, m is defined by the mapping of the power set 2 Θ onto [0, 1] with:

X∈2 Θ m(X) = 1. (1) 
One element X of 2 Θ , such as m(X) > 0, is called focal element. The set of focal elements for m is noted F m . A mass function where Θ is a focal element, is called a non-dogmatic mass functions. One of the main goal of this theory is the combination of information given by many experts. When this information can be written as a mass function, many combination rules can be used [START_REF] Martin | Toward a combination rule to deal with partial conflict and specificity in belief functions theory[END_REF]. The first combination rule proposed by Dempster and Shafer is the normalized conjunctive combination rule given for two basic belief assignments m 1 and m 2 and for all X ∈ 2 Θ , X = ∅ by:

m DS (X) = 1 1 -k A∩B=X m 1 (A)m 2 (B), (2) 
where k = A∩B=∅ m 1 (A)m 2 (B) is the inconsistence of the combination.

However the high computational complexity, especially compared to the probability theory, remains a problem for more industrial uses. Of course, higher the cardinality of Θ is, higher the complexity becomes [START_REF] Wilson | Algorithms for Dempster-Shafer theory[END_REF]. The combination rule of Dempster and Shafer is #P -complete [START_REF] Orponen | Dempster's rule of combination is #P -complete[END_REF]. Moreover, when combining with this combination rule, non-dogmatic mass functions, the number of focal elements can not decrease.

Hence, we can distinguish two kinds of approaches to reduce the complexity of the belief function framework. First we can try to find optimal algorithms in order to code the belief functions and the combination rules based on Möbius transform [START_REF] Kennes | Computational Aspect of the Möbius Transformation of Graphs[END_REF][START_REF] Ph | The application of matrix calculs for belief functions[END_REF] or based on local computations [START_REF] Shenoy | Propagating belief functions with local computations[END_REF] or to adapt the algorithms to particulars mass functions [START_REF] Shafer | Implementing Dempster's Rule for Hierarchical Evidence[END_REF][START_REF] Barnett | Computational methods for a mathematical theory of evidence[END_REF]. Second we can try to reduce the number of focal elements by approximating the mass functions [START_REF] Voorbraak | A computationally efficient approximation of dempstershafer teory[END_REF][START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF][START_REF] Bauer | Approximation algorithms and decision making in the dempstershafer theory of evidence[END_REF][START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF][START_REF] Haenni | Resource-bounded and anytime approximation of belief function computations[END_REF][START_REF] Haenni | Implementing belief function computations[END_REF], that could be particularly important for dynamic fusion.

In practical applications the mass functions contain at first only few focal elements [START_REF] Denoeux | A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory[END_REF][START_REF] Appriou | Uncertain data aggregation in classification an tracking process[END_REF]. Hence it seems interesting to only work with the focal elements and not with the entire space 2 Θ . That is not the case in all general developed algorithms [START_REF] Kennes | Computational Aspect of the Möbius Transformation of Graphs[END_REF][START_REF] Ph | The application of matrix calculs for belief functions[END_REF]. Now if we consider the extension of the belief function theory proposed by [START_REF] Dezert | Foundations for a new theory of plausible and paradoxical reasoning[END_REF], the mass function are defined on the extension of the power set into the hyper power set D Θ (that is the set of all the disjunctions and conjunctions of the elements of Θ). This extension can be seen as a generalization of the classical approach (and it is also called DSmT for Dezert and Smarandache Theory [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]). This extension is justified in some applications such as in [START_REF] Martin | Generalized proportional conflict redistribution rule applied to sonar imagery and radar targets classification[END_REF][START_REF] Martin | Human experts fusion for image classification[END_REF]. Try to generate D Θ is not easy and becomes untractable for more than 6 elements in Θ [START_REF] Dezert | The generation of the hyper-power sets[END_REF].

In [START_REF] Dezert | Partial ordering on hyper-power sets[END_REF], a first proposition have been proposed to order elements of hyper power set for matrix calculus such as [START_REF] Kennes | Computational Aspect of the Möbius Transformation of Graphs[END_REF][START_REF] Ph | The application of matrix calculs for belief functions[END_REF] made in 2 Θ . But as we said herein, in real applications it is better to only manipulate the focal elements. Hence, some authors propose algorithms considering only the focal elements [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF][START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF][START_REF] Martin | A new generalization of the proportional conflict redistribution rule stable in terms of decision[END_REF]. In the previous volume [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF], [START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF] have proposed Matlab1 codes for DSmT hybrid rule. These codes are a preliminary work, but first it is really not optimized for Matlab and second have been developed for a dynamic fusion.

Matlab is certainly not the best program language to reduce the speed of processing, however most of people using belief functions do it with Matlab.

In this chapter, we propose a codification of the focal elements based on a codification of Θ in order to program easily in Matlab a general belief function framework working for belief functions defined on 2 Θ but also on D Θ .

Hence, in the following section we recall a short background of belief function theory. In section 3 we introduce our practical codification for a general belief function framework. In this section, we describe all the steps to fuse basic belief assignments in the order of necessity: the codification of Θ, the addition of the constraints, the codification of focal elements, the step of combination, the step of decision, if necessary the generation of a new power set: the reduced hyper power set D Θ r and for the display, the decoding. We particularly investigate the step of the decision for the DSmT. In section 5 we give the major part of the Matlab codes of this framework.

Short background of belief functions theory

In the DSmT, the mass functions m are defined by the mapping of the hyper power set D Θ onto [0, 1] with:

X∈D Θ m(X) = 1, (3) 
with less terms in the sum than in the equation ( 3).

In the more general model, we can add constraints on some elements of D Θ , that means that some elements can never be focal elements. Hence, if we add the constraints that all the intersections of elements of Θ are impossible (i.e. empty) we recover 2 Θ . So, the constraints given by the application can drastically reduce the number of possible focal elements and so the complexity of the framework. On the contrary of the suggestion given by the flowchart on the cover of the book [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF] and the proposed codes in [START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF], we think that the constraints must be integrated directly in the codification of the focal elements of the mass functions as we shown in section 3. Hereunder, the hyper power set D Θ taking into account the constraints is called the reduced hyper power set and noted D Θ r . Hence, D Θ r can be D Θ , 2 Θ , have a cardinality between these two power sets or inferior to these two power sets. So the normality condition is given by:

X∈D Θ r m(X) = 1. (4) 
Once defined the mass functions coming from numerous sources, many combination rules are possible (see [START_REF] Daniel | Classical combination rules generalized to DSm hyper-power sets and their comparison with the hybrid DSm rule[END_REF][START_REF] Smarandache | Proportional conflict redistribution rules for information fusion[END_REF][START_REF] Martin | Generalized proportional conflict redistribution rule applied to sonar imagery and radar targets classification[END_REF][START_REF] Ph | Analyzing the combination of conflicting belief functions[END_REF][START_REF] Martin | Toward a combination rule to deal with partial conflict and specificity in belief functions theory[END_REF] for recent reviews of the combination rules). The most of the combination rules are based on the conjunctive combination rule, given for mass functions defined on 2 Θ by:

m c (X) = Y1∩...∩Ys=X s j=1 m j (Y j ), (5) 
where Y j ∈ 2 Θ is the response of the source j, and m j (Y j ) the corresponding basic belief assignment. This rule is commutative, associative, not idempotent, and the major problem that try to resolve the majority of the rules is the increasing of the belief on the empty set with the number of sources and the cardinality of Θ [START_REF] Martin | Conflict measure for the discounting operation on belief functions[END_REF]. Now, in D Θ without any constraint, there is no empty set, and the conjunctive rule given by the equation ( 5) for all X ∈ D Θ with Y j ∈ D Θ r can be used. If we have some constraints, we must to transfer the belief m c (∅) on other elements of the reduced hyper power set. There is no optimal combination rule, and we cannot achieve this optimality for general applications.

The last step in a general framework for information fusion system is the decision step. The decision is also a difficult task because no measures are able to provide the best decision in all the cases. Generally, we consider the maximum of one of the three functions: credibility, plausibility, and pignistic probability. Note that other decision functions have been proposed [START_REF] Dezert | A new probabilistic transformation of belief mass assignment[END_REF].

In the context of the DSmT the corresponding generalized functions have been proposed [START_REF] Dezert | The Generalized Pignistic Transformation[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. The generalized credibility Bel is defined by:

Bel(X) = Y ∈D Θ r ,Y ⊆X,Y ≡∅ m(Y ) (6) 
The generalized plausibility Pl is defined by:

Pl(X) = Y ∈D Θ r ,X∩Y ≡∅ m(Y ) (7) 
The generalized pignistic probability is given for all X ∈ D Θ r , with X = ∅ is defined by:

GPT(X) = Y ∈D Θ r ,Y ≡∅ C M (X ∩ Y ) C M (Y ) m(Y ), (8) 
where C M (X) is the DSm cardinality corresponding to the number of parts of X in the Venn diagram of the problem [START_REF] Dezert | The Generalized Pignistic Transformation[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. Generally in 2 Θ , the maximum of these functions is taken on the elements in Θ. In this case, with the goal to reduce the complexity we only have to calculate these functions on the singletons. However, first, there exist methods providing decision on 2 Θ such as in [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF] and that can be interesting in some application [START_REF] Martin | Decision support with belief functions theory for seabed characterization[END_REF], and secondly, the singletons are not the more precise elements on D Θ r . Hence, to calculate these functions on the entire reduced hyper power set could be necessary, but the complexity could not be inferior to the complexity of D Θ r and that can be a real problem if there are few constraints.

A general belief function framework

We introduce here a practical codification in order to consider all the previous remarks to reduce the complexity:

• only manipulate focal elements,

• add constraints on the focal elements before combination, and so work on D Θ r , • a codification easy for union and intersection operations with programs such as Matlab.

We first give the simple idea of the practical codification for enumerating the distinct parts of the Venn diagram and so a codification of the discernment space Θ. Then we explain how simply add the constraints on the distinct elements of Θ and so the codification of the focal elements. The subsections 3.4 and 3.5 show how to combine and decide with this practical codification, giving a particular reflexion on the decision in DSmT. The subsection 3.6 presents the generation of D Θ r and the subsection 3.7 the decoding.

A practical codification

The simple idea of the practical codification is based on the affectation of an integer number in [1; The number of integers for the codification of one element θ i ∈ Θ is given by: In order to reduce the complexity, especially using more hardware language than Matlab, we could use binary numbers instead of the integer numbers. The Smarandache's codification [START_REF] Dezert | The generation of the hyper-power sets[END_REF], was introduce for the enumeration of distinct parts of a Venn diagram. If |Θ| = n, < i > denotes the part of θ i with no covering with other θ j , i = j. < ij > denotes the part of θ i ∩ θ j with no covering with other parts of the Venn diagram. So if n = 2, θ 1 ∩ θ 2 = {< 12 >} and if n = 3, θ 1 ∩ θ 2 = {< 12 >, < 123 >}, see the figure 3 for an illustration for n = 3. The authors note a problem for n ≥ 10, but if we introduce space in the codification we can conserve integers instead of other symbols and we write < 1 2 3 > instead of < 123 >.

1 + n-1 i=1 C i n-1 , (9) 
On the contrary of the Smarandache's codification, the proposed codification gives only one integer number to each part of the Venn diagram. This codification is more complex for the reader then the Smarandache's codification. Indeed, the reader can understand directly the Smarandache's codification thanks to the mining of the numbers knowing the n: each disjoint part of the Venn diagram is seen as an intersection of the elements of Θ. More exactly, this is a part of the intersections. For example, θ 1 ∩ θ 2 is given with the Smarandache's codification by {< 12 >} if n = 2 and by {< 12 >, < 123 >} if n = 3. With the codification practical codification the same element has also different codification according to the number n. For the previous example θ 1 ∩ θ 2 is given by [START_REF] Appriou | Uncertain data aggregation in classification an tracking process[END_REF] 

Adding constraints

With this codification, adding constraints is very simple and can reduce rapidly the number of integers. E.g. assume that in a given application we know Generally we have |Θ| = |Θ r |, but it is not necessary if a constraint gives θ i ≡ ∅, with θ i ∈ Θ. This can happen in dynamic fusion, if one element of the discernment space can disappear. Thereby, the introduction of the simple constraint θ 1 ∩ θ 3 ≡ ∅ in Θ, includes all the other constraints that follow from it such as the intersection of all the elements of Θ is empty. In [START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF] all the constraints must be given by the user.

θ 1 ∩ θ 3 ≡ ∅ (i.e. θ 1 ∩ θ 3 / ∈ D Θ r ),

Codification of the focal elements

In D Θ r , the codification of the focal elements is given from the reduced discernment space Θ r . The codification of an union of two elements of Θ is given by the concatenation of the codification of the two elements using Θ r . The codification of an intersection of two elements of Θ is given by the common numbers of the codification of the two elements using Θ r . In the same way, the codification of an union of two focal elements is given by the concatenation of the codification of the two focal elements and the codification of an intersection of two focal elements is given by the common numbers of the codification of the two focal elements. In fact, for union and intersection operations we only consider one element as the set of the numbers given in its codification.

Hence, with the previous example (we assume θ 1 ∩ θ 3 ≡ ∅, with |Θ| = 3 or |Θ| = 4), if the following elements θ 1 ∩ θ 2 , θ 1 ∪ θ 2 and (θ 1 ∩ θ 2 ) ∪ θ 3 are some focal elements, there are coded for |Θ| = 3 by:

θ 1 ∩ θ 2 = [2], θ 1 ∪ θ 2 = [2 4 5 6], (θ 1 ∩ θ 2 ) ∪ θ 3 = [2 4 7],
and for |Θ| = 4 by: The DSm cardinality C M (X) of one focal element X is simply given by the number of integers in the codification of X. The DSm cardinality of one singleton is given by the equation ( 9), only if there is none constraint on the singleton, and inferior otherwise.

θ 1 ∩ θ 2 = [3 6],
The previous example with the focal element (θ 1 ∩ θ 2 ) ∪ θ 3 illustrates well the easiness to deal with the brackets in one expression. The codification of the focal elements can be made with any brackets.

Combination

In order to manage only the focal elements and their associated basic belief assignment, we can use a list structure [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF][START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF][START_REF] Martin | A new generalization of the proportional conflict redistribution rule stable in terms of decision[END_REF]. The intersection and union operations between two focal elements coming from two mass functions are made as described before. If the intersections between two focal elements is empty the associated codification is [ ]. Hence the conjunctive combination rule algorithm can be done by the algorithm 1. The disjunctive combination rule algorithm is exactly the same by changing ∩ in ∪.

Once again, the interest of the codification is for the intersection and union operations. Hence in Matlab, we do not need to redefine these operations as in [START_REF] Djiknavorian | Reducing DSmT hybrid rule complexity throught optimisation of the calculation algorithm[END_REF].

For more complicated combination rules such as PCR6, we have generally to conserve the intermediate calculus in order to transfer the partial conflict. Algorithms for these rules have been proposed in [START_REF] Martin | A new generalization of the proportional conflict redistribution rule stable in terms of decision[END_REF], and Matlab codes are given in section 5. 

Decision

As we write before, we can decide with one of the functions given by the equations ( 6), [START_REF] Denoeux | A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory[END_REF], or [START_REF] Denoeux | Analysis of evidence-theoric decision rules for pattern classification[END_REF]. These functions are increasing functions. Hence generally in 2 Θ , the decision is taken on the elements in Θ by the maximum of these functions. In this case, with the goal to reduce the complexity, we only have to calculate these functions on the singletons. However, first, we can provide a decision on any element of 2 Θ such as in [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF] that can be interesting in some applications [START_REF] Martin | Decision support with belief functions theory for seabed characterization[END_REF], and second, the singletons are not the more precise or interesting elements on D Θ r . The figures 4 and 5 show the DSm cardinality C M (X), ∀X ∈ D Θ with respectively |Θ| = 3 and |Θ| = 4. The specificity of the singletons (given by the DSm cardinality) appears at a central position in the set of the specificities of the elements in D Θ .

Hence, to calculate these decision functions on all the reduced hyper power set could be necessary, but the complexity could not be inferior to the complexity of D Θ r and that can be a real problem. The more reasonable approach is to consider either only the focal elements or a subset of D Θ r on which we calculate decision functions.

Extended weighted approach

Generally in 2 Θ , the decisions are only made on the singletons [START_REF] Denoeux | Analysis of evidence-theoric decision rules for pattern classification[END_REF][START_REF] Ph | Decision making in the tbm: the necessity of the pignistic transformation[END_REF], and only few approaches propose a decision on 2 Θ . In order to provide decision on any elements of D Θ r , we can first extend the principle of the proposed approach in [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF] on D Θ r . This approach is based on the weighting of the plausibility with a Bayesian mass function taking into account the cardinality of the elements of 2 Θ .

In a general case, if there is no constraint, the plausibility is not interesting because all elements contain the intersection of all the singletons of Θ. According the constraints the plausibility could be applied.

Hence, we generalize here the weighted approach to D Θ r for every decision function f d (plausibility, credibility, pignistic probability, ...). We note f wd the 

f wd (X) = m d (X)f d (X), (10) 
where m d is a basic belief assignment given by:

m d (X) = K d λ X 1 C M (X) s , (11) 
s is a parameter in [0, 1] allowing a decision from the intersection of all the singletons (s = 1) (instead of the singletons in 2 Θ ) until the total indecision Θ (s = 0). λ X allows the integration of the lack of knowledge on one of the elements X in D Θ r . The constant K d is the normalization factor giving by the condition of the equation ( 4). Thus we decide the element A:

A = arg max X∈D Θ r f wd (X), (12) 
If we only want to decide on whichever focal element of D Θ r , we only consider X ∈ F m and we decide:

A = arg max X∈Fm f wd (X), (13) 
with f wd given by the equation [START_REF] Dezert | Foundations for a new theory of plausible and paradoxical reasoning[END_REF] and:

m d (X) = K d λ X 1 C M (X) s , ∀X ∈ F m , (14) 
s and K d are both parameters defined above. 

Decision according to the specificity

The cardinality C M (X) can be seen as a specificity measure of X. The figures 4 and 5 show that for a given specificity there is different kind of elements such as singletons, unions of intersections or intersections of unions. The figure 6 shows well the central role of the singletons (the DSm cardinality of the singletons for |Θ|=5 is 16), but also that there is many other elements (619) with exactly the same cardinality. Hence, it could be interesting to precise the specificity of the elements on which we want to decide. This is the role of s in the Appriou approach. Here we propose to directly give the wanted specificity or an interval of the wanted specificity in order to build the subset of D Θ r on which we calculate decision functions. Thus we decide the element A:

A = arg max X∈S f d (X), (15) 
where f d is the chosen decision function (credibility, plausibility, pignistic probability, ...) and

S = X ∈ D Θ r ; min S ≤ C M (X) ≤ max S , (16) 
with min S and max S respectively the minimum and maximum of the specificity of the wanted elements. If min S = max S , if have to chose a pondered decision function for f d such as f wd given by the equation [START_REF] Dezert | Foundations for a new theory of plausible and paradoxical reasoning[END_REF]. However, in order to find all X ∈ S we must scan D Θ r . To avoid to scan all D Θ r , we have to find the cardinality of S, but we can only calculate an upper bound of the cardinality, unfortunately never reached. Let define the number of elements of the Venn diagram n V . This number is given by: where n is the cardinality of Θ r and θ i ∈ Θ r . Recall that the DSm cardinality is simply given by the number of integers of the codification. The upper bound of the cardinality of S is given by:

n V = C M n i=1 θ i , (17) 
|S| < maxS s=minS C s nV , (18) 
where C s nV is the number of combinations of s elements among n V . Note that it also works if min S = 0 for the empty set.

Generation of D Θ r

The generation of D Θ r could have the same complexity than the generation of D Θ if there is none constraint given by the user. Today, the complexity of the generation of D Θ is the complexity of the proposed code in [START_REF] Dezert | The generation of the hyper-power sets[END_REF]. Assume for example, the simple constrain θ 1 ∩ θ 2 ≡ ∅. First, the figures 7(a) and 7(b) show the DSm cardinality for the elements of D Θ r with |Θ| = 4 and the previous given constraint. On the left figure, the elements are ordered by increasing DSm cardinality and on the right figure with the same order than the figure 5. We can observe that the cardinality of the elements have naturally decreased and the number of non empty elements also. This is more interesting if the cardinality of Θ is higher. Figure 8 presents for a given positive DSm cardinality, the number of elements of D Θ r for |Θ| = 5 and with the same constraint θ 1 ∩ θ 2 ≡ ∅. Compared to the figure 6, the total number of non empty elements (the integral of the curve) is considerably lower.

Thus, we have to generate D Θ r and not D Θ . The generation of D Θ (see [START_REF] Dezert | The generation of the hyper-power sets[END_REF] for more details) is based on the generation of monotone boolean functions. A monotone boolean function f mb is a mapping of (x 1 , ..., x b ) ∈ {0, 1} b to a single binary output such as ∀x, x ′ ∈ {0, 1} b , with x

x ′ then f mb (x) ≤ For example, with the constraint given in example for |Θ| = 3, the basis is given by: ∅, θ 1 , θ 2 , θ 3 , θ 1 ∩ θ 3 , θ 2 ∩ θ 3 , and there is no θ 1 ∩ θ 2 and θ 1 ∩ θ 2 ∩ θ 3 .

Hence, the generation of D Θ r can run very fast if the basis is small, i.e. if there is some constraints. The Matlab code is given in section 5.

Decoding

Once the decision on one element A of D Θ r is taken, we have to transmit this decision to the human operator. Hence we must to decode the element A (given by the integer numbers of the codification) in terms of unions and intersections of elements of Θ. If we know that A is in a subset of elements of D Θ r given by the operator, we only have to scan this subset. Now, if the decision A comes from the focal elements (a priori unknown) or from all the elements of D Θ r we must scan all D Θ r with possibly high complexity. What we propose here is to consider the elements of D Θ r ordering with first the elements most encountered in applications. Hence, we first scan the elements of 2 Θ and in the same time the intersection basis that we must build for the generation of D Θ r . Then, only if the element is not found we generate D Θ r and stop the generation when found 

Concluding remarks

This chapter presents a general belief function framework based on a practical codification of the focal elements. First the codification of the elements of the Venn diagram gives a codification of Θ. Then, the eventual constraints are integrated giving a reduced discernment space Θ r . From the space Θ r , we obtain the codification of the focal elements. Hence, we manipulate elements of a reduced hyper power set D Θ r and not the complete hyper power set D Θ , reducing the complexity according to the kind of given constraints.

With the practical codification, the step of combination is easily made using union and intersection functions.

The step of decision was particularly studied, because of the difficulties to decide on D Θ or D Θ r . An extension of the approach given in [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF] in order to give the possibility to decide on the unions in 2 Θ was proposed. Another approach based on the specificity was proposed in order to simply choose the elements on which decide according to their specificity.

The principal goal of this chapter is to provide practical codes of a general belief function framework for the researchers and users needing the belief function theory. However, for sake of clarity, all the Matlab codes are not in the listing, but can be provided on demand to the author. The proposed codes are not optimized either for Matlab, or in general and can still have bugs. All suggestions in order to improve them are welcome.

Matlab codes

We give and explain here some Matlab codes of the general belief function framework2 . Note that the proposed codes are not optimized either for Matlab, or in general.

First the human operator have to describe the problem (see function 1) giving the cardinality of Θ, the list of the focal elements and the corresponding bba for each experts, the eventual constraints (' ' if there is no constraint), the list of elements on which he want to obtain a decision and the parameters corresponding to the choice of combination rule, the choice of decision criterium the mode of fusion (static or dynamic) and the display. When the description of the problem is made, he just has to call the fuse function 2.

Function 1 -Command configuration % description of the problem CardTheta=4; % cardinality of Theta % list of experts with focal elements and associated bba expert [START_REF] Appriou | Uncertain data aggregation in classification an tracking process[END_REF].focal={'1' '1u3' '3' '1u2u3'}; expert [START_REF] Appriou | Uncertain data aggregation in classification an tracking process[END_REF].bba=[0.5421 0.2953 0.0924 0.0702]; expert [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF].focal={'1' '2' '1u3' '1u2u3'}; expert [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF].bba=[0.2022 0.6891 0.0084 0.1003]; expert [START_REF] Barnett | Computational methods for a mathematical theory of evidence[END_REF].focal={'1' '3n4' '1u2u3'}; expert [START_REF] Barnett | Computational methods for a mathematical theory of evidence[END_REF].bba=[0.2022 0.6891 0.1087]; constraint={'1n2' '1n3' '2n3'}; % set of empty elements elemDec={'F'}; % set of decision elements %-------------------------------------------------------------% parameters criteriumComb=1; % combination citerium criteriumDec=0; % decision criterium mode='static'; % mode of fusion display=3; % kind of display %-------------------------------------------------------------% fusion fuse(expert,constraint,CardTheta,criteriumComb,criteriumDec,... mode,elemDec,display) 

  2 n -1] to each distinct part of the Venn diagram that contains 2 n -1 distinct parts with n = |Θ|. The figures 1 and 2 illustrate the codification for respectively Θ = {θ 1 , θ 2 , θ 3 } and Θ = {θ 1 , θ 2 , θ 3 , θ 4 } with the code given in section 5. Of course other repartitions of these integers are possible.

Figure 1 :

 1 Figure 1: Codification for Θ = {θ 1 , θ 2 , θ 3 }. Hence, for example the element θ 1 is given by the concatenation of 1, 2, 3 and 5 for |Θ| = 3 and by the concatenation of 1, 2, 3, 4, 6, 7, 9 and 12 for |Θ| = 4. We will note respectively θ 1 = [1 2 3 5] and θ 1 = [1 2 3 4 6 7 9 12] for |Θ| = 3 and for |Θ| = 4, with increasing order of the integers. Hence, Θ is given respectively for |Θ| = 3 and |Θ| = 4 by: Θ = {[1 2 3 5], [1 2 4 6], [1 3 4 7]}

Figure 2 :

 2 Figure 2: Codification for Θ = {θ 1 , θ 2 , θ 3 , θ 4 }.

  if n = 2, and by[1 2] if n = 3.The proposed codification is more practical for computing union and intersection operations and the DSm cardinality, because only one integer represent one of the distinct parts of the Venn diagram. With the Smarandache's codification computing union and intersection operations and the DSm cardinality could be very similar than with the practical codification, but adding a routine in order to treat the code of one part of the Venn diagram.

Figure 3 :

 3 Figure 3: Smarandache's codification for Θ = {θ 1 , θ 2 , θ 3 }. Hence, we propose to use the proposed codification to compute union, intersection and DSm cardinality, and the Smarandache's codification, easier to read, to present the results in order to safe eventually a scan of D Θ r .

5 ]

 5 that means that the integers [1 3] for |Θ| = 3 and [1 24 7] for |Θ| = 4 do not exist Θ. Hence, the codification of Θ with the reduced discernment space, noted Θ r , is given respectively for |Θ| = 3 and |Θ| = 4 by: Θ r = {[2

θ 1 ∪ θ 2 = 1 ∩ θ 2 )

 1212 ∪ θ 3 = [3 5 6 8 11 14].

Figure 4 :

 4 Figure 4: DSm cardinality C M (X), ∀X ∈ D Θ with |Θ| = 3.

Figure 5 :

 5 Figure 5: DSm cardinality C M (X), ∀X ∈ D Θ with |Θ| = 4.

Figure 6 :

 6 Figure 6: Number of elements of D Θ for |Θ| = 5, with the same DSm cardinality.

  (a) Elements are ordered by increasing DSm cardinality. (b) Elements are ordered with the same order than the figure 5.

Figure 7 :

 7 Figure 7: DSm cardinality C M (X), ∀X ∈ D Θ r with |Θ| = 4 and θ 1 ∩ θ 2 ≡ ∅.

Figure 8 :

 8 Figure 8: Number of elements of D Θ r for |Θ| = 5 and θ 1 ∩ θ 2 ≡ ∅, with the same positive DSm cardinality.
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The first step of the fuse function 2 is the coding. The cardinality of Θ gives the codification of the singletons of Θ, thanks to the function 3, then we add the constraints to Θ with the function 4 and obtain Θ r . With Θ r , the function 6 calling the function 5 codes the focal elements of the experts given by the human operator. The combination is made by the function 7 in static mode. For dynamic fusion, we just consider one expert with the previous combination. In this case the order of the experts given by the user can have an important signification. The decision step is made with the function 11. The last step concern the display and the hard problem of the decoding. Thus, 4 choices are possible: no display, the results of the combination only, the results of decision only and both results. These displays could take long time according to the parameters given by the human operator. Hence, the results of the combination could have the complexity of the generation of D Θ r and must be avoid if the user does not need it. The complexity of the decision results could also be high if the user does not give the exact set of elements on witch decide, or only the singletons with 'S' or on 2 Θ with '2T'. In other cases, with luck, the execution time can be short thanks to the function 18.

Function 2 -Fuse function function fuse(expert,constraint,n,criteriumComb,criteriumDec,mode,elemDec,display) % To fuse experts' opinions % % fuse(expert,constraint,n,criteriumComb,criteriumDec,mode,elemDec,display) % % Inputs: % expertC = containt the structure of the list of coded focal elements and % corresponding bba for all the experts % constraint = the empty elements % elemDec = list of elements on which we can decide % n = size of the discernment space % criteriumComb = is the combination criterium % 

Codification

The codification is based on the function 3. The order of the integer numbers could be different, here the choice is made to number the intersection of all the elements with 1 and the smallest integer among the |Θ| = n bigger integers for the first singleton. In the same time this function give the correspondence between the integer numbers of the practical codification and the Smarandache's codification. This function 3 is based on the Matlab function nchoosek(tab,k) given the array of all the combination of k elements of the vector tab. If the length of tab is n, this function return an array of C k n rows and k columns. The addition of the constraints is made in two steps: first the codification of the elements in the list constraint is made with the function 5, then the integer numbers in the codification of the constraints are suppressed from the codification of Θ. The function string2code is just the translation of the brackets and union and intersection operators in negative numbers (-3 for '(', -4 for ')', -1 for '∪' and -2 for '∩') in order to manipulate faster integers than strings. This simple function is not provided here. 

Combination

The function 7 proposes many combination rules. Most of them are based on the function 8, but for some combination rules we need to keep more information, so we use the function 9 for the conjunctive combination. E.g. in the function 10 note the simplicity of the code for the PCR6 combination rule. Other combination rules' codes are not given here for the sake of clarity. 

Decision

The function 11 gives the decision on the expert focal element list for the corresponding bba with one of the chosen criterium and on the elements given by the user for the decision. Note that the choices 'A' and 'Cm' for the variable elemDec could take a long time because it need the generation of D Θ r . This function can call one of the decision functions 13, 14, 15, 16. If any decision is possible on the chosen elements given by elemDec, the function return -1. In case of reject element, te function return 0. ------------------------------------------------------- For the displays, we must decode the focal elements and/or the final decision. The function 17 decodes the focal elements in the structure expert that contain normally only one expert. This function calls the function 18 that really does the decoding for the user. This function is based on the generation of D Θ r given by the function 21 that a is modified and adapted code from [START_REF] Dezert | The generation of the hyper-power sets[END_REF]. To generate D Θ r we first must create the intersection basis. Hence in the function 18 we use a loop of 2 Θ in order to generate the basis and in the same time to scan the power set 2 Θ and also the elements of the intersection basis. These two basis (intersection and union) are in fact concatenated during the construction, so we scan also some elements such intersections of previous unions and unions of previous intersections. This generated set of elements does not cover D Θ r . When all the searching focal elements (that can be only one decision element) are found, we stop the function and avoid to generate all D Θ r . Hence if the searching elements are not all found after this loop, we begin to generate D Θ r and stop when all elements are found. So, with luck, that can be fast.

We can avoid to generate D Θ r for only the display if we use the Smarandache's codification. The function 19 transforms the used code of the focal elements in the structure expert in the Smarandache's code, easer to understand by reading. This function calls the function 20 that really does the transformation. The focal elements are directly in string for the display.