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Abstract

The representation of data, whether geophysical observations, numerical model output

or laboratory results, by a best fit straight line is a routine practice in the geosciences

and other fields. While the literature is full of detailed analyses of procedures for fit-

ting straight lines to values with uncertainties, a surprising number of scientists blindly5

use the standard least squares method, such as found on calculators and in spread-

sheet programs, that assumes no uncertainties in the x values. Here, the available

procedures for estimating the best fit straight line to data, including those applicable

to situations for uncertainties present in both the x and y variables, are reviewed.

Representative methods that are presented in the literature for bivariate weighted fits10

are compared using several sample data sets, and guidance is presented as to when

the somewhat more involved iterative methods are required, or when the standard

least-squares procedure would be expected to be satisfactory. A spreadsheet-based

template is made available that employs one method for bivariate fitting.

1 Introduction15

Representation of the relationship between x (independent) and y (dependent) vari-

ables by a straight line (or other function) is a routine process in scientific and other

disciplines. Often the parameters (slope and y-intercept) of such a fitted line can be

related to fundamental physical quantities. It is therefore very important that the param-

eters accurately represent the data collected, and that uncertainties in the parameters20

are estimated and applied correctly or the results of the fitting process and thus the

scientific study could be misinterpreted.

The approaches to fitting straight lines to collections of x−y data pairs can be broadly

grouped into two categories: the “standard” least-squares methods in which the dis-

tances between the fitted line and the data in the y-direction are minimized, and the25

“bivariate” least-squares methods in which the perpendicular distances between the
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fitted line and the data are minimized. A third method, similar to the second but less

commonly employed, involves minimization of the areas of the right triangles formed

by the data point and the line. In all of these methods, weights may be also applied to

the data to account for the differing uncertainties in the individual points. In “standard”

least-squares, the weighting pertains to the y-variables only, whereas in “bivariate”5

methods, weights can be assigned for the x- and y-variables independently. There

is widely varying terminology for these procedures in the literature that can be con-

fusing to the non-expert. Authors have used terms such as major axis regression,

reduced major axis regression, ordinary least-squares, and total least-squares. Herein

the terms “standard” and “bivariate” will be used to denote these two categories of fit-10

ting methods. This paper does, however, present a detailed reference list of available

methods and applications presented in the literature.

For demonstration and testing purposes, two data sets from the literature were em-

ployed. First, the well-known data of Pearson (1901) with weights suggested by York

(1966) were used (see Table 1 and Fig. 1). The data values are similar to those that15

might be encountered in a laboratory study or acquired in atmospheric measurements,

but with rather extreme weights that range 3 orders of magnitude as the data ranges

about a factor of five. This data set has the advantage that the exact results of the

bivariate fit are known and reported in the literature, and one that is frequently used as

a test for new fitting methods.20

A second data set was created by selecting random numbers from Gaussian dis-

tributions and adding them to base values, which were numbers 1 through 100 (see

Fig. 2). Initially, the Gaussian distributions were set with means of zero, and standard

deviations of 10 units plus 30% of the base value, but other tests were performed with

different amounts of constant and proportional uncertainty. These data were meant to25

represent those that would result from an intercomparison of two instruments measur-

ing the same quantity, which have baseline noise of 10 units (1 sigma), measurement

uncertainties that are well above the baseline of 30% (1 sigma), and nominal “true”

values from 1 to 100. This data set has the characteristic that in the absence of noise,
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or if the noise is properly dealt with, the best fit line should have a slope of one, and an

intercept of zero.

Next, the methods were applied to two examples of authentic data to demonstrate

specifically the value of bivariate methods, and to point out how and when they should

be applied.5

This review and recommendation does not attempt to be mathematically nor sta-

tistically rigorous. The reader is referred to the referenced literature for such details.

The purpose here is to provide operational information for the scientific user of these

routines, and to provide guidance for the choice of routine to be utilized.

Note that there is not universal agreement in the uses of symbols for the measured10

x and y values and the calculated slope and intercept that appear in the literature. The

reader is cautioned in this regard. In this paper, xi and yi (lower case italics) refer to

the measured x and y values, m refers to the slope of the best fit line, and b is the

y-axis intercept. Other symbols are defined throughout the paper.

2 Standard least-squares15

The equations for a line that best describes x−y data pairs when all of the measure-

ment error may be assumed to reside in the y-variable (i.e. the x values are exact or

nearly so) is readily available and easily derived (e.g. Bevington, 1969). The fitted line

then becomes a “predicted” value for y given a value for x. The usual method involves

minimizing the sum of squares of the differences between the fitted line and the data20

points in the y-direction (although minimization of other quantities has been used). The

slope, m, and y-intercept, b, of this best-fit line can be represented in terms of sum-

mations of computations performed on the n measured data pairs, x1, y1, x2, y2, . . . ,

xn, yn.

m =
n
∑

xiyi −
∑

xi
∑

yi

n
∑

x2
i
− (

∑

xi )
2

b =

∑

x2
i

∑

yi −
∑

xi
∑

xiyi

n
∑

x2
i
− (

∑

xi )
2

(1)25
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The Σ symbols refer to the summation of the quantity over all n values, and the sub-

script, i , denotes the individual measured x and y values. The uncertainties in the

slope and intercept can also be calculated.

σm =

√

∑

y2
i
−b

∑

yi−m
∑

xiyi
n−2

√

n
∑

x2
i
− (

∑

xi )
2

σb = σm

√

∑

x2
i

n
(2)

Another useful quantity is the correlation coefficient, which provides an index of the5

degree of correlation between the x and y data.

r2
=

(n
∑

xiyi−
∑

xi
∑

yi )
2

(

n
∑

x2
i
− (

∑

xi )
2
)(

n
∑

y2
i
− (

∑

yi )
2
)

(3)

It is usually the case that not all the data points have the same uncertainty. Thus, it is

desired that data with least uncertainty have the greatest influence on the slope and

intercept of the fitted line. This is accomplished by weighting each of the points with a10

factor, wi , which is often assumed equal to the inverse of the variance of the y-values

(σ2
yi ) which could include estimates of all sources of uncertainty in the y-values. The

formulas for the slope and intercept are modified as shown to include data weights.

m =

∑

wi

∑

wixiyi −
∑

wixi
∑

wiyi
∑

wi

∑

wix
2
i
− (

∑

wixi )
2

b =

∑

wix
2
i

∑

wiyi −
∑

wixi
∑

wixiyi
∑

wi

∑

wix
2
i
− (

∑

wixi )
2

(4)

These formulas are readily programmed, or exist as available spreadsheet or calculator15

functions, and can be routinely applied to fitting of straight lines to x−y data sets.

The standard least-squares method was applied with and without weights, using

Eqs. (1) and (4), to the two test data sets (“Pearson-York” and “synthetic data”) for

comparison with the bivariate methods (see Tables 2 and 3). Note that when there are

significant x and y errors, that standard least-squares yields erroneous slopes. For the20
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“synthetic data”, the slope was usually too small, whereas for the “Pearson-York” data,

the slope was too large (compared to the Williamson-York and Neri et al. methods,

discussed below).

3 Methods when both x and y have errors

The application of fitting procedures that account for uncertainties in both the x- and5

y-variables is somewhat more complex. This is because minimization of the distance

between data points and a fitted line in the x- and y-directions has not yielded to an-

alytical solutions. Iterative approaches are therefore required. Several equation forms

have been proposed and discussed (Barker and Diana, 1974; Borcherds and Sheth,

1995; Bruzzone and Moreno, 1998; Chong, 1991, 1994; Christian and Tucker, 1984;10

Christian et al., 1986; Gonzalez et al., 1992; Irwin and Quickenden, 1983; Jones, 1979;

Kalantar, 1990, 1991; Krane and Schecter, 1982; Leduc, 1987; Lybanon, 1984a, b,

1985; Macdonald and Thompson, 1992; MacTaggart and Farwell, 1992; Moreno, 1996;

Neri et al., 1990, 1991; Orear, 1982; Pasachoff, 1980; Pearson, 1901; Reed, 1990; Riu

and Rius, 1995; Squire et al., 1990; Williamson, 1968; York, 1966, 1969; York et al.,15

2004). This list is large to provide a comprehensive reference for the reader. While

these approaches are not as convenient as the straightforward equations applicable to

standard least-squares, they can easily be programmed using standard languages or

spreadsheet program routines.

Some representative examples of exact and approximate procedures (discussed be-20

low) from the literature were applied to the sample data sets, and the results of the

fits are shown in Tables 2 and 3. In each case, slopes and intercepts were derived by

fitting y on x, and by exchanging the x and y variables, thus fitting x on y . The slopes

and intercepts for the latter case were made comparable to those of the former case

by calculating the equivalent values for y=mx+b (since x=y/m−b/m, then m’=1/m25

and b′
=−b/m). For methods that properly account for errors in both variables, the fit

parameters by these two approaches should be identical (i.e. m′
from fitting x on y
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should equal m from fitting y on x, and similarly for b′
and b). Several numerical digits

are shown in Tables 2 and 3, not all significant, so that the results from the various

methods can be accurately compared.

The method described by York (1966; 1968) and York et al. (2004) was applied to

the sample data sets. This involves iteratively solving the following equations (Eq. 5).5

This method allows for correlation between the x and y errors, indicated by ri (different

than the r in Eq. (3)), which is set to zero in the present case (i.e. errors are assumed

to be uncorrelated).

b=y −mx m=

∑

WiβiVi
∑

WiβiUi

x=
∑

Wixi
/∑

Wi y=
∑

Wiyi
/∑

Wi Ui=xi−x Vi=yi−y
Wi=

wxiwyi

wxi+m
2wyi−2mriαi

βi=Wi

[

Ui

wyi
+

mVi
wxi

−(mUi+Vi )
ri
αi

]

αi=
√

wxiwyi

(5)

The procedure is to assume a starting value for m, calculate Wi , Ui , Vi , αi , and βi , and10

then calculate a revised value for m. This process is repeated until m changes by some

small increment according to the accuracy desired. This is a simpler implementation

of an earlier method of York (1966), which was described in York (1969) and York et

al. (2004), and is the same as the method of Williamson (1968), if the x and y errors

are uncorrelated (i.e. ri=0). The method of Williamson (1968) has been praised in the15

literature (MacTaggert and Farwell, 1992; Kalantar, 1990) as being efficiently able to

converge to the correct answer. Other approaches (including the earlier York method),

may not always converge or may be slow to do so, depending on the specific data set.

The uncertainties in the slope and intercept can also be calculated. Among various

methods discussed in the literature (Cecchi, 1991; Kalantar, 1992; Kalantar et al.,20

1995; Moreno and Bruzzone, 1993; Reed, 1990, 1992; Sheth et al., 1996; Williamson,

1968; York et al., 2004), the following forms appear to lead to correct estimates of the

fit parameter uncertainties (after York et al. (2004) with some algebraic manipulation).

σ2
b =

1
∑

Wi
+

(

x + β
)2

σ2
m σ2

m =
1

∑

Wi

(

βi−β
)2 β =

∑

Wiβi

/∑

Wi (6)
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Another straightforward method is that of Neri et al. (1989). This involves minimization

of the shortest distance between the fitted line and that data points, and assumes the

x and y errors are uncorrelated. The following equations are utilized.

∑

Wixi (mxi + b − yi ) −
∑ W 2

i m(mxi+b−yi )2

wxi
= 0

b =
∑

Wi (yi −mxi )
/∑

Wi Wi =
wxiwyi

wxi+m
2wyi

(7)

In this method, an initial m is guessed (such as from standard least-squares or by5

inspection), b is calculated (second equation in (Eq. 7)), and then m is adjusted to

minimize the left hand side of the first equation in Eq. (7). The process is repeated until

the left side of the first equation in Eq. (7) is satisfactorily close to zero. The Williamson-

York and Neri et al. methods give identical results for the slope and intercept of the two

test data sets.10

Four other methods give results that are reasonably close to the above results, but

are not exactly the same, and do not always give the same slope on exchange of the

x and y variables. These approximate methods may be satisfactory for many applica-

tions.

Reed (1992) suggests finding roots of the following quadratic expression.15

g(m) = Am2
+ Bm + C = 0

A =
∑ W 2

i UiVi
wxi

B =
∑

W 2
i

(

U2
i

wyi
− V 2

i

wxi

)

C = −
∑ W 2

i UiVi
wyi

(8)

This equation is solved for m by the quadratic formula, m=

(

−B±
√

B2 − 4AC
)/

2A,

where the choice of roots is refined by comparison with standard least-squares or by

inspection.

Macdonald and Thompson (1992) describe a number of cases for which their method20

is applicable. They have made available a FORTRAN program that applies their pro-

cedures, which provides nearly exact results for the Pearson-York data set. Similarly,

Lybanon (1984) presents a detailed method that also yields results very close to those
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of the “exact” methods. Krane and Schecter (1982) put forward a method proposed by

Barker and Diana (1974) and discussed by others (Irwin and Quickenden, 1983; Orear,

1984; Lybanon, 1984b) that is called “effective variance”. One begins with Eq. (4), but

the weights, wi , are adjusted to the following form.

wi =
wxiwyi

wxi +m2wyi

(9)5

This is same as York’s Wi value with uncorrelated errors. Since m appears in the

formula for the weight, an iterative process is required, in which an initial m value is

guessed, wi is calculated, followed by calculation of a revised m. The result differs

from the “exact” methods for the Pearson-York data set by a few percent, but it is more

accurate than the standard least-squares. This method does not retrieve the same10

slope and intercept when the x- and y-variables are switched. The errors are larger

with the “synthetic” data set.

The methods of Williamson (1968), York (1969), York et al. (2004) and Neri et

al. (1989) all agree and appear to provide the exact answer to the best fit for the

Pearson-York data set. The approaches of Reed (1992), Macdonald and Thompson15

(1992), and Lybanon (1984) provide results very close to the exact ones. The “effective

variance” method performs reasonably well for the Pearson-York data set, but poorer

for the synthetic data. Because of this variability in performance, it should be used with

caution.

4 Comparing the methods20

A more detailed examination of the behavior of bivariate and standard least-squares

as a function of the random noise added in the “synthetic data” was performed. The

purpose here is to advise the reader when the more involved bivariate methods should

be used or when the standard least-squares are expected to provide satisfactory val-

ues for the fit parameters. A series of calculations was performed in which random25
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noise was sampled from Gaussian distributions with varying constant and proportional

standard deviations (like the second test data set used above). Standard least-squares

(without weights) were applied to the data sets, as was the method of Williamson-York.

The values of r2
(Eq. 3) were also calculated.

Figure 3 shows mfit/mexpected versus r of the best fit lines using standard least-5

squares when proportional uncertainties of zero to 50% and/or constant uncertainties

of up to 50 units were applied to the x-data, the y-data, or both. Standard least-squares

performs well by retrieving slopes close to unity (the expected value) when errors are

applied to the y-data only. However, when errors are added to the x-variable either

alone or with errors added to the y-variable, the slopes of the best fit lines are signif-10

icantly less than unity. The ratio of the fitted slope to that expected is approximately

equal to |r |.
Applying the Williamson-York bivariate method to the same data sets, leads to slopes

within about 20% of the expected value of unity. Note that this is the case even when

the data are very noisy and thus correlation coefficients are small. Values much closer15

to the expected value are retrieved when the data is less noisy (see inset in Fig. 3).

These fits were performed with 100 data points. If the sizes of the data sets are in-

creased, the error (scatter) in the slope decreases accordingly. As an example, for a

constant error of 28 units, the average error in the slope (5 repetitions) decreases from

19% to 6% to less than 1% as the number of data points goes from 100 to 1000 to20

10 000 (an approximate
√
n relationship).

Knowing that the bivariate methods are an improvement over standard least-squares

when there are errors in the x-variable is a start, but can the information gathered be

used to indicate when the extra trouble of the bivariate fit is called for, and when stan-

dard least-squares will suffice. Figure 3 shows that there is a rather robust relationship25

between the systematic error in the slope from standard least-squares and the ab-

solute value of the correlation coefficient (as expected, comparing Eqs. (1) and (3)).

For errors in both variables, the fractional error in the standard least-squares slope is

approximately 1–|r |. Thus, a quick calculation of the correlation coefficient can give a
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rough indication of the error in the derived standard least-squares slope for data with

comparable errors in both variables. If this error in the slope is outside the needs of the

task at hand, then a bivariate approach should be employed. For unusual weighting

situations (such as the Pearson-York data), it is probably best to always use robust bi-

variate methods, since the impact of such weights on the fit parameters is not intuitive5

(although the standard least-squares slope is only in error by 12%). When the error in

the y-variable is much greater than the error in x-variable, then standard least-squares

performs better than indicated by the calculated r value.

5 Application to actual observations

Two authentic sets of data from the TRACE-P campaign (TRansport And Chemistry Ex-10

periment – Pacific) were selected for application of these fitting procedures. TRACE-P

involved two aircraft (the NASA DC-8 and P3-B) as platforms for observations pri-

marily in the western Pacific Ocean basic. The observations used here are gas-

phase formaldehyde (CH2O) concentrations collected by Alan Fried and colleagues

aboard the NASA DC-8 aircraft (Fried et al., 2003), and peroxy radical concentrations15

(HO2+RO2) collected by the author and colleagues aboard the NASA P-3B aircraft

(Cantrell et al., 2003). These data represent very typical situations that might require

the fitting procedures discussed here.

The details of the measurement techniques and the modeling approaches can be

found in the references cited above. Briefly, CH2O was measured in the NASA DC-820

aircraft in a low-pressure cell with multi-pass optics (100 m path total optical path) using

a tunable lead salt diode infrared laser as the source. A spectral line near 2831.6 cm
−1

was scanned and the second harmonic spectrum (after subtraction of the background)

was related to the ambient concentration through addition of known mixtures of CH2O

in zero air to the instrument inlet. The measurements were corrected for a small in-25

terference from methanol. The estimated uncertainty of the measurements was 15%,

and detection limits typically ranged from 50 to 80 pptv (parts per trillion by volume).

6419

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/6409/2008/acpd-8-6409-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/6409/2008/acpd-8-6409-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 6409–6436, 2008

Least squares fitting

C. A. Cantrell

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

One minute average retrieved concentrations ranged from −47 to 10 665 pptv.

HO2+RO2 concentrations were measured on the NASA P-3B aircraft and were deter-

mined by conversion to gas-phase sulfuric acid through the addition of reagent gases

NO and SO2 to the instrument inlet. The sulfuric acid product was ionized by reaction

with negatively charged nitrate ions. The product and reagent ions were quantified by5

quadrupole mass spectrometry. Calibrations were performed using quantitative pho-

tolysis of water vapor at 184.9 nm. The estimated uncertainty for these data was 17%

and the detection limits were 2–5 pptv.

CH2O and HO2+RO2 concentrations were estimated by a photochemical box model

with inputs of key parameters constrained by the observations (Crawford et al., 1999;10

Olson et al., 2004). The time-dependent model is run for several days to diurnal steady

state. Monte Carlo calculations yielded uncertainty estimates of 20% for modeled

CH2O and 30% for HO2+RO2.

Figure 4 shows the measured CH2O concentrations versus those estimated by the

constrained box model on linear scales (4466 data pairs). The inset plots show the15

high range of concentrations (>500 pptv, lower right) and the data plotted on logarith-

mic scales (upper left). The lines represent different methods of fitting the data. The

solid line is a weighted bivariate fit to all of the data with the measurements weighted

using a variance of the square of 15% of the concentration plus 50 pptv, and the model

results using a variance of the square of 20% of the concentration. The slope is near20

unity (1.054) and the y-intercept is small (1.283), in agreement with assessments by

Fried et al., 2003 and Olson et al., 2004. The long dashed line is a standard un-

weighted least-squares fit which yields a slope of 1.462 and a y-intercept of −44.6. It

appears that the line is being unduly weighted by the handful of points at high concen-

trations in which the model systematically underestimates the observations, leading25

to a larger slope than the bivariate method. The medium dashed line is a weighted

least squares fit (Eq. 4), with weights calculated using the “effective variance” method

(Eq. 9). Its slope is 0.873 and the y-intercept is 20.1. Finally, the short dashed line is

a weighted least-squares fit (Eq. 4) with weights in the y-direction only (i.e. wi=wyi ).
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The slope for this fit is 0.811 and the y-intercept is 22.4. These fits mostly have slopes

of unity within the combined measurement-model uncertainties, with the exception of

the standard unweighted least squares fit. The intercepts are all within the detection

limit of the measurements. The large slope retrieved with the standard unweighted

approach could lead one to make the assessment that there are missing processes in5

the model, errors in the measurements, or both. While it does appear that there are

statistically significant differences between the measurements and the model at high

concentrations, the small number of outliers should not significantly change the fit of

the entire data set. Eliminating data pairs with measurements greater than 4000 pptv,

results in bivariate fit slope and y-intercept values of 1.041 and 2.476, respectively. The10

weighted standard fits change by small amounts as well. The unweighted standard fit,

though, yields slope and y-intercept values of 1.248 and −5.744, respectively. This is a

significant change and shows how susceptible the standard fit is to a small number of

outliers (the term outlier is used here to mean data that are not described well by the

bivariate fit line).15

The impact of outliers on the various fit methods is demonstrated further. To the

full data set are added numbers of data pairs (up to 1000) for which x is 50 and y is

5000. A second trial added data pairs with x values of 5000 and y values of 50. These

results are summarized in Fig. 5. It can be seen that outliers above the fit line have

little impact on the bivariate and the other weighted fit slopes, even when the number20

of outliers approaches 20% of the data. The standard unweighted least squares fit is

affected moderately by outliers above the fit line. Outliers below the fit line impact all of

the fits greatly except the bivariate. In fact, as shown before, the bivariate fit procedure

continues to perform well even when the r2
parameter indicates that the x and y data

are completely uncorrelated.25

As mentioned earlier, and discussed by Fried et al. (2003), there appears to be a

change in the ratio of measurement to model values from near unity at lower concen-

trations to well above unity at higher concentrations. As one approach, the data were

separated into two groups for measured values below and above 500 pptv, and each
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group was fit separately. The bivariate slope of the low concentration group is 0.789,

while the bivariate slope of the high concentration group is 1.403. An alternate method

is to fit the ratio of measurement to model versus measurement value. Separating into

two groups as before leads to a bivariate slope of 0.00607 for the low concentration

group (i.e. moderate dependence of the ratio on the concentration) and an intercept of5

0.797 (the ratio at the limit of zero concentration). The slope for the high concentration

group is 0.000679 and the intercept is 1.290. It seems that there could be atmospheric

processes missing from the model or instrumental issues affecting the measurements

in the high concentration regime that need to be addressed.

Fits of measured versus modeled HO2+RO2 are shown along with the data in Fig. 6.10

The inset plot (upper left) shows the same data and fit lines on logarithmic scales.

The solid line is a bivariate fit weighted using variances for the measurements that are

the square of 20% of the concentration plus 5, and using variances for the model re-

sults that are the square of 30% of model values. Its slope is 0.961 and the intercept

is −2.96. The other methods (effective variance, y-weighting only, and no weighting)15

yield smaller slopes (0.63 to .71). There are some noticeable outliers in which the mea-

sured concentrations are systematically higher than the modeled ones at low modeled

concentrations. Elimination of these data does not greatly affect the bivariate fit. A

fit of the measured to model ratios versus measured values yields a moderate slope

(−0.00864) and an intercept near unity (1.053).20

It has been reported (Faloona et al., 2000) that measured peroxy radical concentra-

tions are systematically greater than model values at high NOx concentrations. This

is observed for TRACE-P HO2+RO2 data as well. For NO concentrations less than

500 pptv, the measured to modeled ratios are close to unity with no significant de-

pendence on NO concentration. The bivariate fit yields a slope of −0.00145 and a25

y-intercept of 0.77. For NO concentrations greater than 500 pptv, there is a systematic

dependence of the measured-modeled ratio on the NO concentration. The bivariate

fit slope is 0.00317 and the y-intercept is −0.785. It has been suggested (Olson et

al., 2006) that this phenomenon could be the result of short term large spikes in the
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NO concentration that impact the average NO concentration, but have little impact on

the average peroxy radical concentration. Without high rate NO and peroxy radical

data, we cannot rule out such an explanation. Alternatively, there could be unknown

photochemical processes or instrumental issues that occur in the presence of high NO

concentrations. The measurement and modeling communities continue to search for5

satisfactory explanations of these observations under high NO conditions.

Does the quality of fits obtained with the bivariate methods depend strongly on

the selection of weights? This was examined using the CH2O measurements

and model results. The best estimate for the variance of the measurements is

(0.15×[CH2O]meas+50)
2
, and for the model values is (0.20×[CH2O]model)

2
. Varying the10

measured variance values from (0.10×[CH2O]meas+50)
2

to (0.30×[CH2O]meas+200)
2

results in bivariate fitted slopes ranging from 0.88 to 1.15. Thus, while there is some

impact on the fit parameters by the choice of weights, the dependence is not strong.

Obviously, every effort should be made to correctly estimate the weights, but small

errors in these parameters are not likely to invalidate the fit results.15

6 Summary

Scientists need to use care in applying fitting programs to derive parameters that sum-

marize their observations. In the case of linear fits, significant errors in slopes and

intercepts can result using standard least-squares methods if there are uncertainties in

the x-values (as cautioned many times in the literature). If the x- and y-variable errors20

are comparable, 1–|r | may give an indication of the fractional error of the derived stan-

dard least-squares slope. If a more accurate slope is desired, then bivariate methods

such as those reported by Williamson et al., York et al., or Neri et al. are recommended.

For these methods, the accuracy of the slope improves with the number of data points

(not so with the standard least-squares with significant errors in the x-variable).25
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7 Supplemental material

The Williamson-York method has been incorporated into a Microsoft Excel spreadsheet

that is available from the author on request.http://www.atmos-chem-phys-discuss.net/

8/6409/2008/acpd-8-6409-2008-supplement.zip
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Table 1. Example data “Pearson’s data with York’s weights” for comparison of fitting procedures

described in the text.

x wx y wy

1 0.0 1000.0 5.9 1.0

2 0.9 1000.0 5.4 1.8

3 1.8 500.0 4.4 4.0

4 2.6 800.0 4.6 8.0

5 3.3 200.0 3.5 20.0

6 4.4 80.0 3.7 20.0

7 5.2 60.0 2.8 70.0

8 6.1 20.0 2.8 70.0

9 6.5 1.8 2.4 100.0

10 7.4 1.0 1.5 500.0
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Table 2. Comparison of fit parameters using various weighting and fitting procedures for Pear-

son’s data with York’s weights (reproduced in Table 1).

Reference Data order Slope % diff Intercept % diff

Std Least Squares
1 y−x −0.53957727498 12.3 5.76118519044 5.1

1 x−y −0.56588892540 17.8 5.86169569504 7.0

Std Lst Sqrs w/wgts
1 y−x −0.61081295658 27.1 6.10010931667 11.3

1 x−y −0.66171422835 37.7 6.44111325438 17.5

Williamson-York
1 y−x −0.48053340745 0 5.47991022403 0

1 x−y −0.48053340745 0 5.47991022403 0

Neri et al.
1 y−x −0.48053340745 0 5.47991022403 0

1 x−y −0.48053340745 0 5.47991022403 0

Reed
1 y−x −0.48053340810 1×10

−7
5.47991022723 6×10

−8

1 x−y −0.48053340596 3×10
−7

5.47991021675 1×10
−7

Macdonald
1 y−x −0.4805334319 5×10

−6
5.479910343 2×10

−6

1 x−y −0.4805331548 5×10
−5

5.479909773 8×10
−6

Lybanon
1 y−x −0.480533415 2×10

−6
5.47991025 5×10

−7

1 x−y − − −

Krane & Schecter
1 y−x −0.46344892509 3.6 5.39605229900 1.5

1 x−y −0.55048728995 14.6 5.81627060475 6.1
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Table 3. Comparison of fit parameters using various weighting and fitting procedures for syn-

thetic data with random errors (see text).

Reference Data order Slope % diff Intercept % diff

Std Least Squares
1 y−x 0.64455177895 37.7 15.5840010145 526

1 x−y 1.62394698993 57.0 −33.2653035107 810

Std Lst Sqrs w/ wgts
1 y−x 0.51687669770 50.0 3.12329574639 185

1 x−y 1.45083541868 40.3 −25.7368705811 604

Williamson-York
1 y−x 1.03409357517 0 −3.65745494979 0

1 x−y 1.03409357517 0 −3.65745494979 0

Neri et al.
1 y−x 1.03409357517 0 −3.65745494979 0

1 x−y 1.03409357517 0 −-3.65745494979 0

Reed
1 y−x 1.03409357517 0 −3.65745494979 0

1 x−y 1.03409357517 0 −3.65745494980 1x10
−9

Krane & Schecter
1 y−x 0.63716256863 38.4 3.73640490263 202

1 x−y 1.69288068334 63.7 −16.2079343388 343

6430

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/6409/2008/acpd-8-6409-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/6409/2008/acpd-8-6409-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 6409–6436, 2008

Least squares fitting

C. A. Cantrell

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Pearson's Data with York's Weights
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Fig. 1. Linear fits to the data of Pearson (1901) with weights suggested by York (1966)

(“Pearson-York” data set, shown in Table 1). The weights have been plotted as σ values

(wi=1/σ2
i ). Fit parameters are shown in Table 2.
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Synthetic Data with Random Noise (10+30%)
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1:1

Fig. 2. Linear fits to data generated by sampling a Gaussian function with standard deviation

of 10 units plus 30%, and adding the noise to the numbers 1 through 100. Fit parameters are

shown in Table 3.
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Synthetic Data Fit Summary
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Fig. 3. Ratio of fitted to expected slopes (mfit/mexpected) from standard least-squares and the

Williamson-York bivariate method versus r-values from Eq. (3). Errors in both the x and y
variables lead to systematic errors the slope from standard least squares. Slopes from the

bivariate method show no such systematic variation with r .
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Fig. 4. Comparison of measured formaldehyde concentrations with those estimated from a

constrained box model during the TRACE-P campaign (after Fried et al., 2003; Olson et al.,

2004). The data points are divided into two groups: those corresponding to measurements

below 500 pptv (small points), and those for measurements above 500 pptv (large points). The

main window (on linear scales) shows results of linear fits using four approaches: solid line,

bivariate weighted fit to all data; long dash, standard unweighted least squares fit; medium

dash, fit using weighted standard least squares (Eq. 4) with weights calculated using effective

variance; and short dash, fit using weighted standard least squares with weights in the y-

direction only. The lower right inset shows the fit lines and data on expanded x- and y-scales

(linear). The upper left inset shows the full range of data on logarithmic scales. See text for fit

parameters and discussion.
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Fig. 5. Impacts of added data outliers to the formaldehyde dataset presented in Fig. 4. Shown

are slopes (top panel), intercepts (middle panel), and correlation coefficients (bottom panel)

of various fits as impacted by adding extra points, in amounts indicated on the x-axis, to the

dataset that are clearly outliers. Eight collections of fit parameters are shown for 1, 10, 100, and

1000 outliers added. Four collections had outliers equal to x=50, y=5000 (dark gray); the other

four had outliers equal to x=5000, y=50 (light gray). The circles in the top two panels repre-

sent parameters derived from weighted bivariate fits; the downward pointing triangles represent

parameters derived from Eq. (4) using effective variance; the squares represent parameters de-

rived from Eq. (4) with weights in the y-direction only; and the diamonds represent parameters

derived from unweighted standard least squares. The values on the y-axis (corresponding to

x=0.8) are those derived from the original formaldehyde data with no added outliers.
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Fig. 6. Fits of HO2+RO2 measurements versus constrained box model estimates. The lines

are four different fit approaches: solid line, bivariate weighted fit to all data; long dash, standard

unweighted least squares fit; medium dash, fit using weighted standard least squares (Eq. 4)

with weights calculated using effective variance; and short dash, fit using weighted standard

least squares with weights in the y-direction only.
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