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Abstract

Near-total depletions of ozone have been observed in the Arctic spring since the mid

1980s. The autocatalytic cycles involving reactive halogens are now recognized to be

of main importance for Ozone Depletion Events (ODEs) in the Polar Boundary Layer

(PBL). We present sensitivity studies using the model MISTRA in the box-model mode5

on the influence of chemical species on these ozone depletion processes. In order to

test the sensitivity of the chemistry under polar conditions, we compared base runs un-

dergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs

including a modification of the chemical conditions. The role of HCHO, H2O2, DMS,

Cl2, C2H4, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated10

mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speci-

ation from Br/BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from

HOBr/HBr to Br/BrO. Cases with elevated mixing ratios of HONO, NO2, and RONO2

induced a shift to BrNO2/BrONO2. The shifts from Br/BrO to HOBr/HBr accelerated the

aerosol debromination, but also increased the total amount of deposited bromine at the15

surface (mainly via increased deposition of HOBr). These shifts to HOBr/HBr also hin-

dered the BrO self-reaction. In these cases, the ozone depletion was slowed down,

where increases in H2O2 and HONO had the greatest effect. The tests with increased

mixing ratios of C2H4 highlighted the decrease in HOx which reduced the production

of HOBr from bromine radicals. In addition, the direct reaction of C2H4 with bromine20

atoms led to less available reactive bromine. The aerosol debromination was there-

fore strongly reduced. Ozone levels were highly affected by the chemistry of C2H4.

Cl2-induced ozone depletions were found unrealistic compared to field measurements

due to the rapid production of CH3O2, HOx, and ROOH which rapidly convert reactive

chlorine to HCl in a “chlorine counter-cycle”. This counter-cycle efficiently reduces the25

concentration of reactive halogens in the boundary layer. Depending on the relative

bromine and chlorine mixing ratios, the production of CH3O2, HOx, and ROOH from

the counter-cycle can significantly affect the bromine chemistry. Therefore, the pres-
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ence of both bromine and chlorine in the air may unexpectedly lead to a slow down in

ozone destruction. For all NOy species studied (HONO, NO2, RONO2) the chemistry

is characterized by an increased bromine deposition on snow reducing the amount of

reactive bromine in the air. Ozone is less depleted under conditions of high mixing

ratios of NOx. The production of HNO3 led to the acid displacement of HCl, and the5

release of chlorine out of salt aerosols (Cl2 or BrCl) increased.

1 Introduction

Since the first reports of dramatic decreases of ozone (so-called ODEs) in the Arc-

tic during spring (Bottenheim et al., 1986; Oltmans and Komhyr, 1986; Barrie et al.,

1988), intensive efforts have been made to better understand the processes involved10

in the observed ozone loss. These events with low mixing ratios of ozone were cor-

related with high concentrations of filterable bromine (f-Br) (Barrie et al., 1988, 1989;

Bottenheim et al., 1990). Later, BrO was observed with Long-Path DOAS (LP-DOAS,

see Hausmann and Platt, 1994). Lehrer et al. (1997) showed a striking correlation be-

tween f-Br and BrO. During the ALERT2000 campaign, Br2 and BrCl were measured15

with mixing ratios as high as 30–35 pmol mol
−1

in April, while Cl2 was not observed

above its detection limit of about 2 pmol mol
−1

(Foster et al., 2001; Spicer et al., 2002).

Similarly, results from the chemical amplification method used by Perner et al. (1999)

showed mixing ratios of ClOx (Cl+ClO) not exceeding 2 pmol mol
−1

in spring. Only

the measurements by Tuckermann et al. (1997) in Spitzbergen in 1995 indicated ClO20

mixing ratios up to 21 pmol mol
−1

. These values were not observed, however, in the

follow-up campaign in 1996. During the TOPSE aircraft program Ridley et al. (2003)

showed that ozone depletions were actually widespread in the Arctic region. Indeed,

Zeng et al. (2003) estimated that about 20% of the Arctic regions were influenced by

persistent near-surface ODEs in spring. This is in accordance with remote sensing25

data from satellites measuring column BrO (Richter et al., 1998; Wagner and Platt,

1998). For more details on polar ODEs, see Simpson et al. (2007b).
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Under ODE conditions halogen catalytic reaction cycles are responsible for the de-

pletion of O3. Halogens (X,Y=Br, Cl, I) directly destroy ozone via three main cycles

(see, e.g., von Glasow and Crutzen, 2007; Simpson et al., 2007b). Rate coefficients

between iodine and ozone are highest, but we do not focus on iodine chemistry in this

paper. Bromine is the most abundant and therefore, the most efficient halogen species5

for the ozone destruction:

Cycle I:

2(O3 + X −→ XO + O2) (1)

XO + XO −→ 2 X + O2 (2)

−→ X2 + O2 (3)10

X2
hν
−→ 2 X (4)

Net: 2 O3 −→ 3 O2

This cycle I is the fastest ozone-depleting reaction cycle for X=Br.

Cycle II:

XO + HO2 −→ HOX + O2 (5)15

HOX
hν
−→ OH + X (6)

CO + OH
O2
−→ HO2 + CO2 (7)

Net: O3 + CO −→ O2 + CO2

Reaction (5) is very fast and represents a main pathway for the production of HOX.

Cycle III:20

XO + YO −→ X + Y + O2 (8)

−→ XY + O2 (9)

−→ X + OYO (10)

Net: 2 O3 −→ 3 O2
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The interhalogen Reactions (8) to (10) have similar effects on ozone to those of bromine

itself.

If enough CH3O2 is present in the airmass, the following reaction might become a

substantial pathway to convert BrO into other reactive halogen species (Aranda et al.,

1997):5

BrO + CH3O2 −→ HOBr + O2 (11)

−→ Br + HCHO + HO2 (12)

HO2 impacts the speciation of bromine species via reaction with BrO (see

Reaction 5). In addition, it directly reacts with Br atoms to form HBr:

Br + HO2 −→ HBr + O2 (13)10

Reaction (5) is the most efficient one for the modification of the bromine speciation,

followed by Reactions (11–12) (with an order of magnitude less efficient). The reaction

rates of Reaction (13) remain usually small. However, it may become important when

the ratio [Br]:[BrO] increases (e.g., when ozone depletion is nearly complete).

In order to sustain a significant amount of reactive halogens in the gas phase, addi-15

tional mechanisms involving the liquid and solid phases (aerosols, ice crystals/snow)

are necessary to activate halides and recycle less-reactive gas phase halogens. In the

early 1990s Fan and Jacob (1992) and McConnell et al. (1992) suggested the following

important heterogeneous reaction path for the liberation of Br2 and BrCl from sea salt

(based on data from Eigen and Kustin, 1962), involving HOBr:20

HOXaq + Y−
+ H+

−→ XYaq + H2O (14)

The proportional release of Br2/BrCl from Reaction (14) was experimentally studied

by Fickert et al. (1999). The required acidity may be supplied by strong acids, such

as man-made HNO3 and H2SO4 (see also Mozurkewich, 1995; Tang and McConnell,

1996; Vogt et al., 1996). Reaction (14), releasing two bromine atoms in the gas phase25

from the uptake of HOBr is called the “bromine explosion” (Platt and Lehrer, 1996). The
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source of halogens in the PBL remains unclear. Recently, efforts to locate the source

focused on freshly-new sea ice and frost flowers (Martin et al., 1995; Rankin et al.,

2000; Kaleschke et al., 2004; Dominé et al., 2005), as they provide adequate surfaces,

called “brine” (Richardson and Keller, 1966), containing highly concentrated halides.

Simpson et al. (2007a) found a high correlation between fresh sea ice and high levels5

of BrO.

Box models (Fan and Jacob, 1992; McConnell et al., 1992; Tang and McConnell,

1996; Sander et al., 1997; Michalowski et al., 2000; Evans et al., 2003) and one-

dimensional models (Lehrer et al., 2004; Piot and von Glasow, 2007) have investigated

the reaction cycles and have increased our understanding of the halogen/ozone chem-10

ical processes. Piot and von Glasow (2007) modeled meteorological and chemical

processes that may influence the occurrence of an ODE with the snow surface act-

ing as an efficient recycling surface. They also investigated the relevance of observed

levels of non-halogen species on the halogen/ozone chemistry. However, the relative

importance of these relevant species in the Arctic on the ozone chemistry has to be15

better understood.

Numerous concentration and flux measurements of compounds in the Arctic have

been reported in the literature, but the variability of these compounds in relation to

the ozone/halogen chemistry needs a clearer investigation to better understand the

occurrence of an ODE. In this paper, we examined the potential effects of the presence20

of several chemical species in the PBL on the ozone level. Several modifications (in

mixing ratios or fluxes) compared to conditions in base runs are investigated for HCHO,

H2O2, DMS, Cl2, C2H4, C2H6, HONO, NO2, and RONO2. Implications for the chemistry

in the PBL are discussed in Sects. 4.3 to 4.9.

2 Model description and setup25

We used the model MISTRA which was initially designed to study the physics and

chemistry of the marine boundary layer (von Glasow et al., 2002a,b; von Glasow and
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Crutzen, 2004) but was recently extended and applied also to Arctic conditions (Piot

and von Glasow, 2007). MISTRA is a one-dimensional model which can also be used

as a box model which is what we did for this study. In this study, we used the box model

in the Lagrangian mode.

We chose the solar conditions (relevant for the calculation of photolysis frequencies)5

for Alert, Canada (82.5
◦
N, 62.3

◦
W) as in early spring (solar declination of +7

◦
). We

chose a boundary layer height of 300 m, as often observed during spring in the high

Arctic (Hopper and Hart, 1994; Hopper et al., 1998; Ridley et al., 2003). The relevant

meteorological parameters in the box-model mode are the temperature, relative humid-

ity, and the particle size distribution. The uptake of gases by aerosols is temperature10

dependent (Schwartz, 1986) because the molecular speed, the gas phase diffusivity,

and the reactive uptake depend on the temperature. We want to stress, however, that

the temperature dependencies of the uptake parameters are based on estimates as

found in the literature.

In the sensitivity studies we present in this paper we distinguish an airmass influ-15

enced by the presence of sea water (coastal conditions) from an aged airmass over

snow-covered areas (background conditions). The airmass composition is modified by

the presence of sea water (see Table 1). Sea salt aerosols (SSA) are only produced

in runs under coastal conditions. They provide an additional source of potentially re-

leasable bromine (Reaction 14) and represent an important medium for recycling less20

reactive bromine compounds.

SSAs are produced by bursting bubbles at the sea surface (Woodcock, 1953; Prup-

pacher and Klett, 1997). We used the parameterization from Monahan et al. (1986) to

estimate the flux of these particles (with wind speed u=5 m s
−1

). The initial composition

of SSAs is listed in Table 2. According to measurements made by Koop et al. (2000)25

SSAs and sulfate aerosols are liquid under the conditions of our model runs.

The very stiff chemical differential equation system is solved with a Rosenbrock third-

order integrator using automatically adjusted timestep (∆t=10
−10

to 10 s) (Sandu et al.,

1996).
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All chemical reactions in gas and aqueous phase, equilibria and transfer reactions

are calculated as one coupled system using the kinetic preprocessor KPP which allows

rapid change of the chemical mechanism (Damian et al., 2002). The temperature,

humidity and particle size distribution are updated every 10 s. Photolysis frequencies

are calculated online (Landgraf and Crutzen, 1998) every 10-min timestep with a four-5

stream model.

We used a two-day, one-dimensional model run to calculate the photolysis rates

at the lowermost layer (5 m), used in the initialization of the box model. SSAs are

produced during this “spinup” run. The box-model sensitivity runs last four days.

A diurnal variation of the temperature (∆T=2 K) is prescribed, inducing a temperature10

range from T=243.5 to 245.5 K in the model (see Jobson et al., 1994; Hopper et al.,

1994; Ridley et al., 2003).

The initial mixing ratios for gas phase species (ξ) are based on observations made

at Alert, in April (Table 3). MISTRA includes a comprehensive set of gas phase reac-

tions as well as chemical reactions in aerosol particles focusing on halogen species.15

Exchanges between the two phases are also taken into account. The set of used re-

actions is similar to von Glasow et al. (2002b), but updated with data from the IUPAC

compilation (February 2006, available from http://www.iupac-kinetic.ch.cam.ac.uk/).

The chemical reaction mechanism in the model has been updated with additional

relevant species for the Arctic environment: alkyl nitrate RONO2 (with the alkyl group20

R=CnH2n+1), bromoform CHBr3 and methyl bromide CH3Br. The model includes

169 gas phase reactions (H-O-S-C-N-Br-Cl), as well as 150 aqueous phase reac-

tions, 60 phase exchange reactions, 13 heterogeneous reactions and 21 equilibria

for both sulfate and sea salt aerosols. The updated set of reactions is available as

electronic attachment to this paper. http://www.atmos-chem-phys-discuss.net/8/7391/25

2008/acpd-8-7391-2008-supplement.pdf

All particles above their deliquescence humidity (70% and 75% of relative humidity

for sulfate and sea salt aerosols, respectively) are treated as aqueous solutions. The

same holds for particles that had been activated or have been released as droplets
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above their crystallisation humidity (40% and 42%, respectively). A detailed description

of the aerosol characteristics can be found in von Glasow et al. (2002b).

Under coastal conditions, we prescribed surface fluxes of dimethylsulfide (DMS) and

ammonia (NH3), as well as mixing ratios of biogenic bromine (see Table 1).

3 Chemical reaction cycles5

This section is meant to give an introduction to reaction cycles that will be discussed

in the remainder of this paper. For a more thorough discussion please refer to, e.g.,

Seinfeld and Pandis (1998) or Finlayson-Pitts and Pitts (1999).

3.1 HCHO and HOx chemistry

Formaldehyde (HCHO) is an important source of oxidizing free radicals (HOx) for the10

PBL, and has therefore received considerable interest in the last decade (Barrie et al.,

1994; Sumner and Shepson, 1999; Hutterli et al., 2002; Jacobi et al., 2002; Ridley et al.,

2003; Jacobi et al., 2004). Measurements in the air, firn air, and in snow revealed varia-

tions of HCHO determined by several processes. Its uptake/release between the snow

and adjacent firn air is temperature-dependent. Additionally, photochemical reactions15

and ventilation of the firn air to the above layers play an important role in the production

of HCHO from the snowpack. For more details on the production of HCHO the reader

is referred to Simpson et al. (2007b). Its main loss reactions are:

HCHO
hν
−→ H2 + CO (15)

hν,O2
−→ 2HO2 + CO (16)20

HCHO + OH
O2
−→ HO2 + CO + H2O (17)

If present in sufficient amounts, HCHO may modify the bromine chemistry via:

HCHO + BrO
O2
−→ HOBr + CO + HO2 (18)
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HCHO + Br
O2
−→ HBr + CO + HO2 (19)

The reaction between HCHO and chlorine is discussed in Sect. 3.3. The chemistry of

formaldehyde is investigated in Sect. 4.3.

Hydrogen peroxide (H2O2) in the Arctic is found in high concentrations in snow.

Snow-air fluxes have been measured at several sites in polar regions (Fuhrer et al.,5

1996; Hutterli et al., 2001; Jacobi et al., 2002; Hutterli et al., 2004). It is reversibly

deposited to the snow due to nonlinear processes occurring between the atmosphere

and the snow (Conklin et al., 1993; Neftel et al., 1995). H2O2 has a significant impact

on the lifetime of trace gases as it constitutes a large potential source for gas phase ox-

idants (HOx) which contribute to the atmospheric oxidizing capacity. H2O2 is destroyed10

in Reactions (20–22) (producing HOx) and is produced in Reaction (23).

H2O2
hν
−→ 2 OH (20)

H2O2 + OH −→ HO2 + H2O (21)

H2O2 + Cl −→ HCl + HO2 (22)

HO2 + HO2 −→ H2O2 + O2 (23)15

The chemistry of H2O2 is discussed in Sect. 4.4.

3.2 DMS chemistry

Charlson et al. (1987) suggested a role of dimethylsufilde (DMS) in regulating climate.

This effect, if present, remains ill-quantified though. Toumi (1994), based on kinetic

data from Barnes et al. (1991), was the first to suggest that BrO might play an impor-20

tant role in the oxidation of DMS. von Glasow and Crutzen (2004) discussed uncer-

tainties in the oxidation of DMS and pointed out that the net effect of DMS oxidation

products, considering BrO as oxidant, on clouds might be contrary to those suggested

by Charlson et al. (1987), namely a decrease of cloud albedo instead of an increase.
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The following are the most important halogen-DMS reactions:

DMS + Cl
O2
−→ HCl + CH3SCH2O2 (24)

DMS + BrO −→ DMSO + Br (25)

DMSO + OH −→ 0.95 CH3O2 + 0.95 CH3SO2H

+0.05 DMSO2 (26)5

The interactions between DMS and bromine are discussed in Sect. 4.5.

3.3 Chlorine chemistry

The chemistry of chlorine has been extensively studied. Keene et al. (1999) provided

an inventory for sources of reactive chlorine. Jobson et al. (1994) were the first to

indirectly measure concentrations of chlorine in the Arctic troposphere.10

However, low chlorine levels observed in the Arctic indicated its minor role in ozone

depletions (Perner et al., 1999; Foster et al., 2001; Spicer et al., 2002). Nevertheless,

chlorine may considerably modify hydrocarbons and radical budgets (Jobson et al.,

1994; Ariya et al., 1998, 1999; Ramacher et al., 1999): the destruction of ozone by

chlorine chemistry is described in Sect. 1. Additionally, if substantial levels of chlorine15

are present the following reactions may become important:

Cl + CH4

O2
−→ HCl + CH3O2 (27)

CH3O2 + HO2 −→ ROOH + O2 (28)

ROOH + Cl −→ HCl + CH3O2 (29)

ClO + CH3O2 −→ Cl + HCHO + HO2 (30)20

Cl + HCHO
O2
−→ HCl + HO2 + CO (31)

where ROOH is a hydroperoxide (see, e.g., Jacob, 2000; Frey et al., 2006) with

R=CnH2n+1. Chlorine chemistry is investigated in Sect. 4.6.
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3.4 C2H4 chemistry

Measurements of fluxes of alkenes from the snow have shown the presence of local

sources for ethene (C2H4) in the Arctic. Bottenheim et al. (2002a) measured atmo-

spheric mixing ratios as high as 100 pmol mol
−1

in early spring with a slow decrease

with season. In our set of reactions, three reactions characterize the chemistry of C2H4:5

C2H4 + Cl
O2
−→ HCl + C2H5O2 (32)

C2H4 + OH
O2
−→ H2C(OH)CH2OO (33)

C2H4 + Br
O2
−→ HBr + C2H5O2 (34)

The rate coefficients for Reactions (32) and (33) are about 200 and 2000 times

higher than for Reaction (34), respectively. The reactions involving C2H5O2 and10

H2C(OH)CH2OO will not be further detailed in this paper as their reaction rates remain

very small under polar conditions. In MISTRA the possible formation of organically-

bound bromine compounds as reaction product of Reaction (34) (Keil and Shepson,

2006) is not taken into account. Other reactions with heavier alkenes are not included

in the model. We investigated the effect of these three reactions in Sect. 4.7.15

3.5 C2H6 chemistry

Alkanes are commonly present in the Arctic due to transport from the source regions

(Eurasia and northern America mostly, see AMAP report, 1998). In April, ethane

(C2H6) is usually observed in the surface air at about 1.5−2.5 nmol mol
−1

with a gradual

decline with season (Jobson et al., 1994; Ariya et al., 1999; Bottenheim et al., 2002a;20

Evans et al., 2003). In our model C2H6 chemistry includes the following reactions:

C2H6 + Cl
O2
−→ HCl + C2H5O2 (35)

C2H6 + OH
O2
−→ C2H5O2 + H2O (36)
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C2H6 does not directly react with bromine. As for alkenes, heavier alkane compounds

are not included in the model. The sensitivity studies on the influence of C2H6 on the

ozone/halogen chemistry are presented in Sect. 4.8.

3.6 NOx chemistry

NOx species are photochemically produced in the snowpack (Honrath et al., 1999,5

2000a,b; Zhou et al., 2001; Beine et al., 2002; Jacobi et al., 2004). The major NOx

reactions are listed below.

NO2

hν,O2
⇋ NO + O3 (37)

NO2 + OH
M
−→ HNO3 (38)

NO + HO2 −→ NO2 + OH (39)10

With sufficiently high NOx concentrations, the concentrations of bromine radicals may

be altered via:

Br + NO2 −→ BrNO2 (40)

BrO + NO2

M
⇋ BrONO2 (41)

BrO + NO −→ Br + NO2 (42)15

After their formation, bromine nitrate and nitrite may decompose back or photolyze to

release reactive bromine:

BrNO2
hν
−→ Br + NO2 (43)

BrONO2
hν
−→ Br + NO3 (44)

Br + BrONO2 −→ Br2 + NO3 (45)20
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BrONO2 may also hydrolyse on liquid surfaces via:

BrONO2

H2O
−→ HOBr + HNO3 (46)

Also, Sander et al. (1999) suggested that BrONO2 may heterogeneously react with

aerosol halides without required acidity (based on experimental observations from

Behnke et al., 1997):5

BrONO2 + X−

aq −→ BrXaq + NO−

3,aq
−→ BrX (47)

However, in the Arctic, the release of reactive bromine under background NOx levels

via this reaction is relatively small (100 times less efficient than Reaction 14, due to a

small rate coefficient for Reaction 47).

The chemistry of nitrous acid (HONO) plays an important role for the complete nitro-10

gen cycle in the troposphere (Perner and Platt, 1979; Heikes and Thompson, 1983).

Measurements in the Arctic during spring indicated intensive photochemical produc-

tions in the snowpack constituting a major source of HONO for the boundary layer

(Zhou et al., 2001; Beine et al., 2003; Amoroso et al., 2006). The only relevant sink for

HONO is its photolysis producing both highly reactive OH and NO molecules:15

HONO
hν
−→ OH + NO (48)

RONO2 is likely to contribute to the NOx budget (Brasseur et al., 1999). For a detailed

description of the production and loss of RONO2, see Carter and Atkinson (1985). In

the Arctic RONO2 mainly reacts via the following reactions:

RONO2
hν
−→ NO2 + products (49)20

RONO2 + OH −→ HNO3 + products (50)

RONO2 + Cl −→ HCl + NO2 + products (51)

The chemistry of the NOy species (NOx, HONO, and RONO2) is investigated in

Sect. 4.9.
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4 Discussion of the sensitivity studies

4.1 Overview

We prescribed a source of gas phase halogens to reproduce ozone depletions with

observed time scales. In this paper, for the sake of simplicity, we did not intend to re-

alistically reproduce the source of bromine in the model. For a thorough investigation5

of the source of bromine, the reader is referred to the recent paper from Piot and von

Glasow (2007). We quantified the required fluxes of halogen in accordance with their

effects on ozone. Then, we associated the resulting ozone depletions with the classi-

fication proposed by Ridley et al. (2003) to define the type of ODE. Regarding ozone

mixing ratios, we define a partial ODE (PODE) as 4<ξOzone≤20 nmol mol
−1

and a ma-10

jor ODE (MODE) as ξOzone≤4nmol mol
−1

. We distinguished major ODEs developing

within one day from major ODEs developing within four days (called M1 and M4). Par-

tial ODEs developing within 4 days are named P4. Depletions of ozone are reproduced

via different sources of halogens. In this study, we analyzed Br2, Cl2 and BrCl as the

potential sources. Note that no diurnal variation of fluxes is taken into account in this15

study. The applied source of halogens is prescribed as a constant flux (see Table 4).

Excessive fluxes of chlorine are discussed in Sect. 4.6.

The runs including a prescribed source of halogens and initialized as shown in

Table 3 represent our “base runs”. Figure 2 illustrates the M1, M4 and P4 ODEs caused

by the prescribed Br2 fluxes (Table 4). The names of our sensitivity runs include the20

source of halogens (Br2, BrCl, or Cl2) and additionally any change compared to the

base run. The run Br2-M4 is one of our base runs with a major ozone depletion devel-

oping within four days caused by a Br2 flux. The run Br2-M4-DMS=0.20 nmol mol
−1

is

the same run with a different value for the initial mixing ratio of DMS than in the base

run.25

Our sensitivity studies consist of modifying the amount of a species compared to

the amount in the base runs. We want to stress that only relevant cases with infor-
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mative features for halogen or ozone concentrations are discussed in this paper. This

paper does not intend to reproduce observed conditions, but rather to investigate the

potential influence of several species on the halogen/ozone chemistry. We differentiate

three different modification types: a change in initial mixing ratio only, in flux only, or in

both. The studied values, for mixing ratios, were increased/decreased by an order of5

magnitude compared to the initial value used in the base runs. In case flux measure-

ments for a species are known, we used an adequate average value for our sensitivity

tests (e.g., see Sect. 4.9). When no flux measurement is known at the appropriate

location and time of the year, we assumed the fluxes as function of their initial mixing

ratio. After evaluation of the potential range of study, lower/upper values for the fluxes10

in these sensitivity studies are chosen to be 10%/200% of the initial mixing ratio, per

day (e.g., ξethane=1.5 nmol mol
−1

; flux=0.15/3.0 nmol mol
−1

day
−1

). We chose 200% for

the upper limit in our study as higher values would induce fluxes in majority exceeding

any field observation. The value 10% induced small fluxes which do not considerably

modify the gas phase mixing ratio.15

These fluxes remain constant throughout the model simulations. Diurnal variations

that may be observed in the field (Sumner and Shepson, 1999; Zhou et al., 2001;

Hutterli et al., 2001; Foster et al., 2001; Bottenheim et al., 2002a) are therefore not

taken into account.

Due to the large number of sensitivity runs we only selected the most relevant runs in20

this paper. We chose the runs to be discussed with an ODE type (M1, M4, P4), based

on the relevance of the applied conditions or their specific chemistry compared to the

base run.

4.2 Details of base runs

In order to comprehensively analyze the sensitivity runs, we first describe the main25

features of the base runs. In Fig. 2, O3 undergoing a P4 ODE or a M4 ODE is con-

tinuously depleted, with a net slow down in destruction at night due to the absence of

reactive halogens. The destruction of O3 during a M1 is very rapid and occurs within
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a few hours. In Fig. 3, we show the chemistry of compounds other than O3 for the

two base runs Br2-M4 and Br2-P4. Br2-M1 is omitted for clarity. In addition, the base

run Br2-M1 will not be investigated in great details in this paper as the required flux is

rather unlikely high. Similarly, details of BrCl- and Cl2-induced ODEs will be described

in upcoming sections.5

In both M4 and P4 cases, total gas phase bromine (Brx, Fig. 3a) increases during

the three first simulated days due to the constant flux of Br2. The production of BrO

via Reaction (1) increases gradually over time. BrO undergoes a strong diurnal cycle

(Fig. 3b) as Br atoms are quasi absent at night. Sea salt aerosol Br
−

is liberated in both

cases via the bromine explosion cycle (Fig. 3c) and less reactive bromine is mostly10

recycled via reaction in acidic sulfate aerosols (not shown). On the last simulated day

bromine compounds evolve differently in cases M4 and P4: in the case P4, O3 remains

above 11 nmol mol
−1

, and the rates for Reaction (1) do not decrease strongly due to

the reduction of O3 mixing ratios. Therefore, BrO remains at high mixing ratios during

the last day (∼ 25 pmol mol
−1

). In contrast, in the case M4, the O3 destruction is nearly15

complete 12 h before the end of the run. Rates for Reaction (1) drastically decrease and

the BrO production is also reduced (see sharp decrease in Fig. 3b). The decrease of

this reaction rate leads to a shift in speciation from BrO to Br, and therefore, from HOBr

to HBr (see Reactions 5 and 13). The reduction of HOBr and increase of HBr lead to

the re-bromination of the aerosols (see SSA Br
−

in Fig. 3c, on the last day. Sulfate Br
−

20

not shown). HOx mixing ratios on the first day are approximately 1 and 1.5 pmol mol
−1

in cases M4 and P4, respectively, with a rapid decrease to values below 0.3 pmol mol
−1

for the following days. These mixing ratios are similar to measurements obtained by

Bloss et al. (2007) in coastal Antarctica.

4.3 Formaldehyde influence25

We investigated the influence of a constant flux of HCHO on the development of an

ODE. Figure 4 shows the comparison between the base run Br2-P4 and the run Br2-
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P4-HCHO where a flux of 5.0×10
9

molec cm
−2

s
−1

is prescribed under background air

conditions (for these conditions, see Table 1). This value is similar to the one used in

Michalowski et al. (2000), and the resulting HCHO mixing ratios in the gas phase are

in good agreement with observations (de Serves, 1994; Sumner and Shepson, 1999;

Sumner et al., 2002). As explained in Sect. 3.1 a high concentration of HCHO (Fig. 4b)5

increases the reaction rates of Reactions (18) and (19) and increases the production

of HO2 via Reactions (16) and (17) (Fig. 4c). Therefore, in this case the halogen

speciation is rapidly shifted from X and XO to HOX and HX (also see Reactions 5 and

13). Mixing ratios of HBr, HCl, HOBr, and HOCl rapidly increase (Figs. 4g to i). The

uptake of these compounds onto aerosols maintains the rapid aerosol dehalogenation10

via the bromine explosion process (Reaction 14, see Fig. 4d).

The sea salt aerosol dehalogenation depends on the ratio [Br
−

]:[Cl
−

] (see Fickert

et al., 1999; Adams et al., 2002). Under our conditions, this dehalogenation occurs

mostly in the form of a Br2 liberation in the gas phase, but BrCl and Cl2 are also

produced.15

After the near-complete aerosol debromination on the first day (after ≃10 h), both

runs undergo a shift in speciation from bromine radicals to HOBr and HBr (shift stronger

in Br2-P4-HCHO). This shift reduces the BrO self-reaction (Reactions 2–3) which is an

efficient cycle for the release of Br atoms. Furthermore, bromine deposition on snow

strongly increases (see accumulated deposition in Fig. 4k), significantly decreasing the20

total gas phase bromine concentration in Fig. 4j. We calculated that HOBr is responsi-

ble for nearly 80% of this increase.

Interestingly, mixing ratios of Br2 in the gas phase (Fig. 4f) show a decrease com-

pared to the base run. This decrease is a consequence of the large loss of bromine on

snow which reduces the bromine loading in the gas phase.25

At the end of the model run the amount of highly reactive BrO is reduced by 65%

(Fig. 4e). As a result O3 mixing ratios are 10 nmol mol
−1

higher than in the base run

(Fig. 4a). Note that Br
−

in SSA increases during the last simulated day in the base run

due to insufficient HOBr in the aqueous phase (see solid black line, Fig. 4d).
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In summary, a flux of HCHO as prescribed here efficiently reduces the ozone deple-

tion process, as the PODE4 threshold is reached only at the very end of the simulation.

In all studied cases with elevated HCHO mixing ratios, HCHO strongly modified the

halogen speciation. However, the conditions of high mixing ratios of HCHO differ-

ently impacted the ozone chemistry, depending on the concentration of Br
−

in sea salt5

aerosols. With high initial aerosol Br
−

concentrations, the bromine explosion is acceler-

ated by the presence of more HCHO and HOx (see explanations above). With very low

initial Br
−

concentrations, the chemistry is characterized only by the shift in bromine

speciation and a resulting reduction of available highly reactive bromine radicals (not

shown).10

Under conditions of near-total O3 depletion and high concentrations of HCHO in the

air (e.g., Br2-M1 with a constant flux of HCHO), the conversion from bromine radicals to

HBr and HOBr rapidly leads to an increase in aerosol Br
−

concentration and therefore,

in its deposition on snow. Mixing ratios of Brx dramatically decrease (not shown). We

noted no major difference in the chemistry when we applied this case to coastal air15

conditions (with the changes listed in Table 1).

Under conditions of Cl2-induced ODEs, the presence of high HCHO fluxes led to no

relevant changes in the ozone chemistry (maximum differences of 1 nmol mol
−1

).

When prescribing a HCHO flux of 6.0×10
7

molec cm
−2

s
−1

, as estimated from Jacobi

et al. (2002) (see Piot and von Glasow, 2007), the influence on bromine was negligigle.20

We conclude that this flux of HCHO has insignificant effects on ozone. These sensitivity

studies show that higher fluxes of HCHO possibly causing the observed gas phase

concentrations are required to significantly impact the ozone chemistry.

4.4 H2O2

In this section we compare the base run Br2-M4 to Br2-M4-25

H2O2=1.5×10
10

molec cm
−2

s
−1

(Fig. 5). To the best of our knowledge, fluxes of

H2O2 at Alert in spring have not yet been measured. Therefore, we used values for
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this flux as described in Sect. 4.1. Such fluxes out of the snowpack have already been

measured by Hutterli et al. (2004), but their location (Summit, Greenland) and the

period of measurement (summer) differ significantly from our conditions. This H2O2

flux induces gas phase mixing ratios three to four times higher than observations in the

Arctic spring (de Serves, 1994). However, these mixing ratios remain in the range of5

late spring/summertime measurements (Bales et al., 1995; Hutterli et al., 2001; Jacobi

et al., 2002).

The photolysis of H2O2 represents its primary loss pathway (Reaction 20), produc-

ing highly reactive OH radicals (Fig. 5d). Reactions (7) and (21) mainly increase the

concentration of HO2 (Fig. 5c). Therefore, as explained in Sect. 4.3, higher reaction10

rates for Reaction (5) and (13) lead to lower mixing ratios of Br and BrO (Fig. 5f). The

higher mixing ratios of reaction products HOBr (Fig. 5e) and HBr maintain an efficient

recycling in SSAs (Fig. 5g). Again, the shifted speciation from Br/BrO to HBr/HOBr

reduces the efficiency of the BrO self-reaction, and the increase in bromine deposition

reduces the total amount of gas phase bromine. Mixing ratios of BrO decrease by up15

to 10 pmol mol
−1

between day 2 and 3 compared to the base run Br2-M4. (Fig. 5f).

Consequently, mixing ratios of O3 are about 9 nmol mol
−1

higher than in the base run

after three days. On the last simulated day, O3 mixing ratios reach the M4 threshold

with a 12-hour delay compared to the base run. As the ozone depletion is not complete

on this last simulated day, BrO mixing ratios remain high, while they rapidly decrease in20

the base run Br2-M4 (see Fig. 5f). Similarly, the bromine recycling through the aerosol

phase remains efficient, keeping Br
−

concentrations low (Fig. 5g), while the base run

undergoes a re-bromination (see Sect. 4.2).

This flux of H2O2 substantially affected the ozone destruction. The aerosol debromi-

nation remained more efficient than in the base model run. However, the deposition25

of bromine on snow (more than 2.0×10
−7

mol m
−2

compared to 0.4×10
−7

for the base

run) was higher than the bromine production in the gas phase and it strongly reduced

the amount of reactive bromine.

When prescribing a flux of 1.0×10
8

molec cm
−2

s
−1

, estimated from Jacobi et al.
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(2002) (see Piot and von Glasow, 2007) for early spring, the ozone chemistry showed

no major change. Such a value for the H2O2 flux does not substantially affect the

concentration of HOx in the gas phase. It seems, from these results, that the fluxes of

H2O2 estimated for the high Arctic in spring are not significantly influencing the ozone

chemistry. These sensitivity studies showed that only higher fluxes (most probably5

related to higher temperatures, e.g., in late spring/summer, see Hutterli et al., 2001)

may effectively influence the ozone/halogen chemistry.

4.5 DMS and DMSO “counter-cycle”

To the best of our knowledge, fluxes of DMS have not been measured in the Arc-

tic spring. The value for the flux used in this section is explained in Sect. 4.1. Fig-10

ure 6 shows a comparison between the base run Br2-M4 and the model run Br2-M4-

DMS=100 pmol mol
−1

with a flux of 4.0×10
9

molec cm
−2

s
−1

. We investigated DMS

only under coastal conditions as it is produced in the ocean.

The primary effect of high concentrations of DMS on the ozone/halogen chemistry is

through Reaction (25): BrO oxidizes DMS and produces Br radicals which represents15

an efficient additional recycling pathway for BrO. Indeed, this reaction leads to slightly

more ozone depletion during the first simulated day (about 0.7%). The reaction product

DMSO (Fig. 6c) then reacts with OH (Reaction 26) to produce CH3O2 (Fig. 6d). This

represents a key reaction initiating a cycle that we call the DMSO “counter-cycle” (see

Fig. 7). An increase in CH3O2 induces more HCHO (Fig. 6e) and HO2 which eventually20

affect the bromine distribution. This leads, again, to a shift in bromine speciation as

explained in Sects. 4.3 and 4.4. Note that the increase of CH3O2 and HCHO starts

on the first simulated day, while the bromine speciation shift becomes important only

on the following day. The relative variation of BrO compared to the base run is anti-

correlated to the relative variations of HOBr and HBr. The presence of more HOBr25

and HBr in the gas phase (Figs. 6h and i) accelerates the aerosol debromination (see

Fig. 6k). However, the deposition of (mostly) HOBr represents a great sink for bromine

(Fig. 6l). Brx is only slightly affected by the competition between aerosol debromination
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acceleration enhancing ξBrx
and the increase of bromine deposition decreasing ξBrx

(Fig. 6j). In this run, ozone reaches the M4 threshold with a delay of only two hours.

In summary, contrary to what one might have expected the reaction between DMS

and BrO is not dominating the overall effect of DMS on bromine/ozone under the con-

ditions of this run. The production of CH3O2 via reaction between DMSO and OH5

becomes rapidly important and leads to less Br radicals. Under conditions of near-total

ozone destruction (e.g., run Br2-M1 after the first day), the shift in bromine speciation

from BrO and Br to mostly HBr leads to a efficient bromination and re-bromination of

sulfate and sea salt aerosols, respectively (not shown).

DMS does not react substantially with ClO and the rate coefficient of Reaction (24)10

is very small. Therefore, DMS does not have an effect on Cl2-induced ODEs.

4.6 Cl2 and “chlorine counter-cycle”

All previous ODEs we investigated were induced by a Br2 flux. In this section we

present results on Cl2-induced ODEs (see Table 4) to study the influence of a Cl2 flux

on ozone chemistry. Not surprisingly, the prescribed Cl2 fluxes required to reduce O315

within the observed time scales were unrealistically high. Nevertheless, we describe

these sensitivity runs as they appear interesting for a better understanding of the chem-

ical cycles.

We present in Fig. 8 the base run Cl2-M1. Upon photolysis of Cl2 on the first simu-

lated day, the two main reactions using chlorine (Reactions 1 and 27) lead to a strong20

production of ClO and CH3O2 (see Fig. 8). Those two reaction products react together

to yield HCHO (Reaction 30). This reaction, increasing HCHO mixing ratios (Fig. 8),

also accelerates the reaction rate of Reaction (31). This reaction chain efficiently con-

verts Cl/ClO (see HCl compared to the sharp decreases in Cl/ClO a few hours after

each sunrise in Fig. 8). Additionally, ROOH is produced substantially via Reaction (28)25

due to the high concentrations of CH3O2 and HO2. Thus, the reaction rate of Re-

action (29) also increases and contributes to the rise of HCl mixing ratios. All these

reaction pathways are schematically described in Fig. 9. This figure clearly shows that
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the reaction chain initiated by Reaction (27) efficiently induces a direct (Reactions 27,

29, and 31) or indirect (Reactions 28 and 30) conversion from reactive chlorine to less

reactive HCl. HCl drastically increases to reach unrealistically high mixing ratios of

several tens of nmol mol
−1

.

In summary, Cl and ClO radicals rapidly react to produce compounds (HOx, ROOH5

or CH3O2) which eventually react back with Cl/ClO to release HCl. We call this negative

feedback “chlorine counter-cycle”.

As highlighted in this section, a higher flux of chlorine radicals induces an even

stronger “chlorine counter-cycle”, shifting chlorine to HCl. In order to induce a major

ODE within one day (M1), it is necessary to prescribe an unrealistically high Cl2 flux of10

3.0×10
11

molec cm
−2

s
−1

to keep the reaction between Cl and O3 (Reaction 1) efficient.

Mixing ratios of ClO (up to 1 nmol mol
−1

) and Cl (order of pmol mol
−1

) are inconsistent

with measurements made in the Arctic (Tuckermann et al., 1997; Impey et al., 1997;

Perner et al., 1999; Boudries and Bottenheim, 2000). We conclude that the presence of

this efficient “chlorine counter-cycle”, as explained in this section, makes a Cl2-induced15

ODE unrealistic.

This counter-cycle cannot initiate in case of Br2-induced ODEs, as there is no reac-

tion between bromine atom and CH4, which is the key reaction to yield CH3O2 in case

of Cl2-induced ODEs.

It is noteworthy mentioning the effect of this counter-cycle on Br2-induced ODEs20

including high concentrations of chlorine. In our sensitivity studies this counter-cycle

appeared to have a substantial influence on the eventual ozone mixing ratios in several

runs. As an example, Fig. 10 shows the comparison between the base run Br2-M4

and Br2-M4-Cl2=5.0×10
8

molec cm
−2

s
−1

under coastal air conditions. In this case Cl

concentrations of up to 2.5×10
−3

pmol mol
−1

released via Cl2 photolysis is sufficiently25

high to “activate” the counter-cycle and therefore, slow down the ozone destruction

via reduction of BrO and Br. After the sunrise on the first day, mixing ratios of ClO

rapidly rise to a maximum of 7 pmol mol
−1

(Fig. 10b) mostly via Reaction (1). This

contributes to the slight decrease in O3 on the first day compared to the base run
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(Fig. 10a). As highlighted in this section, the high mixing ratios of Cl and ClO lead to the

activation of the chlorine counter-cycle: CH3O2, HOx, and ROOH substantially increase

(see Figs. 10d and e). Several hours after each sunrise of the model run, chlorine

radicals undergo the sharp decrease attributed to the counter-cycle (see Fig. 10b with

mean values similar to observations from Perner et al., 1999; Tuckermann et al., 1997)5

and are converted to unreactive HCl (Fig. 10c). As a consequence, higher mixing

ratios of CH3O2 increase reaction rates of Reactions (11–12), while reaction rates

of Reactions (5, 13, 18 and 19) are higher due to increased HO2 and HCHO (see

Fig. 10e). Again, bromine undergoes a shift in speciation from Br/BrO to HBr/HOBr

(Figs. 10f to h).10

This case highlights that high concentrations of bromine together with chlorine may

lead to unexpected halogen interactions. The eventual effect on ozone depends on the

activation state of the chlorine counter-cycle.

The chemistry of BrCl-induced ODEs is similar to that of a Br2-induced ODE includ-

ing a flux of chlorine. In the P4 ozone destruction, the release of chlorine via the flux15

of BrCl (1.0×10
8

molec cm
−2

s
−1

, see Table 4) is too small to “activate” the chlorine

counter-cycle. The bromine chemistry in the BrCl-P4 case remains nearly identical to

the chemistry described for the base run Br2-P4. Therefore, the required flux for BrCl to

induce an equivalent P4 as for Br2-P4 is stochiometrically similar to the Br2 flux. Such

a flux of BrCl induces realistic loadings of chlorine in the model: ξClO∼2 pmol mol
−1

20

(see Perner et al., 1999), ξCl∼4×10
−4

pmol mol
−1

(see Jobson et al., 1994; Boudries

and Bottenheim, 2000), and ξCl2
∼2 pmol mol

−1
(see Foster et al., 2001). The BrCl-M4

base run does show a small influence of the counter-cycle on the bromine chemistry.

This can be highlighted by increased concentrations of HBr compared to the concen-

trations in Br2-M4 (increase of about 40%). Therefore, the BrCl flux required to induce25

an equivalent M4 ODE as in the Br2 case is slightly higher than the stochiometric ratio

with Br2 (1.9×10
8

compared to 2×9.0×10
7

molec cm
−2

s
−1

). In addition, loadings of

chlorine in the model do not differ substantially from the BrCl-P4 run. Mixing ratios

of BrCl in BrCl-M4 reach 7 pmol mol
−1

, while they have a maximum of 5 pmol mol
−1
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in BrCl-P4. In the BrCl-M1 base run, the chlorine counter-cycle is clearly activated

and it strongly affects the bromine chemistry by shifting reactive bromine to mainly HBr

(10 to 20 times higher in BrCl- than Br2-induced ODEs, not consistent with predic-

tions from other models, see Fan and Jacob, 1992; Sander et al., 1997; Lehrer et al.,

2004). BrCl mixing ratios reach a maximum of 38 pmol mol
−1

which is a rather high5

value compared to measurements made by Foster et al. (2001). The required flux of

BrCl, compared to Br2, is substantially higher than the stochiometric ratio (3.4×10
9

compared to 2×1.5×10
9

molec cm
−2

s
−1

), showing that the chlorine counter-cycle is

activated. These studies show that only the chemistry of the BrCl-P4 and BrCl-M4

runs lies within the range of observations.10

4.7 C2H4

Ethene (C2H4) chemistry is characterized by the three reactions listed in Sect. 3.4. In

this section we compare the base run Br2-M4 with Br2-M4-C2H4=0.8 nmol mol
−1

under

coastal conditions (Fig. 11). Such a high mixing ratio for C2H4 corresponds to an upper

limit, but this value lies within the variability of observations during Arctic spring (Doskey15

and Gaffney, 1992; Ariya et al., 1999).

Mixing ratios of OH (Fig. 11c) and Cl (released from SSA; Fig. 11d) decrease, but

the Cl chemistry does not affect the ozone/bromine concentration under these condi-

tions (ξCl too low, but similar to measurements from Jobson et al., 1994; Boudries and

Bottenheim, 2000). The increase in ξC2H4
reduces HOx lifetime via Reaction (33).20

Therefore, this reaction tends to reduce the formation of HOBr from Br/BrO radi-

cals. However, in the case of Br2-M4-C2H4=0.8 nmol mol
−1

Reaction (34) is acceler-

ated (see Fig. 11e). This reaction prevails over Reactions (32) and (33) during the

whole model run and increases the formation of HBr. Thus, BrO mixing ratios de-

crease strongly (Fig. 11i). Clearly, the decrease of HOBr (Fig. 11g) reduces the effi-25

ciency of the bromine explosion mechanism and the shift of bromine speciation to HBr

and its subsequent uptake to particles leads to a drastic increase in sulfate and sea
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salt aerosol Br
−

(Fig. 11h, not shown for sulfate aerosols). Br
−

concentrations in SSA

are up to 20 mmol l
−1

higher than in the base run Br2-M4. This scenario shows that

the presence of large amounts of C2H4 notably reduces the efficiency of the bromine

explosion. This and the conversion from Br atoms to less reactive HBr lead to less

available bromine radicals for the depletion of ozone. The ozone mixing ratio drops5

only to 11 nmol mol
−1

within four days, which is equivalent to a “P4” event.

However, it is important to note that the C2H4 destruction reactions may compete

with each other, depending on the amount of C2H4 in the model run. In order to assess

the influence of Reaction (33) compared to Reaction (34), we performed additional

model runs with ξC2H4
=0.5 and 0.01 nmol mol

−1
. In Fig. 12, we compare ozone mixing10

ratios of the different runs with ozone in (A) Br2-M4 and (B) Br2-P4. In Fig. 12a, these

ratios for C2H4=0.8 and C2H4=0.5 nmol mol
−1

show that ozone for these runs is less

depleted than for the base run, due to the reduction in the bromine explosion cycle,

as explained above. Interestingly, however, ozone is also temporarily less depleted

than in the base run under conditions of ξC2H4
=0.01 nmol mol

−1
(less C2H4 than in the15

base run). With low ξC2H4
the reduced rate of Reaction (33) allows more HOx to react

with bromine radicals to form HOBr. Similarly, a reduction in the rate of Reaction (34)

leads to less HBr. The increase and slight decrease of HOBr and HBr, respectively,

induce a moderate acceleration of the SSA debromination compared to the base run.

Nevertheless, as highlighted in previous sections, the formation of HOBr reduces Brx20

via increased deposition at the surface.

As a consequence, less bromine radicals are available compared to the base run.

The difference to the base run M4 is highest in the morning of day 3. Later, ozone

rapidly decreases and becomes more depleted than in the base run M4. This change

in ozone destruction is the result of a large decrease in reaction rate of Reaction (34).25

At the end of the model run Br2-M4-C2H4=0.01 nmol mol
−1

, C2H4 is completely de-

stroyed. Therefore, the concentration of Br atoms increases compared to the base run,

which leads to a more efficient ODE on the last day. This specific time span highlights

the importance of Reaction (34) in reducing the amount of available Br atoms, although
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the rate coefficient for this reaction is small.

Under conditions of a P4 ODE, an increase of ξC2H4
compared to 0.08 nmol mol

−1

(base run Br2-P4) leads, again, to a decrease in ozone depletion via the reduction of

the bromine explosion and the conversion from Br atoms to HBr (see Fig. 12b). The

model run with ξC2H4
=0.01 nmol mol

−1
displays a similar chemistry as explained for the5

case Br2-M4. However, C2H4 does not drop down to zero at the end of the run as in

Br2-M4-C2H4=0.01 nmol mol
−1

. Therefore, Reaction (34) remains efficient during the

whole model run. Ozone mixing ratios at the end of the model run (Fig. 12b) remain

slightly higher than in the base run P4.

This study highlighted that high concentrations of ethene strongly reduced the10

bromine explosion and therefore, the ozone depletion. Low concentrations of ethene,

however, allow substantial amounts of HOx to be present in the atmosphere, which

shifts reactive bromine to less reactive HOBr. Such concentrations may then lead to a

decrease in ozone destruction as well.

Prescribing a flux of 1.3×10
8

molec cm
−2

s
−1

of C2H4, as measured by Swanson15

et al. (2002), showed only a very weak influence on ozone: ξO3
only increased by less

than 1 nmol mol
−1

. Fluxes measured in the field seem to have no noticeable influence

on the bromine/ozone chemistry, but notice that the resulting C2H4 mixing ratios in the

model only increases by 10 pmol mol
−1

due to this prescribed flux. Only higher fluxes

of C2H4 may affect the halogen/ozone chemistry.20

4.8 C2H6

First, we will discuss sensitivity studies on Br2-induced ODEs. The observed variability

of C2H6 in the Arctic is relatively small (between 1 and 4 nmol mol
−1

, see Ariya et al.,

1999). When investigating realistic values for C2H6 mixing ratios, we noted no relevant

change in ozone. For a better understanding of the C2H6 chemistry, we also investi-25

gated the effects of higher mixing ratios (an order of magnitude higher than observed

values, with ξC2H6
=15 nmol mol

−1
, see Table 3).
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We compare now the base run Br2-M4 with Br2-M4-C2H6=15 nmol mol
−1

under

background conditions (Fig. 13). In our model C2H6 only reacts with OH and Cl with a

rate coefficient for Reaction (35) approximately 500 times higher than for Reaction (36).

Under Br2-M4 conditions, however, the concentration of Cl is very low: Reaction (35)

is negligible compared to Reaction (36). The removal of OH radicals from the atmo-5

sphere by C2H6 (Reaction 36) is an important pathway reducing the concentration of

HOx (Fig. 13c and d) as well as HCHO (Fig. 13e). As explained in previous sections

this decrease in oxidant concentrations reduces the production of HOBr and HBr (see

Fig. 13g) and slows the bromine explosion cycle down. In this investigation, the lim-

itation in HOx prevails and increases the mixing ratio of BrO by at most 2 pmol mol
−1

10

(Fig. 13f). The more efficient BrO self-reaction leads to a faster recycling of bromine

oxide and a stronger ozone destruction (with a maximum decrease of 2 nmol mol
−1

compared to the base model run, Fig. 13a). ODEs caused by Br2 emissions are en-

hanced under high concentrations of ethane. Ethane cleanses the air from high reac-

tive oxidants which hinder the BrO self-reaction. However, relatively high mixing ratios15

of ethane do not substantially affect the ozone chemistry.

We also investigated Cl2-induced ODEs with increased mixing ratios of C2H6. In all

ODE cases (M1, M4 and P4), Reaction (35) prevailed and induced weaker depletions of

ozone. C2H6 effectively diminishes the availability of Cl atoms. Therefore, C2H6 directly

reduces the chlorine-induced ozone destruction chain. By prescribing 15 nmol mol
−1

20

of C2H6 compared to 1.5 nmol mol
−1

in the base runs, ozone only reached the M2

threshold compared to Cl2-M1, P4 compared to Cl2-M4, and no ODE compared to

Cl2-P4, respectively.

This study shows that ethane is mainly important for chlorine-related chemistry via

direct reaction between C2H6 and Cl. Ethane does not influence the bromine chemistry25

markedly: only reaction with OH radicals slightly reduces HOx concentrations.
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4.9 HONO, NO2, and RONO2

Field measurements in the Arctic spring have highlighted the production of HONO

molecules originating from the snowpack. Zhou et al. (2001) measured hourly-

averaged HONO flux in the range of 0–1.0×10
9

molec cm
−2

s
−1

with a mean value

of 5.0×10
8

molec cm
−2

s
−1

. In this section we investigate the importance of this mean5

value for the flux of HONO. Figure 14 shows the comparison between Br2-P4 and

Br2-P4-HONO=5.0×10
8

molec cm
−2

s
−1

under background air conditions. At daytime,

photolysis is the dominant loss for HONO (Reaction 48). OH (Fig. 14c) and NO (see

Fig. 14e) radicals are rapidly produced.

As described earlier in this paper higher mixing ratios of OH induce a stronger pro-10

duction of HO2 (mostly via Reaction 7, Fig. 14d). The presence of higher mixing ratios

of HO2 compared to the base run leads to a shift in bromine speciation from Br/BrO to

HBr/HOBr (Figs. 14h and i). Again, as described earlier, such HOBr mixing ratios accel-

erate the aerosol debromination via the bromine explosion (Fig. 14j), but its deposition

on snow also substantially reduces the amount of available bromine. Furthermore, the15

production of HOBr in the case of Br2-P4-HONO=5.0×10
8

molec cm
−2

s
−1

induces a

slow down in the rapid BrO self-reaction. These reactions contribute to the reduction

of available highly reactive bromine (Fig. 14g) for the ozone depletion.

In addition, NOx production from the photolysis of HONO accelerates the rates of

Reactions (40) to (47). Reaction (42) accelerates the BrO recycling into Br atoms.20

However, Reactions (40) and (41) rapidly produce BrNO2 and BrONO2 during day-

time, with BrONO2 reaching maxima of about 2 pmol mol
−1

(not shown). BrONO2,

more reactive than BrNO2, may heterogeneously react with aerosol surfaces to convert

halides into photolysable halogens (Reaction 47). However, the aerosol debromination

induced by this reaction pathway is about two orders of magnitude smaller than via25

Reaction (14). Indeed, BrNO2 and BrONO2 rather represent a temporary gas phase

reservoir of bromine. In this model run, deposition of BrONO2 was found important

for the loss of bromine on the snow. We calculated that the total bromine deposition
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contributed, at the end of the model run, more than 30% to the total amount of bromine

in the run compared to 10% for the base run (not shown). Bromine deposition on

snow is higher than the bromine release from the bromine explosion. Brx mixing ratios

decrease (Fig. 14f) and reduce the availability of reactive bromine (Fig. 14g). Conse-

quently, O3 is destroyed less and displays a final mixing ratio of 16.5 nmol mol
−1

after5

the four simulated days compared to 12.0 for Br2-P4 (Fig. 14a).

Under conditions of the prescribed flux of HONO from the snow, maximum NOx

mixing ratios remain near 2 pmol mol
−1

, as opposed to undetectable values in the base

run Br2-P4 (see Fig. 14e after the first simulated day). The flux of HONO induced a

moderate acid displacement in SSAs (see Robbins et al., 1959). The presence of NOx10

leads to the production of HNO3 throughout the model run (via mainly Reaction 38,

Fig. 14k). The uptake of this strong acid in SSAs induces an increase in acidity (H
+

)

and NO
−

3
ions. In our model run with a HONO flux, the SSA H

+
concentration is 5 to 10

times higher than in the base run, which modifies the equilibrium of reaction H
+
+Cl

−

↔ HClaq to the right. Therefore, the uptake of HNO3 leads to the outgassing of HCl.15

Gas phase HCl chemistry is, however, driven at daytime by the increased release

of Cl2 and BrCl in the gas phase compared to Br2 (Fig. 14l), as the equilibrium for

Reaction (14) is also modified.

At night the absence of OH radicals stops the production of HNO3 via Reaction (38).

Therefore, the acid displacement in SSA is interrupted as well and HClgas is taken up20

into aerosols. HCl reaches a maximum of 16 pmol mol
−1

at the end of the model run

(Fig. 14l) and SSA chloride displays a net decrease over the model run (not shown).

These model results indicate that concentrations of NOx, under the influence of such

a flux of HONO in Arctic regions, may be associated with high concentrations of gas

phase chlorine, if chloride is present in aerosols (also see Hara et al., 2002). We25

encourage field experiments to find evidences for this specific chemistry in order to

confirm these results.

Under coastal air conditions, the presence of high mixing ratios of HOBr and BrONO2

with a higher number of SSAs containing Br
−

(due to the SSA production) induces more
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aerosol debromination. These conditions imply more Brx in the air during the model run

than under background conditions. After four days, O3 is about 2.5 nmol mol
−1

more

depleted under coastal air than under background air conditions.

We also performed runs with lower/higher initial mixing ratios of NO2 (not shown).

The related chemistry was similar to that of HONO. Prescribing higher initial mixing5

ratios of NO2 mainly induced a shift in speciation from Br/BrO to BrNO2/BrONO2. This

represents a reservoir of less reactive bromine, which reduces the amount of available

reactive bromine. Additionally, accumulated bromine deposition increases, mostly due

to higher deposition rate of HOBr and BrONO2. Ozone is less depleted in all studied

cases that include more NO2 in the air. However, the difference in O3 mixing ratios10

compared to the base runs is rather small (nearly between 1 and 4 nmol mol
−1

for

maximum ξNO2
=0.2 nmol mol

−1
). Acid displacement occurred in all cases as well.

We also studied the influence of higher mixing ratios of RONO2 (not shown). RONO2

chemistry is characterized by Reactions (49) to (51). In both Br2-M4 and Br2-P4 cases

the rates of the three reactions remained relatively small, but Reaction (51) prevailed.15

Only few pmol mol
−1

of NO2 molecules were produced in the model runs. The related

chemistry remained similar to that of NO2. However, large variations of ξRONO2
did

not substantially influence O3: when multiplying ξRONO2
by a factor 10 compared to the

base value (Table 3), ozone only increased by 3 nmol mol
−1

, in both Br2-M4 and Br2-P4

cases. Acid displacement of HCl by HNO3 also occurred under such chemistry.20

Among HONO, NO2 and RONO2, HONO was found the most important species

affecting the bromine/ozone chemistry due to the production of both highly reactive

OH and NO. NO2 and RONO2 only showed a limited influence on bromine/ozone.

We therefore encourage experimentalists to record HONO concentrations in particu-

lar, simultaneously with bromine/ozone. RONO2 only weakly affected ozone, but it is25

a relevant tracer providing information on the concentration of chlorine radicals (see

Reaction 51).
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5 Discussion of deposited bromine on snow

In this paper, we did not consider the recycling of bromine from the snow, as we focused

on boundary layer chemical reactions influencing bromine/ozone. However, recycling

of deposited bromine on snow appears to be an important process for the re-emission

of reactive bromine (see Foster et al., 2001; Peterson and Honrath, 2001; Spicer et al.,5

2002). Moreover, Piot and von Glasow (2007) showed that the deposition/re-emission

process is essential for the timing of an ODE.

The model results highlighted here apply only for constant fluxes of halogens. The

different processes leading to the re-emission of deposited bromine on snow are not ex-

plicitly taken into account. Therefore, temporal/spatial variations of the flux of halogens10

in our model run are not investigated in this paper. The simulations where bromine

deposition on snow represents an important loss pathway would have opposite effects

compared to simulations including recycling on snow. In the sensitivity studies pre-

sented here, the deposition of bromine on snow only represents a loss of bromine for

the studied airmass. For results including recycling from the snow, the reader is re-15

ferred to Piot and von Glasow (2007). It is important to stress that the chemistry in the

PBL drastically changes, whether deposited bromine is recycled as reactive bromine

or not.

6 Conclusions

The chemistry of HCHO, H2O2, DMS, Cl2, C2H4, C2H6, HONO, NO2, and RONO2 was20

investigated. Their impact on halogen/ozone in the PBL was assessed by the use of

the box model MISTRA in the Lagrangian mode. We compared base runs undergoing

Br2-, Cl2-, or BrCl-induced ODEs with similar runs including a modification in flux or

mixing ratio of a species. Under conditions of elevated mixing ratios of HCHO, H2O2,

DMS, and Cl2 halogen radicals are shifted to HOX/HX (X=Br,Cl) due to the production25

of HOx radicals. This shift in speciation increases the bromine explosion cycle in SSAs.
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However, the main effect of this shift is rather the reduction in BrO self-reaction asso-

ciated with the increased deposition on snow (mainly via HOBr deposition). In these

cases, the total amount of gas phase bromine is reduced and the ozone depletion

process slows down.

It was shown in this paper that ODEs caused by fluxes of Cl2 lead to unrealistic5

amounts of reactive chlorine compared to field measurements. Reactions involving

reactive chlorine also release CH3O2, HOx, and ROOH which react, again, with chlo-

rine radicals to produce HCl. We called this reaction chain “chlorine counter-cycle”.

Very large amounts of HCl are produced in order to deplete ozone. We noted that this

counter-cycle may be “activated” rapidly by the presence of sufficient concentrations of10

chlorine radicals (e.g., model run Br2-M4-Cl2=5.0×10
8

molec cm
−2

s
−1

). In that case,

the activation of the chlorine counter-cycle unexpectedly leads to the reduction of reac-

tive bromine and reduces the ozone depletion. Similar activations of this counter-cycle

are also observed for the base run BrCl-M1.

The chemistry of C2H6 mainly reduces the concentration of HOx in the air, which15

modifies the bromine speciation from HOBr/HBr to BrO/Br. C2H6 cleanses the air from

oxidants. However, the influence of high mixing ratios of C2H6 on ozone is found very

weak. C2H6 has stronger effects on ODEs caused by Cl2 fluxes, as it converts chlorine

radicals to HCl rather rapidly.

The chemistry of C2H4 clearly affects the concentrations of HOx and bromine rad-20

icals. Higher mixing ratios of C2H4 compared to base runs show a drastic reduc-

tion in bromine explosion efficiency. Less HOBr and more HBr clearly lead to the

re-bromination of SSAs and the bromination of sulfate aerosols. The reduction of avail-

able gas phase bromine leads to less ozone depletion. Nevertheless, we also noted

that lower mixing ratios of C2H4 may also lead to less ozone depletion. Under such25

C2H4 conditions, longer HOx lifetimes lead to higher concentrations of HOBr than in

the base run: the aerosol debromination is stronger. As mentioned for other species,

the increase in HOBr leads to increased deposition on snow and a slow down in BrO

self-reaction. Under low mixing ratios of C2H4, Brx also decreases compared to the
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base run and the ozone depletion process slows down.

Among HONO, NO2 and RONO2, HONO was found the most influencing nitrogen-

containing species. The photolysis of HONO both releases highly reactive OH and

NO. Both radicals induce a shift in bromine speciation to produce HOBr/HBr and

BrONO2/BrNO2. The main effect of this shift is the reduction in gas phase reactive5

bromine via deposition on snow. Ozone is less destroyed. For all three nitrogen-

containing species, we noted an acid displacement in SSAs from HNO3 to HCl and the

increased release of chlorine compared to bromine out of SSAs. We found more gas

phase chlorine in model runs including high NOx than in base model runs.

Again, we want to stress that recycling of deposited halogen in/on snow is not in-10

cluded in this model. Therefore, variations in deposition on snow are not taken into

account. Differences in model results may be important if this recycling on snow is

included.
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Table 1. Differences in air composition between background and coastal air conditions.

Species ξbackground ξcoastal

(nmol mol
−1

) (nmol mol
−1

)

CH3Br 0.0 0.012
CHBr3 0.0 0.006

DMS 0.0 0.01
(a)

Fluxes molec cm
−2

s
−1

molec cm
−2

s
−1

DMS 0.0 2.0 × 10
9(b)

NH3 0.0 4.0 × 10
8

Sea salt prod. No Yes

(a)
: Ferek et al. (1995)

(b)
: estimated from Quinn et al. (1990)
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Table 2. Initial composition of sea salt aerosols (Jaenicke, 1988; Andrews et al., 2004).

Species Cl
−

Na
+

Mg
2+

SO
2−
4 K

+
Ca

2+
HCO

−

3 Br
−

I
−

Concentration (mmol l
−1

) 550 470 53 28 10 10 2 0.85 0.001
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Table 3. Initial mixing ratios (ξ) for gas phase species under background conditions.

Species ξ (nmol mol
−1

) Reference

SO2 0.01 Barrie and Hoff (1984), Bottenheim et al. (1990)
O3 40.0 Bottenheim et al. (1986), Anlauf et al. (1994)
NO2 0.02 Beine et al. (1997)
HNO3 0.05 Leaitch et al. (1994), Ridley et al. (2003)
HONO 0.01 Li (1994), Zhou et al. (2001)
RONO2 0.14 Sander et al. (1997)
PAN 0.3 Ridley et al. (2003), Stroud et al. (2003)
CO 150.0 Ramacher et al. (1999)
Methane 1800.0 Worthy et al. (1994)
Ethane 1.5 Jobson et al. (1994), Hopper et al. (1994)
Ethene 0.08 Bottenheim et al. (2002b)
HCHO 0.1 Barrie et al. (1994), Sumner and Shepson (1999)
H2O2 0.3 de Serves (1994), Snow et al. (2002)
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Table 4. Prescribed halogen fluxes in molec cm
−2

s
−1

. High fluxes of chlorine are discussed in
Sect. 4.6.

Partial ODE-P4 Major ODE-M4 Major ODE-M1

(molec cm
−2

s
−1

) (molec cm
−2

s
−1

) (molec cm
−2

s
−1

)

Br2 5.0 × 10
7

9.0 × 10
7

1.5 × 10
9

BrCl 1.0 × 10
8

1.9 × 10
8

3.4 × 10
9

Cl2 3.0 × 10
9

2.0 × 10
10

3.0 × 10
11
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Fig. 1. Schematic depiction of the most important processes included in the box model version
of MISTRA, applied for Arctic conditions. Fluxes from ice and sea salt production are switched
ON/OFF, depending on the air mass type (see text and Table 1).
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Fig. 2. Br2-induced ozone depletions (M1, M4, and P4, see text). Solid black line:

FBr2
=5.0×10

7
molec cm

−2
s
−1

; dashed blue line: FBr2
=9.0×10

7
molec cm

−2
s
−1

; dashed red line:

FBr2
=1.5×10

9
molec cm

−2
s
−1

. Respective Cl2- and BrCl-induced ODEs are not shown.
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Fig. 3. Chemistry of Br2-induced ODEs for background air conditions. Solid black line: base
run Br2-P4; dashed blue line: base run Br2-M4. (A) total gas phase bromine Brx, (B) BrO, (C)

sea salt aerosol Br
−
, (D) HOx (OH+HO2).
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Fig. 4. Solid black line: base run Br2-P4; dashed red line: Br2-P4-HCHO=5.0 × 10
9

molec cm
−2

s
−1

. Background air conditions. (A) O3, (B) HCHO, (C) HO2, (D) sea salt aerosol
Br

−
, (E) BrO, (F) Br2, (G) HBr, (H) HOBr, (I) HOCl, (J) total bromine Brx, (K) accumulated

deposition of total gas phase bromine on snow.
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Fig. 5. Solid black line: base run Br2-M4; dashed red line: Br2-M4-

H2O2=1.5×10
10

molec cm
−2

s
−1

. Background air conditions. (A) O3, (B) H2O2, (C) HO2, (D)

OH, (E) HOBr, (F) BrO, (G) sea salt aerosol Br
−
.
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Fig. 6. Solid black line: Br2-M4; dashed red line: Br2-M4-DMS=0.1 nmol mol
−1

with a flux of

4.0×10
9

molec cm
−2

s
−1

. Coastal air conditions. (A) O3, (B) DMS, (C) DMSO, (D) CH3O2, (E)

HCHO, (F) BrO, (G) Br2, (H) HOBr, (I) HBr, (J) total bromine Brx, (K) sea salt aerosol Br
−
, (L)

accumulated deposition of total gas phase bromine.
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Fig. 7. Schematic description of the DMS chemistry and the DMSO “counter-cycle”. The
initiating reaction is depicted as bold dashed line. The reaction highlighted in the blue square
is the key reaction producing CH3O2.
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Fig. 8. Simulated evolution of gas phase O3, HCHO, HO2, HCl, ClO, Cl, and CH3O2 using the
Cl2-M1 base run.
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Fig. 9. Most important reactions caused by high mixing ratios of gaseous Cl2. The initiating
reaction is highlighted by a blue square. Red circles: chlorine species. Green squares: key
species for the HCl production. The grey arrow in background is to show the overall direction
taken by the “chlorine counter-cycle”.
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Fig. 10. Solid black line: Br2-M4; Dashed red line: Br2-M4-Cl2=5.0×10
8

molec cm
−2

s
−1

.
Coastal air conditions. (A) O3, (B) ClO, (C) HCl, (D) CH3O2, (E) HCHO, (F) BrO, (G) HOBr, (H)
HBr.
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Fig. 11. Solid black line: Br2-M4; dashed red line: Br2-M4-C2H4=0.8 nmol mol
−1

. Coastal air
conditions. (A) O3, (B) C2H4, (C) OH, (D) Cl, (E) Br, (F) HBr, (G) HOBr, (H) sea salt aerosol
Br

−
, (I) BrO.
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Fig. 12. Ratio of O3 in sensitivity runs to the base run for (A) M4 and (B) P4 ODEs, respectively.

Dash-dotted blue line: ξC2H4
=0.01 nmol mol

−1
; dashed red line: ξC2H4

=0.5 nmol mol
−1

; dash-

dotted green line: ξC2H4
=0.8 nmol mol

−1
. Coastal air conditions.

7451

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/7391/2008/acpd-8-7391-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/7391/2008/acpd-8-7391-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 7391–7453, 2008

The chemistry

influencing ODEs

M. Piot and R. von

Glasow

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 13. Solid black line: Br2-M4; dashed red line: Br2-M4-C2H6=15 nmol mol
−1

. Background
air conditions. (A) O3, (B) C2H6, (C) OH, (D) HO2, (E) HCHO, (F) BrO, (G) HOBr.
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Fig. 14. Solid black line: Br2-P4; dashed red line: Br2-P4-HONO=5.0×10
8

molec cm
−2

s
−1

.
Background air conditions. (A) O3, (B) HONO, (C) OH, (D) HO2, (E) NOx, (F) total bromine Brx,
(G) BrO, (H) HOBr, (I) HBr, (J) sea salt aerosol Br

−
, (K) HNO3, (L) HCl.
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